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Abstract:

In the first two papers on energy fields, we examined the basic principles for the
interactions between energy fields, and analyzed the nature of potential, orbital and
rotational energy fields. Here we apply those basic principles to nuclear physics and
make further proposals. The results may provide an alternative explanation for the
forces at the sub-atomic level, and an alternative explanation for the existence of
allotropes - the different forms of an element.

1. Introduction:

Simple physics experiments have been conducted over the centuries and elaborate
theories have been proposed to explain the observations (e.g. magnetic and electro-
magnetic theories). These theories have become dominant and, in the modern era,
they generally go unchallenged. This paper re-examines some fundamental aspects
of physical behavior and proposes alternative explanations for the interactions in
nature.

For this paper, we have developed proposals for more complex interactions between
energy fields. It builds on the findings of three earlier papers [1][2][3] where energy
fields are seen to interact with each other, and to turn or move, if free to do so.
Energy fields are seen to move to positions of lower net field strength, which are also
the configurations for lower total energy.

In this paper, we have analyzed the interactions between rotational energy fields and
applied the basic principles to the construction of the atomic nucleus, considering the
apparent symmetry and stability of atoms with even-numbered nucleons.

Note: From earlier analysis of the structure of the atom [4], there was no
mathematical pattern for electron ionization energies in relation to the supposed
number of neutrons in the atom. This suggests that neutrons — whatever their
properties - do not reside in the nucleus, where their mass would contribute to the
nature of the nuclear Potential Energy Well.

In this scenario, the effect of the potential energy field is assumed to be small, and the
effect of the orbital energy field is assumed to be zero.
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2. Groups of adjacent particles:

With reference to the earlier papers on Energy Fields [1][2][3], we have taken the
principle that pairs of particles with parallel energy fields will be in a minimum
energy position, and therefore in stable equilibrium, when in an end-to-end
configuration.

We have also taken the principle that pairs of particles with anti-parallel field vectors
will be in a minimum energy position, and therefore in stable equilibrium, when in a
side-by-side configuration — see Figure 2a:

Note: It is assumed that, for groups of protons in an atomic nucleus, the rotational
energy field vectors may be in random directions. For such a group of particles, it is
assumed that the minimum energy level will be when pairs of particles have exactly
parallel or exactly anti-parallel field vectors. For simplicity, this paper will consider
these scenarios only.
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Figure 2a: Configurations for two protons.

For a number of particles grouped together - protons in a nucleus for example - it
is proposed that there will be a number of stable configurations. The different
configurations will have different total energy levels which will determine the level
of stability and also the probability of that configuration occurring.

Furthermore, it is proposed that the most stable configuration for the protons will be
the lowest net energy configuration.

It is proposed that larger groups of protons will be configured in a number of
different ways, dependent on their rotational energy field vectors. The following
diagrams will show the simplest solutions when the energy fields are parallel or anti-
parallel.



For three protons in a nucleus (Lithium) there will be three main configurations —
vertical, horizontal and asymmetric - see Figure 2b:
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Figure 2b: Some configurations for three protons (Lithium).

The net energy field surrounding the group of particles will be symmetric or
asymmetric, depending on the shape of the configuration. The asymmetry of the net
energy field will determine the dipole and multipole aspects of the energy field
surrounding the nucleus.

For a group of protons in a nucleus, we propose that the shape of the net energy field
will affect the nature of the surrounding electrons. The shape of the net energy field
will also affect the characteristics of that elemental atom.

We propose that the different configurations for the protons in a nucleus will create
different characteristics for that element. This will create different ALLOTROPES
for that element.

For Lithium, there are three protons in the nucleus, but there are no allotropes,
suggesting that one configuration is dominant - presumably the one with the lowest
total energy.

For Beryllium, there are four protons in the nucleus. There will be several possible
configurations for the protons - vertical, horizontal, asymmetric and cuboid - see
Figure 2c: (with protons shown as magnets)



Beryllium - 4 protons
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Figure 2c: Symmetric configurations for four protons (Beryllium).

Beryllium has no allotropes, suggesting that one configuration is dominant. We
propose that the dominant configuration will be a symmetrical configuration, the one
with the lowest total energy.

For Boron, there are five protons in the nucleus. There will be a number of
configurations — vertical, horizontal and asymmetric. Boron has many allotropes,

both crystalline and amorphous, suggesting that a number of different proton
configurations co-exist, all with similar total energy — see Figure 2d:
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Figure 2d: Some configurations for five protons (Boron).

For Carbon, there are six protons in the nucleus. There are many possible
configurations for the protons, some of which are shown in the diagram.



The different configurations may explain the many allotropes of Carbon, including
diamond, graphite and graphene — see Figure 2e:

6 protons
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Figure 2e: Some configurations for six protons (Carbon).

Oxygen, with eight protons in the nucleus, has many configurations. We propose that
the more symmetric configurations will have the lowest total energy and will,
therefore, be dominant. Oxygen has a number of allotropes - see Figure 2f:

Oxygen - 8 protons
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Figure 2f: Some configurations for eight protons (Oxygen).



Neon, with ten protons in the nucleus, is an inert gas. It has no allotropes, suggesting
its nucleus, when symmetric, is at the lowest total energy level. We propose that the
most symmetric configuration for ten protons will be as five pairs — see Figure 2g:

Neon - 10 protons
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Figure 2g: Symmetric configuration for ten protons (Neon).

Sulfur has sixteen protons which can be arranged in many configurations, but none
result in a perfectly symmetric total energy field. As a result, Sulfur has a large
number of asymmetric configurations. It also has the most allotropes of any element
— see Figure 2h:
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Figure 2h: Some configurations for sixteen protons (Sulfur).



Argon, with eighteen protons in the nucleus, is an inert gas. It has no allotropes,
suggesting its nucleus is symmetric and the energy field around the nucleus is
uniform. We propose that the most symmetric configuration for eighteen protons will
be as nine pairs — see Figure 2i:

Argon - 18 protons
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Figure 2i: Symmetric configuration for eighteen protons (Argon).

For the elements of the Periodic Table with more protons, we propose that the net
energy level of the nucleus will be a minimum when the nucleus is most symmetric.
With these configurations, the total energy field around the nucleus will also be the
most symmetric and uniform. For the inert elements — the noble gases — there is a
pattern for the configurations:

Helium 2 protons (1 pair) 2

Neon 10 protons (5 pairs)  5x2

Argon 18 protons (9 pairs)  3x3, 3x3

Xenon 36 protons (18 pairs)  3x3, 3x3, 3x3, 3x3.

Kryton 54 protons (27 pairs)  3x3, 3x3, 3x3, 3x3, 3x3, 3x3.
Radon 86 protons (43 pairs) 3x3, 3x3, 5x5, 5x5, 3x3, 3x3.

Oganesson 118 protons (59 pairs) 3x3, 5x5, 5x5, 5x5, 5x5, 3x3.
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Figure 2j: Symmetric configurations for the inert elements.

These nuclei have configurations that are symmetric and with fewest allotropes.
From earlier analysis of the structure of the atom [4], we have seen that for the
electrons surrounding a nucleus, the energy levels to remove an outer electron
(ionization potentials) are seen to be higher for symmetric atoms — those with
symmetric nucleii — see Figure 2k:
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Figure 2k: Ionization potentials: outer electrons of noble gases.



3. Summary and Conclusions

In this paper, we have analyzed advanced interactions between energy fields and
proposed the nature of these interactions at the sub-atomic scale.

We have not used any historic physics theories involving concepts that cannot be
observed. The proposals for the interaction of energy fields are not dependent on the
old physics theory of “charge” and “magical orbits™.

The strengths of energy fields appear to vary by orders of magnitude, yet the sizes
and distances between bodies can also vary by orders of magnitude. Whilst one or
other energy field may appear to dominate, it does not mean that other energy fields
are not present, at lower strengths.

Within the atom, the orbital and rotational energy fields may be strongest and
temperature dependent, whilst the potential (gravitational) energy field may be
insignificant.

These results may provide an alternative explanation for the “conventional” forces at
the sub-atomic level, and a explanation for the existence of allotropes.

Further information available on Blog: https://edisconstant.wordpress.com/
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