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Abstract

It concerns the unification of Maxwell-Field and Gravitational-Field without
compromise consisting of:

1. A derivation of the general equations of continuously differentiable fluctuating
3-dimensional vector fields turning out to be generalized Maxwell-Equations

2. Identifying the Einstein-Space as the result of deforming an Euclidean Space,

3. Identifying the fluctuating hypersurface of the Einstein-Space as gravitational
wave propagating with the velocity of light seen from an observer space or rather
coordinate space,

This leads to

1. the quantitative unification of Maxwell-Field and Gravitational-Field,

2. the facilitation of quantizing gravitational fields,

3. considerations of general gravitational waves from a new perspective.

With the described unification electromagnetism is directly led back to the most
fundamental terms of physics, space and time.Last but not least the importance
of the Einstein-Equations for microphysics is proved
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1 Introduction

In this treatise gravitational and electrodynamic field are unified not forces as is
wished from an elementary particle physics perspective.
The unification of physically different fields requires a uniform mathematical descrip-
tion. This is for the gravitational and the electromagnetic field not evident. The
gravitational field is seen as the consequence of the curved Space-Time characterized
by nonlinear differential geometric formulations. The electromagnetic field satisfies
the requirements for the linear Maxwell-Equations. In physics it is rated as sure
knowledge that nonlinear and linear fields are assessed totally differently. On the
other hand electrodynamic fields are suggestive of beeing properties of Space-Time
itself. How to cut this Gordian knot proceeds as follows:
At first, it is searched for fluctuation equations of general 3-dimendional sufficiently
often continuously differentiable vector fields. This is achieved by finding out the
connection of a stochastic ensemble consideration of an unlimited number of existent
deterministic fluctuating continuum fields with the deterministic consideration of a
single ensemble system resulting in quasi-linear generalized Maxwell Equations. Re-
quiring constant propagation speed the linear vacuum Maxwell Equations are found.
The mentioned Gordian knot is cut considering the movements of the Riemannian
hypersurface of the Einstein-Space as deformation fluctuations of a suitable Euclidean
observer space. As these fluctuations proceed with light velocity the fluctuations are
decribed by the usual Maxwell Equations. So there are the following results:

1. the quantitative unification of Maxwell-Field and Gravitational-Field,

2. the facilitation of quantizing gravitational fields,

3. considerations of general gravitational waves from a new perspective.

With the described unification electromagnetism is directly led back to the most fun-
damental terms of physics, space and time.
Last but not least the importance of the Einstein-Equations for micro-
physics is proved.
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2 Stochastic and deterministic
general vector fields

ftε(~x, t, ~E, ~B) =

∫
~B

∫
~E

Wtε(~x, t, ~E,~B, ~E
′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

m
∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

Subsequently continuum fluctuations of general 3 dimensional vector fields ~A(~x, t)

with ~∇ × ~A 6= 0 are analysed. They have to be sufficiently often continuously
differentiable. Defining the vector fields ~E and ~B by

~E =∂ ~A/∂t 6= 0

~B = ~∇× ~A 6= 0
(2.1)

and owing to the exchangeability of the operators ∂/∂t und ~∇×

∂~B

∂t
= ~∇× ~E (2.2)

follows. This is a necessary consequence of the condition of the continuous differentia-
bility of ~A(~x, t). This relation is known according to the Maxwell Equations. The for
this purpose dual equation is subsequently beeing looked for. A stochastic continuum
process in the frame of an ensemble theory is formulated such that according to a
deterministic theory the already known as well as the related dual equation arise with
fluctuating quantities ~E und ~B.
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2 Stochastic and deterministic general vector fields

2.1 The Transition: stochastic theory ←→
deterministic theory

Every space-time-point(~x, t) a continuously differentiable distribution density ftε is
assigned to the motion quantities ~Etε = ∂ ~Atε/∂t and ~Btε = ~∇× ~Atε with

ftε = ftε(~x, t, ~E, ~B). (2.3)

In the with tε or ε indexed functions ftε it is automatically assumed that the
included motion quantities (~E, ~B) are assigned to a tε-measurement accuracy. The
indexing of the motion quantities may be omitted in functions appropriately indexed
themselves.

After the execution of a lim tε → 0-process

lim
tε→0

ftε(~x, t, ~E, ~B) = f(~x, t, ~E, ~B) (2.4)

f and (~E, ~B) are understood in the sense of an exact measurement process.

The stochastic transport of the fluctuation quantities

(
~E
′
tε(~x−∆~x, t− tε), ~B

′
tε(~x−∆~x, t− tε)

)
−→

(
~Etε(~x, t), ~Btε(~x, t)

)
happens by the transition probability density Wtε = Wtε(~x, t, ~E, ~B, ~E

′
, ~B
′
) with

lim
tε→0

Wtε =δ(~E, ~B; ~E
′
, ~B
′
)

ftε(~x, t, ~E, ~B) =

∫
~B′

∫
~E
′

Wtε(~x, t, ~E, ~B, ~E
′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

∆~x =tε · ~E
′
×

~B
′

B′2
and ~E

′
×

~B′

B′2
= velocity of propagation.

(2.5)

These equations define stochastic continuum fluctuations of the quantities ~E und ~B in
the sense of an ensemble-theory and represent a Markov Process of natural causality.
The test-functions of distribution theory obtain by this formulation of a transition
probability density Wtε an immediate physical meaning.
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2 Stochastic and deterministic general vector fields

ftε is developed until the 1st order about (~x,t) =⇒

ftε(t− tε, ~x−4~x, ~E
′
, ~B
′
) = f ′tε −

∂f ′tε
∂t
· tε−4~x · ~∇f ′tε +O(tε

2)

f ′tε = ftε(~x, t, ~E
′
, ~B
′
)

(2.6)

und one gets

∫
~E

∫
~B

Wtε

[
∂f ′tε
∂t

+ ~E′×
~B′

B′2
· ~∇f ′tε

]
d ~E′d ~B′+O(tε

2) =

∫
~B

∫
~E
Wtεf

′
tεd

~E′d~B
′
− ftε

tε
. (2.7)

By the process tε → 0 Wtε degenerates to a δ-function:

lim
tε→0

Wtε = δ(~E, ~B; ~E′, ~B′) (2.8)

lim tε → 0 applied leads to

∂f

∂t
+ ~E×

~B

B2
· ~∇f = lim

tε→0

∫
~E

∫
~B
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
. (2.9)

Recovering equation (2.2) after the transition to deterministic consideration the ex-
change term has to vanish, in this case.

lim
tε→0

∫
~B

∫
~E
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
= 0. (2.10)

This link is an integral part of the considered stochastic process.

Limiting ourselves to one system of the ensemble the function f(~x, t, ~E, ~B) in the
space-time-point (~x, t) degenerates to a δ−function

f(~x, t, ~E, ~B) −→ δ(~E(~x,t), ~B(~x,t); ~E, ~B)-function. (2.11)
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2 Stochastic and deterministic general vector fields

From equation (2.9) arises the key-equation

∂

∂t
δ + ~E(~x,t) ×

~B(~x,t)

B2
(~x,t)

· ~∇δ = 0 . (2.12)

The Ξ[...]-operator is inserted as follows

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~B, ~E)~Bd~Bd~E

]
= Ξ[~B(~x,t)] = ~B(~x, t)

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~B, ~E)~Ed~Bd~E

]
= Ξ

[
~E(~x,t)

]
= ~E(~x, t)

(2.13)

or

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~b, ~E)

(
B2

E2
·~E
)
d~Bd~E

]
= Ξ

[
B2

(~x,t)

E2
(~x,t)

·~E(~x,t)

]
=
B2(~x, t)

E2(~x, t)
·~E(~x, t),

(2.14)

developing the deterministic equations from the key equation.

2.2 The deterministic fluctuation-equations

The key-equation (2.12) represents the interface for the transition of stochastic to de-
terministic consideration. From the perspective of statistics over the states of move-
ment of the parallelly assumed deterministic processes in the respective point (~x, t)

one is confined to a single system and such to a single state of motion (~E(~x,t), ~B(~x,t)).
In this situation the vectors of the motion quantities may be pushed before and behind
the differential operators

~E(~x,t) ×
~B(~x,t)

B2
(~x,t)

· ~∇δ = −
~B(~x,t)

B2
(~x,t)

× ~E(~x,t) · ~∇δ

= −
~B(~x,t)

B2
(~x,t)

· ~∇× ~E(~x,t)δ
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2 Stochastic and deterministic general vector fields

Further more there is

∂

∂t
(
~B(~x,t) · ~B(~x,t)

B2
(~x,t)

δ)−
~B(~x,t)

B2
(~x,t)

· ~∇× (~E(~x,t)δ) = 0

=⇒
~B(~x,t)

B2
(~x,t)

· [ ∂
∂t

(~B(~x,t)δ)− ~∇× (~E(~x,t)δ)] = 0

=⇒ ∂

∂t
(~B(~x,t)δ)− ~∇× (~E(~x,t)δ) = 0.

(2.15)

Now the vector fields of the motion quantities (~E(~x,t), ~B(~x,t)) of the one determinstic
system are created about the point (~x, t) and such the transition to the deterministic
equations of the one system has succeeded.

One obtains

Ξ

[∫
~B

∫
~E

[
∂

∂t
(~B(~x,t)δ)− ~∇× (~E(~x,t)δ) = 0

]
d~Ed~B

]
. (2.16)

As integration and differentiation are exchangeable =⇒

∂

∂t
Ξ[~B(~x,t)]− ~∇×Ξ[~E(~x,t)] = 0 (2.17)

and it results in the 1.st of the dual fluctuation equations

∂

∂t
~B− ~∇× ~E = 0. (2.18)

Hereby the stochastic-deterministic connection is established.

Back to the key-equation (2.12)

∂

∂t
δ + ~E(~x,t) ×

~B(~x,t)

B2
(~x,t)

· ~∇δ = 0

one obtains by simple conversion

∂

∂t

(
~E(~x,t) ·

~E(~x,t)

E2
(~x,t)

δ

)
+ ~E(~x,t) · ~∇×

( ~B(~x,t)

B2
(~x,t)

δ

)
= 0

∂

∂t

(
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)δ

)
+ ~∇× (~B(~x,t)δ) = 0

(2.19)
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2 Stochastic and deterministic general vector fields

and

Ξ

[∫
~B

∫
~E

[
∂

∂t

(
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)δ

)
+ ~∇× (~B(~x,t)δ) = 0

]
d~Ed~B

]
(2.20)

respectively

∂

∂t
Ξ

[
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)

]
+ ~∇×Ξ[~B(~x,t)] = 0. (2.21)

So we have the second of the two dual equations

∂

∂t
(
B2

E2
· ~E) + ~∇× (~B) = 0. (2.22)

The result is recapitulated by the following equation system:

∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

~E×
~B

B2
= propagation speed

(2.23)

with |~E × ~B
B2 | ≤ |~E| · |

~B
B2 |. I.e. E2

B2 is not the quadratic propagation speed. Inter-
estingly, this only becomes clear after the involvement of the stochastic ensemble
theory.

The equation system (2.23) is in such general terms that the physical significance
depends on the interpretation of the starting field ~A, the boundary conditions as well
as on the initial conditions. Hereunder, a deformation vector field, the velocity vector
field of turbulence motions or the fluctuations of any other continuously differentiable
vector field may be understood. These equations possess with boundary- and suitable
initial conditions exactly one solution after the theorem of Cauchy-Kowalewskaja
[2]. This statement is at first restricted to the calculation of the fields ~E and ~B.
Calculating the field ~A with the mere knowledge of

∂ ~A

∂t
= ~E (2.24)
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2 Stochastic and deterministic general vector fields

is not possible in all cases. A negative example is the calculation of ~v with the
knowledge of ∂~v

∂t
related to turbulent velocity fluctuations.

2.2.1 The vacuum Maxwell Equations

The propagation speed having the constant amount of light velocity one obtains
the known equations of vacuum-electrodynamics in the coordinate system of the ob-
server:

∂

∂t
~B− ~∇× ~E = 0

1

c2
∂

∂t
~E + ~∇× ~B = 0 mit ~E ⊥ ~B

~E×
~B

B2
= ~c = propagation speed of light.

(2.25)

So the electrodynamic equations of vacuum are generally derived, too. Usually, they
are seen in the above equations with −~E. It is more than pure supposition, that
they describe properties of space-time without a unification of General Relativity
and electromagnetic field in vacuum having succeeded, though many physicists not
least Einstein [3], Jordan [5] and many others having endeavoured.

There is still the explanation of the associated initial field ~A it generally hap-
pening in the frame of vector potential considerations, without recognizing ~A as
definite physical object. Only by a direct comprehension of the vector potential the
electromagnetic field may be explained without means of mechanical quantities.1

2.3 Surfacelike deformation-fluctuations in
3-dimensional space

Let ~d be a continuously differentiable deformation vector field defining an area and
~b und ~e the derived fields

~e =
∂

∂t
~d, ~b = ~∇× ~d (2.26)

1Electrodynamics is introduced in physics via mechanical effects.
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2 Stochastic and deterministic general vector fields

with

~d(x, y, t) =

(
dx(x, y, t),dy(x, y, t),dz(x, y, t)

)
~e(x, y, t) =

(
ex(x, y, t), ey(x, y, t), ez(x, y, t)

)
~b(x, y, t) =

(
bx(x, y, t),by(x, y, t),bz(x, y, t)

)
.

(2.27)

Then the deformation is without loss of generality seen as deformation of the x− y-
area. The equations of motion formally equal the equations of 3-dimensional fluctu-
ations

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed,

(2.28)

only, the operator ~∇× corresponds to

~∇× ~d =

 ∂dz/∂y
−∂dz/∂x

∂dy/∂x− ∂dx∂y

 . (2.29)

The solution uniquely succeeds by the initial conditions ~b(x, y, t0) and ~e(x, y, t0)
according to the theorem of Cauchy-Kowalewskaya [2]. The solution for this area cor-
responds to a partial solution of a 3-dimensional complete solution. Physical material
properties are not explicitly included in these equations. They have to be implicitly
considered by initial and boundary conditions. Sole precondition is that the appro-
priate materials act continuously. It also means that the physical process has to be
clarified enabling the corresponding initial and border conditions.
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2 Stochastic and deterministic general vector fields

2.4 1-dimensional deformation-fluctuations in
3-dimensional space

Let ~d be a continuously differentiable deformation vector field defining a trajectory
and ~b und ~e the derived fields

~e =
∂

∂t
~d, ~b = ~∇× ~d (2.30)

with

~d(x, t) =(dx(x, t),dy(x, t),dz(x, t))

~e(x, t) =(ex(x, t), ey(x, t), ez(x, t))

~b(x, t) =(bx(x, t),by(x, t),bz(x, t)).

(2.31)

Then the deformation is without loss of generality seen as deformation of the x-
coordinate. The equations of motion formally equal the equations of 3-dimensional
fluctuations

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed,

(2.32)

only, the operator ~∇× corresponds to

~∇× ~d =

 0
− ∂dz/∂x

∂dy/∂x

 . (2.33)

This leads to the component equations

∂by/∂t =− ∂ez/∂x

∂bz/∂x =∂ey/∂x

∂[(b2/e2) · ey)]∂t =− ∂bz/∂x
∂[(b2/e2) · ez)]∂t =∂by/∂x

~e× ~b/b2 =propagation speed.

(2.34)
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2 Stochastic and deterministic general vector fields

The x-component remains constant. The solution uniquely results from the initial
conditions ~b(x, t0) and ~e(x, t0) according to the theorem of Cauchy-Kowalewskaya
[2]. The solution for this 1-dimensional trajectory corresponds to a partial solution
of a 3-dimensional complete solution. Physical material properties are not explicitly
included in these equations. They have to be implicitly considered by initial and
boundary conditions. Sole precondition is that the appropriate materials act con-
tinuously. It also means that the physical process has to be clarified enabling the
corresponding initial and border conditions.
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3 Space-Time-fluctuations in
General Relativity

Rµν = 8π ·GN

(
Tµν −

1

2
gµνT

)
Electrodynamics with its Maxwell Equations is the only field theory of classical
physics students of physics are generally faced with in the frame of theoretical physics
(at least in Germany). The Maxwell Equations above are shown formally beeing
a limiting case of classical continuum physics. Because of the constant velocity
of light they were the reason for setting up the Einsteinian Special Relativity.
The adjustment of the electrodynamic field to Space-Time caused many physicists
including Albert Einstein to try an identification of these fields with Space-Time
fluctuations. Obviously, electromagnetic fluctuations are properties of Space-Time
itself, though a prove is missing.

In chapter 2 continuum fluctuations of general vector fields are discussed. Now we
consider deformation vector fields ~d(~x, t) with ~∇×~d 6= 0. They are sufficiently often
continuously differentiable. Defining ~e und ~b by

~e = ∂~d/∂t 6= 0

~b = ~∇× ~d 6= 0
(3.1)

and interchanging the sequence of the operators ∂/∂t and ~∇×

∂~b

∂t
= ~∇× ~e (3.2)

directly follows. So this equation is a necessary consequence of the continuous dif-
ferentiability of ~d(~x, t). The hereto dual equation is found according to chapter 2
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3 Space-Time-fluctuations in General Relativity

with

∂

∂t
~b− ~∇× ~e = 0

∂

∂t

(
b2

e2
· ~e
)

+ ~∇× ~b = 0

~e×
~b

b2
= propagation speed

(3.3)

Assuming the constant speed of light the Maxwell Equations of vacuum1are ob-
tained:

∂

∂t
~b− ~∇× ~e = 0

1

c2
∂

∂t
~e + ~∇× ~b = 0

~e×
~b

b2
= ~c = propagation speed of light.

(3.4)

3.1 Space-Time of General Relativity and its
Riemannian hypersurface

First, the Riemannian hypersurface of Space-Time is considered as deformation of
an Euclidian space. For a precise mathematical definition of the Riemannian space
[7] is noted.

The Riemannian space is generally defined by a manifold, which consists of a
point set, charts or coordinate systems and a symmetrical metric tensor field.
Riemannian space and a suitable Euclidian space are one to one linked by the
coordinate system. The according mapping is in mathematics not explicitly used as
all considerations are abstractly concerned with the connections of the Riemannian
space itself not interesting what kind of picture succeeds in the observational
coordinate space. The metric tensor arises in the point P (~x)∈M with ~x∈E
(Euclidian space) by scalar products of the tangential vectors ~gi.

gij(P (~x)) = ~gi(P (~x)) · ~gj(P (~x)) (3.5)

By free choice of the coordinate system gij(P (~x)) may be determined in one point
(P (~x)). But this does not simultaneously hold for the neighborhood of this point.

1The Maxwell Equations are usually presented by ~e→−~e
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3 Space-Time-fluctuations in General Relativity

The isomorphic mapping from Euclidian space into the Riemannian hypersurface is
brought to physical life when interpreted as deformation of the Euclidian space, both
spaces, Euclidian and Riemannian space, tangentially merging in one point. Here the
deformation vector field ~d = ~d(~x, t) vanishes. These time dependent mappings can
be interpreted as gravitational waves. The Riemannian hypersurface arises from

~y(~x, t) = ~d(~x, t) + ~x . (3.6)

The gradient on the deformed field is described by

~∇~y =

(
∂iyj

)
(3.7)

and detailed

(
∂iyj

)
=

 ∂1y1 ∂1y2 ∂1y3

∂2y1 ∂2y2 ∂2y3

∂3y1 ∂3y2 ∂3y3

 i, j = 1, 2, 3. (3.8)

Defining the spatially tangential vector ~ti with

~ti = ∂i~y = (∂iy1,∂iy2,∂iy3) , (3.9)

one obtains the spatial metric tensor tij = ~ti ·~tj by

(
tij

)
=

(
∂iyj

)
·
(
∂iyj

)T
(3.10)

and

tij = ∂iy1 · ∂jy1 + ∂iy2 · ∂jy2 + ∂iy3 · ∂jy3 (3.11)

as part of the metric tensors of Space-Time

(
gµν

)
=


g00 g01 g02 g03

g10 t11 t12 t13
g20 t21 t22 t23
g30 t31 t32 t33

 µ, ν = 0, 1, 2, 3 . (3.12)

17



3 Space-Time-fluctuations in General Relativity

The metric-tensor elements tij of the spatial hypersurface are components of the
metric-tensor element set gµν of Space-Time. The corresponding statement does not
hold for the Ricci Curvature Tensor. The Ricci Tensor elements rij of the Riemannian
hypersurface as subspace of Space-Time are not part of the Ricci Tensor element set
Rµν of the overall space.

(
Rµν

)
=


R00 R01 R02 R03

R10 R11 R12 R13

R20 R21 R22 R23

R30 R31 R32 R33

 6=


R00 R01 R02 R03

R10 r11 r12 r13
R20 r21 r22 r23
R30 r31 r32 r33

 (3.13)

i.e. rij 6= Rij i, j = 1, 2, 3

Initially, it is the plan to express the Ricci Tensor of Space Time by the Ricci Tensor
of the spatial hypersurface and its time dependent metric tensor

Rij = Rij(rij, tij) i, j = 1, 2, 3. (3.14)

Formulating the energy momentum tensor of the right side of the Einstein equations

Rµν −
1

2
gµνR = 8π ·GNTµν µ, ν = 0, 1, 2, 3

by the related deformation fluctuations using its electromagnetic interpretation the
unification of gravitational and electromagnetic field is outlined in the following chap-
ter.

Originating from the Einstein equations

Rµν −
1

2
gµνR = 8π ·GNTµν (3.15)

one obtains by contraction

trace

(
Rµν −

1

2
gµνR

)
= gµµ

(
Rµµ −

1

2
gµµR

)
= −R = 8π ·GNTµ

µ = 8π ·GNT

(3.16)
an alternative form of the Einstein Equations

Rµν = 8π ·GN

(
Tµν −

1

2
gµνT

)
. (3.17)
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3 Space-Time-fluctuations in General Relativity

3.2 The Ricci Tensor in the origin of a local
inertial-system

The Riemannian curvature tensor Rµ
.ναβ is described in any coordinate system by the

Christoffel symbols

Γµνα =

{
µ
ν α

}
=

1

2
gµλ
[
∂νgαλ + ∂αgλν − ∂λgνα

]
(3.18)

Rµ
.ναβ =

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
+ Γµ

ραΓ
ρ
νβ − Γµ

ρβΓ
ρ
να. (3.19)

In the origin ~x0 of a local inertial system [1] the partial derivatives with respect to
coordinates of the metric tensor gλν vanish such that

Γµνα( ~x0) = 0 (3.20)

and

Rµ
.ναβ( ~x0) =

∂Γµ
νβ

∂xα
− ∂Γµ

να

∂xβ
. (3.21)

In the origin of the coordinate system the metric tensor itself equals the Minkowski
tensor.

gµν( ~x0) = ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.22)

Written out one obtains

Rµ
.ναβ( ~x0) =

1

2
ηµλ

∂

∂xα

[
∂νgβλ + ∂βgλν− ∂λgνβ

]
− 1

2
ηµλ

∂

∂xβ

[
∂νgαλ + ∂αgλν− ∂λgνα

]
(3.23)

=⇒

Rµ
.ναβ( ~x0) =

1

2
ηµλ
[
∂α∂νgβλ+∂α∂βgλν−∂α∂λgνβ

]
− 1

2
ηµλ
[
∂β∂νgαλ+∂β∂αgλν−∂β∂λgνα

]
(3.24)
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3 Space-Time-fluctuations in General Relativity

=⇒

Rµ
.ναβ( ~x0) =

1

2
ηµλ
[
∂α∂νgβλ + ∂β∂λgνα− ∂α∂λgνβ − ∂β∂νgαλ

]
(3.25)

=⇒

Rµναβ( ~x0) =
1

2

[
∂α∂νgβλ + ∂β∂λgνα− ∂α∂λgνβ − ∂β∂νgαλ

]
. (3.26)

After contraction there is the associated Ricci Tensor

Rµν( ~x0) =
1

2

[
∂µ∂αg

α
ν + ∂ν∂

αgµα− ∂α∂
αgµν − ∂ν∂µg

α
α

]
(3.27)

and as ∂α∂α = � means the D’Alembert-Operator =⇒

Rµν( ~x0) =
1

2

[
∂µ∂αg

α
ν + ∂ν∂αg

α
µ −�gµν − ∂ν∂µg

]
. (3.28)

This result may be obtained by linearization of the Riemannian curvature tensor,
too. Choosing point ( ~x0) as the origin of a local inertial system, linearization is not
necessary.

3.3 The Ricci Tensor of the Einstein Space in
dependence of temporal fluctuations of its
Riemannian hypersurface

The following relations correspond to [4] Landau Lifschitz volume 2 page.308-309. A
time orthogonal coordinate system is always possible. In contrary to [4], we do not
equate the velocity of light with 1.

Def: κij =
∂gij

∂(ct)
(3.29)

rij means the Ricci Tensor of the Riemannian hypersurface.
=⇒
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3 Space-Time-fluctuations in General Relativity

R00 =− 1

2

∂κii
∂(ct)

− 1

4
κjiκ

i
j

R0i =
1

2

(
κji;j − κjj;i

)
Rij =rij +

1

2

∂κij
∂(ct)

+
1

4

(
κijκkk − 2κki κjk

) (3.30)

i, j, k pass through 1, 2, 3. ”;” means partial derivation, here.

Thus the geometry of Space-Time may be opened up from geometrodynamics of
space. Gravitational waves existing the energy momentum tensor Tµν 6= 0 is given
in the considered Space-Time area even if there is no matter. 2

2in contrary to Penrose [6] page 467 “The energy-momentum tensor in empty space is zero.“
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4 Unification of Maxwell Field and
gravitational field

Figure 4.1: Maybe, Einstein would have had fun at this theory

4.1 Gravitational waves corresponding to
electromagnetic Fluctuations

The deformation fluctuations of space and its as electromagnetic fluctuations noticed
phenomena are subsequently faced to each other in a limited volume area as fourier
developments . The considerations are performed based on treatments of natural
vibrations of the electomagnetic field in vacuum in accordance to [4]. The usual
electric field ~E is replaced by −~E, without loss of generality. An explicit dependency
of the viewed overall volume in the canonical variables and such in the resulting
energy density and the electromagnetic fields is avoided by modified normalisation
of the canonical variables, in contrast to [4].
In pure field theories energy densities and accellerations should occur as primary
quantities not energies and forces. The energy in one point (~x, t) is always zero but
not the energy density. Analogically, the same is true for the relation of accelleration
and force.
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4 Unification of Maxwell Field and gravitational field

deformation fluctuations electromagnetic fluctuations

From
~d = deformation vectorfield ~A = vector potential
∂
∂t
~b− ~∇× ~e = 0 ∂

∂t
~B− ~∇× ~E = 0

1
c2

∂
∂t
~e + ~∇× ~b = 0 1

c2
∂
∂t
~E + ~∇× ~B = 0

and

~e = ∂~d/∂t 6= 0 ~E = ∂ ~A/∂t 6= 0
~b = ~∇× ~d 6= 0 ~B = ~∇× ~A 6= 0

one obtains

1
c2

∂2~d
∂t2

= ∆~d 1
c2

∂2 ~A
∂t2

= ∆~A

Deformation field and according vector potential field are formally described by

~d =
∑

~k
~d~k =

∑
~k ~a~ke

i~k~r + ~a∗~ke
−i~k~r ~A =

∑
~k
~A~k =

∑
~k
~A~ke

i~k~r + ~A
∗
~ke
−i~k~r

and it follows

~̈d~k + c2k2~d~k = 0 ~̈A~k + c2k2~A~k = 0

with

~e = ~̇d =
∑
~k
~̇d~k =

∑
~k

(
~̇a~ke

i~k~r + ~̇a∗~ke
−i~k~r

)
~E = ~̇A =

∑
~k
~̇A~k =

∑
~k

(
~̇A~ke

i~k~r + ~̇A
∗
~ke

−i~k~r
)

and

~b = −i
∑

~k
~k×

(
~a~ke

i~k~r + ~a∗~ke
−i~k~r

)
~B = −i

∑
~k
~k×

(
~A~ke

i~k~r + ~A
∗
~ke
−i~k~r

)
k1 = 2π·nx

Lx
, k2 = 2π·ny

Ly
, k3 = 2π·nz

Lz
;

~k = (k1,k2,k3)

aki ∼ e−iωki
t, ωki = cki A ~ki

∼ e−iωki
t, ωki = cki

The wave vectors are calculated in a sufficiently great volume V = Lx ·Ly ·Lz.
E = 1

8π

∫
V0

(E2/c2 +B2)dV means the energy of the field in volume V0.

The energy density of the field is E = 1
8π

∑
~k(E2

~k
/c2 +B2

~k
)

23



4 Unification of Maxwell Field and gravitational field

deformation fluctuations electromagnetic fluctuations

Now, the following vectorial quantities (canonical variables) are defined:

~q~k =
√

1
4πc2

(~a~k + ~a∗~k) ~Q~k =
√

1
4πc2

(~A~k + ~A∗~k)

~p~k = −iω~k
√

1
4πc2

(~a~k− ~a∗~k) = ~̇q~k
~P~k = −iω~k

√
1

4πc2
(~A~k− ~A∗~k) =

.

~Q~k

~qki ∼ cos(ωkit), ~pki ∼ sin(ωkit)
~Qki ∼ cos(ωkit),

~P ki ∼ sin(ωkit)

Obviously, they are real and resolved according to complex quantities they give

~akj
= i

kj

√
π(~pkj

− iω ~kj
~qkj

) ~Akj
= i

kj

√
π(~Pkj

− iωkj
~Qkj

)

~a∗kj
= − i

kj

√
π(~pkj

+ iωkj
~qkj

) ~A∗kj
= − i

kj

√
π(~Pkj

+ iωkj
~Qkj

).

Thus one obtains as expansion by characteristic vibrations (in concise presentation):

~d =
√
4π
∑
~k

1
k

(
ck~q~kcos(

~k ·~r)− ~p~ksin(
~k ·~r)

)
~A =

√
4π
∑
~k

1
k

(
ck~Q~k

cos(~k ·~r)− ~P~ksin(
~k ·~r)

)
~e =

√
4π
∑
~k
c
(
ck~q~ksin(

~k ·~r)+ ~p~kcos(
~k ·~r)

)
~E =

√
4π
∑
~k
c
(
ck~Q~k

sin(~k ·~r)+ ~P~kcos(
~k ·~r)

)
~b = −

√
4π
∑
~k

1
k
~k× [ck~q~ksin(

~k ·~r)+ ~p~kcos(
~k ·~r)] ~B = −

√
4π
∑
~k

1
k
~k× [ck~Q~k

sin(~k ·~r)+ ~P~kcos(
~k ·~r)]

respectively noted for the single modes:

~dkj =
√
4π 1

kj

(
ckj~qkj

cos( ~kj ·~r)− ~pkj
sin( ~kj ·~r)

)
~Akj =

√
4π 1

kj

(
ckj ~Qkj

cos( ~kj ·~r)− ~Pkj
sin( ~kj ·~r)

)
~ekj =

√
4πc

(
ckj~qkj

sin( ~kj ·~r)+ ~pkj
cos( ~kj ·~r)

)
~Ekj =

√
4πc

(
ckj ~Qkj

sin( ~kj ·~r)+ ~Pkj
cos( ~kj ·~r)

)
~bkj = −

√
4π 1

kj
~kj × [ckj~qkj

sin( ~kj ·~r)+ ~pkj
cos( ~kj ·~r)] ~Bkj = −

√
4π 1

kj
~kj × [ckj ~Qkj

sin( ~kj ·~r)+ ~Pkj
cos( ~kj ·~r)]

with E =
∑
~k E~k = 1

2

∑
~k(E

2
~k
/c2 +B2

~k
) and E =

∑
~k E~k = 1

2

∑
~k

∫
V0
(E2

~k
/c2 +B2

~k
)dV .

respectively E ~kj
= 1

2 (E
2
~kj
/c2 +B2

~kj
) and E ~kj

= 1
2

∫
V0
(E2

~kj
/c2 +B2

~kj
)dV .

They may formally considered as running waves moving discrete quantities of har-
monic oscillators with the Hamilton Functions

H =
∑
~k

H~k =
∑
~k

1

2
(p2

~k
+ ω2

~k
q2
~k
), H =

∑
~k

H~k =
∑
~k

1

2
(P2

~k
+ ω2

~k
Q2
~k
) (4.1)

and the oscillator equations

~̈q~k + ω2
~k
~q~k = 0, ~̈Q~k + ω2

~k
~Q~k = 0 (4.2)
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4 Unification of Maxwell Field and gravitational field

.

H =
∑
~k

H~k H~k =
1

2
(p2

~k
+ ω2

~k
q2
~k
), H =

∑
~k

H~k H~k =
1

2
(P2

~k
+ ω2

~k
Q2
~k
)

(4.3)

4.2 The energy-momentum-tensor of the
electromagnetic field

The energy momentum density tensor for the electromagnetic field (generally called
Energy momentum tensor) in covariant components [8] is written with the choosen
signature (−1, 1, 1, 1)

Tµν =
1

4π

(
FαµFαν −

1

4
gµνFαβFαβ

)
(4.4)

It is symmetric: Tµν = Tνµ.
One obtains the Faraday-tensor of the electromagnetic field from

Fµν = ∂µAν − ∂νAµ µ,ν = 0,1,2,3 (4.5)

and detailed (they are chosen respectively the form of the above Maxwell Equations)

F0i =∂0Ai − ∂iA0 = Ei/c, i = 1,2,3

Fi0 =∂iA0 − ∂0Ai = −Ei/c, i = 1,2,3

F12 =∂1A2 − ∂2A1 = B3

F13 =∂1A3 − ∂3A1 = −B2

F23 =∂2A3 − ∂3A2 = B1

(4.6)

=⇒ Fµν = −Fνµ

∂ρFµν + ∂µFνρ + ∂νFρµ = 0

and in greater detail
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4 Unification of Maxwell Field and gravitational field

∂1F23 + ∂3F12 + ∂2F31 = 0

∂2F30 + ∂0F23 + ∂3F02 = 0

∂3F01 + ∂1F30 + ∂0F13 = 0

∂0F12 + ∂2F01 + ∂1F20 = 0

.

The indices correspond to 0→ ct, 1→ x, 2→ y, 3→ z complying with the following
electrodynamic equations of vacuum1

div ~B = 0 and
∂

∂t
~B− ~∇× ~E = 0.

The expressions of the covariant and contravariant Faraday-tensors considering the
minkowski tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.7)

lead to

Fµν =


0 E1/c E2/c E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 Fµν =


0 −E1/c −E2/c −E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0


(4.8)

Fµν =


0 −E1/c −E2/c −E3/c

−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0

 . (4.9)

Thus the covariant components of the electromagnetic energy momentum tensor are
written

1the polarity reversal ~E −→−~E recognised
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4 Unification of Maxwell Field and gravitational field

Tµν =
1

4π


Q (

~E
c
× ~B)1 (

~E
c
× ~B)2 (

~E
c
× ~B)3

(
~E
c
× ~B)1 −[E

2
1
c2

+B2
1 −Q] −E1E2

c2
−B1B2 −E1E3

c2
−B1B3

(
~E
c
× ~B)2 −E1E2

c2
−B1B2 −[E

2
2
c2

+B2
2 −Q] −E2E3

c2
−B2B3

(
~E
c
× ~B)3 −E1E3

c2
−B1B3 −E2E3

c2
−B2B3 −[E

2
3
c2

+B2
3 −Q]


(4.10)

with Q =
1

2
(
E2

c2
+B2)

The trace of the electromagnetic energy momentum tensors vanishes

T = 0 (4.11)

and the Einstein Equations simplify to

Rij = 8π ·GNTij . (4.12)

For further considerations the following eigenwave is choosen:

E2 = E3 = B1 = B3 = 0, E1 6= 0, B2 6= 0. (4.13)

=⇒

T00 =
1

8π

(
E2

1

c2
+ B2

2

)
, T01 = T02 = 0, T03 =

1

4π
(
~E1

c
× ~B2) (4.14)

Tik = 0 für i 6= k i,k = 1,2,3 (4.15)

T11 =
−1

8π

(
E2

1

c2
−B2

2

)
, T22 =

1

8π

(
E2

1

c2
−B2

2

)
(4.16)

T33 =
1

8π

(
E2

1

c2
+ B2

2

)
(4.17)
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4 Unification of Maxwell Field and gravitational field

4.3 The quantitative relation of electromagnetic
and gravitational waves

The quantitative connection is achieved via the Einstein Equations

Rµν = 8π ·GNTµν .

The description of a natural oscillation takes place using deformation interpretation
by

~dki =
√

4π
1

ki

(
cki~qkicos(

~ki · ~r)− ~pkisin(~ki · ~r)
)

~eki =
√

4πc
(
cki~q ~kisin(~ki · ~r) + ~p ~kicos(

~ki · ~r)
)

~bki =−
√

4π
1

ki
~ki ×

[
cki~q ~kisin(~ki · ~r) + ~p ~kicos(

~ki · ~r)
]
,

(4.18)

and using the electromagnetic field interpretation by

~Aki =
√

4π
1

k

(
cki ~Q ~ki

cos(~ki ·~)− ~P ~ki
sin(~ki · ~r)

)
~Eki =

√
4πc

(
cki ~Q ~ki

sin(~ki · ~r) + ~P ~ki
cos(~ki · ~r)

)
~Bki =−

√
4π

1

k
~ki ×

[
cki ~Q ~ki

sin(~ki · ~r) + ~P ~ki
cos(~ki · ~r)

] (4.19)

with their corresponding energy density and energy in a volume surrounding the
coordinate origin ( ~x0).

Eki =
1

2

(
E2
ki

c2
+B2

ki

)
Energiedichte

Eki =
1

2

∫
V0

(
E2
ki

c2
+B2

ki

)
dV Energie

(4.20)

.

The metric tensor of an elementary wave with ~q~k ‖ ~ex, ~p~k ‖ ~ey and ~k ‖ ~ez, ~k×~q~k ‖ ~ey
is given by the tangential vectors:

~ti = ∂i~y = (∂iy1,∂iy2,∂iy3) , ~y = ~d + ~x
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4 Unification of Maxwell Field and gravitational field

=⇒
~tz = ∂z~y = (∂zdx,0,1) .

With ~k ·~r = k · z = ωk/c · z one obtains

~tz =

(
−
√

4πωk~q~ksin(ωk/c · z),−
√

4π~p~kcos(ωk/c · z), 1

)
. (4.21)

As searched spatial metric tensor element remains

tzz = 4π

(
ω2
kq

2
~k
sin2(ωk/c · z) + p2

~k
cos2(ωk/c · z)

)
+ 1 (4.22)

with
qk = ukcos(ωkt), pk = vksin(ωkt). (4.23)

The purpose is the evaluation of the equation

Rzz = 8π ·GNTzz. (4.24)

It is appropriate to note, that

Tzz =
1

8π

(
E2

x

c2
+ B2

y

)
=

Ek

4π
. (4.25)

Starting from the Riemannian curvature tensor

Rσ
.ναβ = ∂αΓ

σ
νβ − ∂βΓ

σ
να + Γσ

ραΓ
ρ
νβ − Γσ

ρβΓ
ρ
να. (4.26)

with
Γµνα =

1

2
gµλ
[
∂νgαλ + ∂αgλν − ∂λgνα

]
(4.27)

leads by contraction to the Ricci tensor

Rµν = Rσ
.µνσ = ∂νΓ

σ
µσ − ∂σΓ

σ
µν + Γσ

ρνΓ
ρ
µσ − Γσ

ρσΓ
ρ
µν . (4.28)

The metric tensor after the deformation by the above elementary wave is used in the
time orthogonal coordinate system.

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.29)
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4 Unification of Maxwell Field and gravitational field

gµν( ~x0) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 tzz

 gµν( ~x0) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1/tzz

 (4.30)

gµν ≈ ηµν + hµν , gµν ≈ ηµν − hµν

|hµν |,|hµν | � 1
(4.31)

The Ricci tensor is typically written in a linear and non-linear proportion with respect
to the Christoffel symbols stripped down.

R(1)
µν ( ~x0) = ∂νΓ

σ
µσ − ∂σΓ

σ
µν , R(2)

µν ( ~x0) = Γσ
ρνΓ

ρ
µσ − Γσ

ρσΓ
ρ
µν (4.32)

Detailed examination of the Christoffel symbols

Γσµσ =
1

2

∑
σ

∑
ρ

gσρ∂σgµρ +
1

2

∑
σ

∑
ρ

gσρ∂µgµρ−
1

2

∑
σ

∑
ρ

gσρ∂ρgµρ (4.33)

1

2

∑
σ

∑
ρ

gσρ∂σgzρ =
1

2
g00∂0gz0︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

1

2

∑
σ

∑
ρ

gσρ∂zgρσ =
1

2
g00∂zg00︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

1

2

∑
σ

∑
ρ

gσρ∂ρgσz =
1

2
g00∂0g00︸ ︷︷ ︸

=0

+
1

2
gzz∂zgzz

(4.34)

∂zΓ
σ
zσ =

1

2
∂zg

zz∂zgzz (4.35)

∂σΓ
σ
zz =

1

2
∂0g

00[∂z gz0︸︷︷︸
=0

+∂z g0z︸︷︷︸
=0

−∂0gzz] +
1

2
∂zg

zz[∂zgzz + ∂zgzz − ∂zgzz]

= +
1

2
∂20gzz +

1

2
∂zg

zz∂zgzz

(4.36)
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4 Unification of Maxwell Field and gravitational field

lead for the linear part to

R(1)
zz ( ~x0) = ∂zΓ

σ
zσ − ∂σΓ

σ
zz = −1

2
∂20gzz. (4.37)

The nonlinear part is determined for the considered elementary wave by

R(2)
zz ( ~x0) = Γσ

ρzΓ
ρ
zσ − Γσ

ρσΓ
ρ
zz (4.38)

with
Γσρz =

1

2
gσσ
[
∂ρgzσ + ∂zgσρ− ∂σgρz

]
(4.39)

Γρzσ =
1

2
gρρ
[
∂zgσρ + ∂zgρz − ∂ρgzσ

]
(4.40)

Considering the asumed elementary wave the single partial differentiaions ∂0, ∂z of
the metric tensor vanish in the space-time point (0, 0, 0, 0).

Thus one gets

Rzz( ~x0) = R(1)
zz ( ~x0) = −1

2
∂20gzz( ~x0). (4.41)

Now using
Rzz = 8π ·GNTzz.

and concerning

∂0 =
1

ic
∂t

the amplitude of the elementary gravitational wave (electromagnetic wave)
gives the quantitative deformation of space by an electrodynamic elemen-
tary wave. Such the importance of the Einstein-Equations for microphysics
is proved.

dk =
2

ω2
k

√
πγEk . (4.42)

with the constant of gravitation γ = 6.67 · 10−11m3kg−1s−2 and Ek = as energy
density. In these considerations the light velocity c does not occur explicitly.

Setting Ek = 1Wsec/m3 and using ω2
k = (2π · ν)2 with ν = 50 this results

in dk = 2.933 · 10−10m. In comparison, the measured atomic radius of H1 is given
by ≈ 2.5 · 10−11m. Obviously, that effect has to be considered in practice.

As Spin 1 is assigned to photons the same has to be assumed for
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4 Unification of Maxwell Field and gravitational field

the graviton. (A photon of giant wavelength from an other perspective, if
it is existent.)
The Einstein Equations maybe achieve much more than describing
cosmological processes!

4.4 Summary

Until now, electromagnetism is not directly understood. It is described with detours
via mechanical effects though for physicists it has manifested in immediate clearness
after more than a century of successful handling. With the described unification
electromagnetism is directly led back to the most fundamental terms of physics, space
and time. The usually discussed gauge transformations are chosen by the observation
space respectivly the coordinate space. The vector potential achieves an absolute
significance.
Establishing the facilitation of quantizing gravitational fields is a trivial statement
concerning the Maxwell structure of the gravitational waves identified as deformation
waves of an appropiate Euclidian space. This applies accepting the known canonical
quantization for the electromagnetic field.
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