Coordinates and static sphere metric solutions

Karl De Paepe*

Abstract

We show there is a scalar function calculated from a metric solution to the Einstein field equations for a static spherically symmetric sphere that depends on coordinates.

Consider a static spherically symmetric sphere of radius b. Let $\rho(r)$ be the mass density, p(r) the pressure, and $U^{\mu}(r)$ the velocity four vector. We have $\rho(r) = p(r) = 0$ for r > b. Let the metric $g_{\mu\nu}(r)$ approach the Minkowski metric as $r \to \infty$ and satisfy the Einstein field equations

$$G_{\mu\nu} = 8\pi [pg_{\mu\nu} + (p+\rho)U_{\mu}U_{\nu}]$$
(1)

Consider the coordinate transformation

$$t' = t$$
 $r' = f(r)$ $\theta' = \theta$ $\phi' = \phi$ (2)

where df/dr > 0, f(r) = r for r < b, and $f(r)/r \to 1$ as $r \to \infty$. On making this coordinate transformation (1) becomes

$$G'_{\mu\nu} = 8\pi [p'g'_{\mu\nu} + (p'+\rho')U'_{\mu}U'_{\nu}]$$
(3)

Now

$$\rho'(r') = \rho(f^{-1}(r')) \qquad p'(r') = p(f^{-1}(r')) \qquad U'_{\mu}(r') = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} U_{\alpha}(f^{-1}(r')) \tag{4}$$

In (3) use (4) and then replace x'^{μ} by x^{μ} and define

$$\tilde{g}_{\mu\nu}(r) = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} g_{\alpha\beta}(f^{-1}(r))$$
(5)

We then have $\tilde{g}_{\mu\nu}(r)$ is also a solution of (1) that approaches the Minkowski metric as $r \to \infty$.

Consider the Kretschmann scalar function

$$K(r) = R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta} \tag{6}$$

We have there are values of r such that

$$K_{\tilde{g}}(r) = K_g(f^{-1}(r)) \neq K_g(r) \tag{7}$$

where $K_{\tilde{g}}(r)$ is K(r) calculated using the metric $\tilde{g}_{\mu\nu}(r)$ and $K_g(r)$ is K(r) calculated using the metric $g_{\mu\nu}(r)$. We however expect $K_{\tilde{g}}(r) = K_g(r)$.

^{*}k.depaepe@utoronto.ca