An Exact Solution of the Einstein Equations with Cosmological Term for Cylindrically Symmetric Space

Xuan Zhong Ni, Campbell, CA, USA
(August 2019)

Abstract

In this article, we derived an exact solution of the Einstein equations with cosmological term for cylindrically symmetric space .

Here we derive an exact solution of the Einstein equations with cosmological term for cylindrically symmetric space.

The static condition¹ means that, with a static coordinate system, the fundamental tensors, the $g_{\mu\nu}$ are independent of the time x^0 or t and also $g_{0m}=0$. The spatial coordinates may be taken to be cylindrical coordinates $x^1=r, x^2=\varphi, x^3=z$. The general form for the square of invariant distance, the ds^2 compatible with cylindrical symmetry is

$$ds^{2} = e^{2v}dt^{2} - e^{2h}dr^{2} - r^{2}d\varphi^{2} - e^{2u}dz^{2},$$
(1)

where v, h, and u are functions of r and z only.

We can read off the value of $g_{\mu\nu}$ from Eq.(1), namely,

$$g_{00} = e^{2v}, g_{11} = -e^{2h}, g_{22} = -r^2, g_{33} = -e^{2u},$$

and

$$g_{\mu\nu} = 0 for \mu \neq \nu.$$

We find

$$g^{00} = e^{-2v}, g^{11} = -e^{-2h}, g^{22} = -r^{-2}, g^{33} = -e^{-2u},$$

and

$$g^{\mu\nu} = 0 for \mu \neq \nu.$$

The Christoffel symbols $\Gamma^{\mu}_{\nu\sigma}$ can be calculated by

$$\Gamma^{\mu}_{\nu\sigma} = g^{\mu\lambda}\Gamma_{\lambda\nu\sigma},\tag{2}$$

and

$$\Gamma_{\mu\nu\sigma} = \frac{1}{2} (g_{\mu\nu,\sigma} + g_{\mu\sigma,\nu} - g_{\nu\sigma,\mu}). \tag{3}$$

Many of them vanish.

Then we calculate the Ricci tensors by

$$R_{\mu\nu} = \Gamma^{\alpha}_{\mu\alpha,\nu} - \Gamma^{\alpha}_{\mu\nu,\alpha} - \Gamma^{\alpha}_{\mu\nu}\Gamma^{\beta}_{\alpha\beta} + \Gamma^{\alpha}_{\mu\beta}\Gamma^{\beta}_{\nu\alpha}.$$
 (4)

The non vanishing components of $R_{\mu\nu}$ are

$$R_{00} = e^{2(v-h)} \times \left\{ \frac{\partial v}{\partial r} \left[-\frac{\partial (v+u-h)}{\partial r} - \frac{1}{r} \right] - \frac{\partial^2 v}{\partial r^2} \right\} + e^{2(v-u)} \times \left\{ \frac{\partial v}{\partial z} \left[-\frac{\partial (v-u+h)}{\partial z} \right] - \frac{\partial^2 v}{\partial z^2} \right\},$$

$$R_{11} = e^{2(h-u)} \times \left\{ \frac{\partial h}{\partial z} \left[\frac{\partial (v-u+h)}{\partial z} \right] + \frac{\partial^2 h}{\partial z^2} \right\} - \frac{\partial h}{\partial r} \left[\frac{\partial (v+u)}{\partial r} + \frac{1}{r} \right] + \frac{\partial^2 (v+u)}{\partial r^2} + \left(\frac{\partial v}{\partial r} \right)^2 + \left(\frac{\partial u}{\partial r} \right)^2,$$

$$R_{22} = e^{-2h} \times r \times \frac{\partial (v + u - h)}{\partial r},$$

and

$$R_{33} = e^{2(u-h)} \left\{ \frac{\partial u}{\partial r} \left[\frac{\partial (v+u-h)}{\partial r} + \frac{1}{r} \right] + \frac{\partial^2 u}{\partial r^2} \right\} + \left(\frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial h}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right$$

Einstein's law requires all $R_{\mu\nu}$ satisfy the following relation.

$$R_{\mu\nu} = \Lambda g_{\mu\nu},\tag{5}$$

for all μ, ν .

The equations $R_{00} = \Lambda g_{00}, R_{11} = \Lambda g_{11}, R_{22} = \Lambda g_{22}$, and $R_{33} = \Lambda g_{33}$ will be,

$$e^{2(v-h)} \times \left\{ \frac{\partial v}{\partial r} \left[-\frac{\partial (v+u-h)}{\partial r} - \frac{1}{r} \right] - \frac{\partial^2 v}{\partial r^2} \right\} +$$

$$+ e^{2(v-u)} \times \left\{ \frac{\partial v}{\partial z} \left[-\frac{\partial (v-u+h)}{\partial z} \right] - \frac{\partial^2 v}{\partial z^2} \right\} = \Lambda e^{2v},$$
(6)

$$e^{2(h-u)} \times \left\{ \frac{\partial h}{\partial z} \left[\frac{\partial (v-u+h)}{\partial z} \right] + \frac{\partial^2 h}{\partial z^2} \right\} - \frac{\partial h}{\partial r} \left[\frac{\partial (v+u)}{\partial r} + \frac{1}{r} \right] + \frac{\partial^2 (v+u)}{\partial r^2} + \left(\frac{\partial v}{\partial r} \right)^2 + \left(\frac{\partial u}{\partial r} \right)^2 = -\Lambda e^{2h}, \tag{7}$$

$$e^{-2h} \times r \times \frac{\partial (v + u - h)}{\partial r} = -\Lambda r^2,$$
 (8)

and

$$e^{2(u-h)} \left\{ \frac{\partial u}{\partial r} \left[\frac{\partial (v+u-h)}{\partial r} + \frac{1}{r} \right] + \frac{\partial^2 u}{\partial r^2} \right\} + \left(\frac{\partial v}{\partial z} \right)^2 + \left(\frac{\partial h}{\partial z} \right)^2 + \left(\frac{\partial^2 (v+h)}{\partial z^2} - \frac{\partial u}{\partial z} \frac{\partial (v+h)}{\partial z} \right) = -\Lambda e^{2u}.$$

$$(9)$$

From the eq(8), we can expect that h=h(r) which is independent of variable z.

Here we limit our solution when all the functions are variables separable. $v(r,z) = v_1(r) + v_2(z)$, $u(r,z) = u_1(r) + u_2(z)$, and h(r,z) = h(z),

$$-e^{2u_2} \times \left(-\left(\frac{dv_2}{dz}\right)^2 - \frac{d^2v_2}{dz^2} + \frac{du_2}{dz}\frac{dv_2}{dz}\right) =$$

$$e^{2u_1} \times \left(-\Lambda + r\Lambda \frac{dv_1}{dr} - \left(\frac{1}{r}\frac{dv_1}{dr} + \frac{d^2v_1}{dr^2}\right)e^{-2h}\right) = k_1, \tag{10}$$

$$-\left(\frac{1}{r} + \frac{d(v_1 + u_1)}{dr}\right)\frac{dh}{dr} + \left(\frac{dv_1}{dr}\right)^2 + \left(\frac{du_1}{dr}\right)^2 + \frac{d^2(v_1 + u_1)}{dr^2} = -\Lambda e^{2h}$$
 (11)

$$e^{-2h} \times \frac{d(v_1 + u_1 - h)}{dr} = -\Lambda r, \tag{12}$$

and

$$-e^{-2u_2}\left(\left(\frac{dv_2}{dz}\right)^2 - \frac{dv_2}{dz}\frac{du_2}{dz} + \frac{d^2v_2}{dz^2}\right) = e^{2u_1}\left(\Lambda - r\Lambda\frac{du_1}{dr} + \left(\frac{1}{r}\frac{du_1}{dr} + \frac{d^2u_1}{dr^2}\right)e^{-2h}\right) = k_3.$$
(13)

From eq(10) and eq(13) for varibals z, we have $k_1 = -k_3 = k$. and $u_2 = -v_2$ with the exact solution;

$$e^{2v_2} = kz^2 + \epsilon z + 1, (14)$$

here ϵ is an integration constant and $e^{2v_2} \longrightarrow 1$, when $z \longrightarrow 0$.

From the equations of eq(10) and eq (13) for varibles r, we have $v_1 = u_1$,

The equations can be simplified as

$$e^{2u_1} \times (-\Lambda + r\Lambda \frac{du_1}{dr} - (\frac{1}{r} \frac{du_1}{dr} + \frac{d^2u_1}{dr^2})e^{-2h}) = k, \tag{15}$$

$$-\left(\frac{1}{r} + 2\frac{du_1}{dr}\right)\frac{dh}{dr} + 2\left(\frac{du_1}{dr}\right)^2 + 2\frac{d^2u_1}{dr^2} = -\Lambda e^{2h}$$
 (16)

$$e^{-2h} \times \frac{d(2u_1 - h)}{dr} = -\Lambda r,\tag{17}$$

and

To solve the equations (15) to (17), we have,

$$2\frac{u_1'}{r} + \Lambda e^{2h} + (u_1')^2 = -ke^{2h-2u_1}, \tag{18}$$

and

$$u_1'' - \frac{u_1'}{r} + (u_1')^2 - u_1'h' = 0, (19)$$

here we use ' as $\frac{d}{dr}$,

we have the solution,

$$ln(\frac{u_1'}{r}) = h - u_1 + h_0, (20)$$

here h_0 is an integration constant. and we have,

$$u_1' = re^{h-u_1+h_0}, (21)$$

Insert this result to the eq(18),

Then we will have,

$$2e^{h-u_1+h_0} + \Lambda e^{2h} + r^2 e^{2h+2h_0-2u_1} = -ke^{2h-2u_1}, \tag{22}$$

let $y = e^{u_1}$, and $e^h = \frac{y'}{r}e^{-h_0}$, we will have,

$$y'(\Lambda e^{-h_0}y^2 + ke^{-h_0} + r^2e^{h_0}) = -2re^{h_0}y,$$
(23)

we will have,

$$\left(\frac{1}{3}\Lambda e^{-h_0}y^3 + (ke^{-h_0} + r^2e^{h_0})y\right)' = 0, (24)$$

$$\frac{1}{3}\Lambda e^{-h_0}y^3 + (ke^{-h_0} + r^2e^{h_0})y = y_0, \tag{25}$$

$$y^{3} + \frac{3}{\Lambda}(k + r^{2}e^{2h_{0}})y - \frac{3y_{0}}{\Lambda}e^{h_{0}} = 0,$$
 (26)

This is an algebra equation,

$$y^3 + py + q = 0, (27)$$

we have $y \longrightarrow 1$ when $r \longrightarrow 0$, we have,

$$1 + \frac{3k}{\Lambda} - \frac{3y_0}{\Lambda}e^{h_0} = 0, (28)$$

let $e^{h_0} = \frac{\Lambda}{3} = \frac{1}{R^2}$,

when $y_0=0$, we have $k=-\frac{\Lambda}{3}$ and eq(27) will have non zero solution of $y^2+p=0$,

$$y^2 = 1 - \frac{r^2}{R^2} = e^{2u_1} = e^{2v_1}, (29)$$

and we have,

$$e^{2h} = \frac{1}{1 - \frac{r^2}{R^2}},\tag{30}$$

In general $y_0 \neq 0$,

we have,

$$y = \left\{ -\frac{q}{2} + \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3} \right\}^{\frac{1}{3}} + \left\{ -\frac{q}{2} - \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3} \right\}^{\frac{1}{3}}, \tag{31}$$

For $y_0 = 0$, we will have,

$$e^{2v} = (1 - \frac{r^2}{R^2})(1 - \frac{z^2}{R^2} + \epsilon z),$$
 (32)

$$e^{2u} = \left(1 - \frac{r^2}{R^2}\right)\left(1 - \frac{z^2}{R^2} + \epsilon z\right)^{-1},\tag{33}$$

and we have,

$$e^{2h} = \frac{1}{1 - \frac{r^2}{R^2}},\tag{34}$$

An interesting phenomina is that when a light is sent by a remote star in the z axis to an observer at the origin point, this physics can be happen in the cylindrical description. The red shift factor is e^{-v_2} which becomes infinite when $z \longrightarrow R$ if we take $\epsilon = 0$.

The red shift is depending on the square of the distance, z^2 of the remote star to the observer at the original point. This can explain the so called "speeding expansion of the universe".

References

[1] P.A.M. Dirac, General Theory of Relativity, Wiley, 1975.