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Abstract

In this article, we derived an exact solution of the Einstein equa-
tions with cosmological term for cylindrically symmetric space .

Here we derive an exact solution of the Einstein equations with cosmo-
logical term for cylindrically symmetric space.

The static condition! means that, with a static coordinate system, the
fundamental tensors, the g,, are independent of the time z° or t and also
gom = 0. The spatial coordinates may be taken to be cylindrical coordinates
2l =r 2% = ¢, 23 = 2. The general form for the square of invariant distance,
the ds? compatible with cylindrical symmetry is

ds* = e*dt? — e*dr? — r’dp® — e*"d2?, (1)

where v, h, and u are functions of r and z only.

We can read off the value of g, from Eq.(1), namely,
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We find
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The Christoffel symbols I'# can be calculated by
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Many of them vanish.

Then we calculate the Ricci tensors by
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The non vanishing components of R, are
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Einstein’s law requires all R, satisfy the following relation.
R;u/ = Aguu; (5)

for all u,v.

The equations Ry = Agoo, 11 = Agii, Rao = Ago, and Rzz = Agss
will be,
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From the eq(8), we can expect that h = h(r) which is independent of
variable z.



Here we limit our solution when all the functions are variables separa-
ble. v(r,z) = v1(r) + v2(2), u(r, 2) = ui(r) + uz(2), and h(r,z) = h(z),
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From eq(10) and eq(13) for varibals z, we have ky = —k3 = k. and
Uy = —9 with the exact solution;

e*? = k2* + ez + 1, (14)

here € is an integration constant and e*> — 1, when z — 0.
From the equations of eq(10) and eq (13) for varibles r, we have v; = uy,

The equations can be simplfied as
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To solve the equations (15) to (17), we have,
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here we use ’ as di,
T
we have the solution,
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here hq is an integration constant. and we have,

u) = rehutho,

Insert this result to the eq(18),

Then we will have,
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let y = e ,and e = y;e_ho, we will have,
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we will have,
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This is an algebra equation,
Y’ +py+q=0, (27)

we have y — 1 when r — 0 , we have,
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let e = 3 = R
when yo = 0, we have k = —%£ and eq(27) will have non zero solution
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and we have,
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In general yq # 0,

we have,
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For yo = 0, we will have,
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and we have,
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An interesting phenomina is that when a light is sent by a remote star
in the z axis to an observer at the origin point, this physics can be happen
in the cylindrical description. The red shift factor is e which becomes

infinite when z — R if we take e =0 .

The red shift is depending on the square of the distance, 2% of the
remote star to the observer at the original point. This can explain the so

called "speeding expansion of the universe”.
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