Justification for Sphere with Surface-Tension as Eddy-Model in a turbulent Fluid.

> Udo E. Steinemann, Findeisen-Str. 5/7, 71665 Vaihingen an der Enz, Germany, e-mail: udo.steinemann@t-online.de http://viXra.org/vixra:1908.0127

Abstract.

Current text is to be considered as an addendum for the earlier text: "Turbulence as structured Route of Energy from Order into Chaos, by Udo E. Steinemann, vixra.org/vixra:1801.0037". The recent script introduced a sphere with surface-tension as an appropriate eddy-model in a discussion on energy-transport through a turbulent fluid-volume. Maybe this vortex-model seemed to be a bit arbitrarily chosen at the publication-time of the article mentioned above. By the current text I have tried to justify the former model-idea on account of outcomes from REYNOLDS-equations and PRANDTLs mixing-distance-theory.

1. Introduction.

Most Information contained in this chapter has been extracted from [1].

1.1. Fluid properties.

A set of properties presented in the scheme below maybe appropriate for the characterization of a turbulent fluid during subsequent discussions.

illerige state s						•
$pressure$ in turbulence fluid: $a(\underline{r},t) = \hat{a}(\underline{r}) + a'(\underline{r},t) \ll$					•	
≫ speed-vector of turbulence fluid: $\underline{c}(\underline{r},t) = \underline{\hat{c}}(\underline{r}) + \underline{c}'(\underline{r},t) \ll$	•	•				
composed of	Ŧ				Ŧ	=
\gg mean portion: $\hat{\underline{c}}(\underline{r})$ \ll	•		•			
≫mean portion: â(r)≪∎≫ϱ = const≪					•	•
	^				Λ	
\gg stochastic portion representing fluctuation: ${f c'({f r},t)}$ \ll	•			•		
\gg stochastic portion due to fluctuation: $a'(\underline{r},t)$ «					•	
with	+				Ŧ	
\gg (location-vector: <u>r</u>) \wedge (time-variable: t) \ll	•				•	
decomposed into		↓	Ŧ	ŧ		
\mathbf{D} components: $\mathbf{c}_1 \wedge \mathbf{c}_2 \wedge \mathbf{c}_3 \ll \mathbf{D}$ components: $\mathbf{\hat{c}_1} \wedge \mathbf{\hat{c}_2} \wedge \mathbf{\hat{c}_3} \ll \mathbf{D}$ components: $\mathbf{c}'_1 \wedge \mathbf{c}'_2 \wedge \mathbf{c}'_3 \ll \mathbf{D}$		•	•	۲		
according to		¥	Ŧ	Ŧ		
≫rectangular coordinate-system≪		•	*•	•		
with		₽	Ŧ	Ŧ		
$(x_1-axis) \land (x_2-axis) \land (x_3-axis) \ll$		•	•	•		
Properties of turbulent Fluid						

1.2. Equations of Fluids Motion.

As shown below there is direct way from NAVIER–STOKE equation for a non–stationary fluid to the REYNOLDS–equation, which finally will deliver fluid–tensions due stochastic fluctuations of the fluid.

NAVIER-STOKE-equation for non-stationary fluids ≪	•	-					
represented by	Ŧ						
$d\underline{c}/dt = (\partial \underline{c}/\partial t) + \underline{c}(\nabla \cdot \underline{c}) = \underline{f} - \varrho^{-1}(\nabla a) + \nu(\Delta \underline{c}) \ll$	•						
	V						
$\gg dc_j/dt = (\partial c_j/\partial t) + c_k(\partial c_j/\partial x_k) = f_j - \varrho^{-1}(\partial a/\partial x_j) + \nu(\partial^2 c_j/\partial x_k^2) \ll$	•	•	•				
where	Ŧ						
\gg [j,k = (1,2,3)] \land [f _j = external forces] \land [ν = viscosity] \ll	•						
takes into consideration 🔺 leads to		Ŧ	Ļ				
\gg fluctuation-property: $\underline{c} = \hat{c} + \underline{c}' \ll$		•					
		Λ					
≫time-everage of a property: 《…》≪		•					
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \nu (\partial^2 \hat{a}_j / \partial x_k^2) - \langle \langle c_k / (\partial c_j / \partial x_k) \rangle \rangle $			•	•			
with				Ŧ			
$ \left\ $				•			
				Λ			
\gg continuity-equation: $\partial c_j' / \partial x_j = 0 \ll$				•			
leads to				ŧ			
				•			
represented by				Ŧ			
$ \gg (\partial \hat{c}_j / \partial t) + \hat{c}_k (\partial \hat{c}_j / \partial x_k) = f_j - \varrho^{-1} (\partial \hat{a} / \partial x_j) + \nu (\partial^2 \hat{a}_j / \partial x_k^2) - \langle \langle d(c_k' c_j') / dx_k \rangle \rangle \ll $				•	•		
with					Ŧ		
$ \gg [\nu(\partial^2 \hat{\mathbf{a}}_j / \partial \mathbf{x}_k^2) = \varrho^{-1} (\partial \tau_{jk} / \partial \mathbf{x}_k)] \wedge [\langle\!\langle \mathbf{d}(\mathbf{c}_k' \mathbf{c}_j') / \mathbf{d} \mathbf{x}_k \rangle\!\rangle = (\mathbf{d}\langle\!\langle \mathbf{c}_k' \mathbf{c}_j' \rangle\!\rangle / \mathbf{d} \mathbf{x}_k)] \ll $					•		

leads to	+			
$ \gg (\partial \hat{\mathbf{c}}_{j} / \partial \mathbf{t}) + \hat{\mathbf{c}}_{k} (\partial \hat{\mathbf{c}}_{j} / \partial \mathbf{x}_{k}) = \mathbf{f}_{j} - \varrho^{-1} (\partial \hat{\mathbf{a}} / \partial \mathbf{x}_{j}) + \varrho^{-1} (\partial / \partial \mathbf{x}_{k} [\tau_{jk} - \varrho \langle \! \langle \mathbf{c}_{j}' \mathbf{c}_{k}' \rangle \!]) $		•		
results in		Ŧ		
$\langle\!\langle (c_1')^2 \rangle\!\rangle \langle\!\langle c_1'c_2' \rangle\!\rangle \langle\!\langle c_1'c_3' \rangle\!\rangle$				
\gg stress-tensor: $-\varrho \langle c_j' c_k' \rangle = (-\varrho) \cdot \langle c_2' c_1' \rangle \langle (c_2')^2 \rangle \langle c_2' c_3' \rangle$		•	•	•
$\langle c_3' c_1' \rangle \langle c_3' c_2' \rangle \langle (c_3')^2 \rangle \langle c_3' c_2' \rangle \langle (c_3')^2 \rangle \langle c_3' c_2' \rangle \langle (c_3')^2 \rangle \langle c_3' c_2' c_2' \rangle \langle c_3' c_2'$				
gives			₽	₽
\gg normal tensions: $\{(-\varrho \cdot \langle (c_j)^2 \rangle) \rightarrow (j = 1, 2, 3)\}$			•	
≫shear-tensions: $\{(-\varrho \cdot \langle\!\langle c_p c_q \rangle\!\rangle) \rightarrow (p,q = 1,2,3)\}$				•
REYNOLDS-Tensions				

$1.3.\ Physical\ Interpretation\ of\ the\ REYNOLDS-Tensions.$

Obviously exist an analogy – as demonstrated by scheme below – between tensions as they exist e.g. in mechanics and those entities introduced by O. REYNOLDS, which can rightly be called tensions.

1.4. Energy-Balance of turbulent Fluid-Motion.

Local non-stationary time-modifications of energy in a turbulent fluid-volume are due to interactions of four different time-dependent effects: production, dissipation, convection and diffusion. Two of them - production and dissipation - have to be considered as source and sink of turbulent energy, the other two effects - convection and diffusion - are responsible for transportation of the energy through the turbulent fluid-volume. While production is strongly related with REYNOLDS-tensions and creates order in fluid-volume on this base, dissipation on the other hand transforms turbulent energy by fiction into heat and creates chaos thereby. Production and dissipation - equally sized - turn out to be counterparts in creation and destruction of order.

≫in complete flow-area of the fluid		•
➢local non-stationary time-modification of turbulent energy ≪		
contains 🔶 is constantly fulfilled	+	+
≫terms≪		
for	+	
≫production: acceptance of turbulent-energy from tensions		• •
due to		

≫normal-tensions: ${j=1} \Sigma^3 [\langle (c'_j)^2 \rangle] (\partial \hat{c}_j / \partial x_j)] \ll$		•		•						
as 🔶 can be compared with				Λ				ŧ	I.	=
≫shear-tensions: $-\langle\!\langle c'_1 c'_2\rangle\!\rangle [(\partial \hat{c}_1 / \partial x_2) + (\partial \hat{c}_2 / \partial x_1)] -$										
$\langle\!\langle c'_1c'_3 angle\!][(\partial\hat{c}_1/\partial x_3)+(\partial\hat{c}_3/\partial x_1)]-$			•	•						
$\langle c'_2 c'_3 \rangle [(\partial \hat{c}_2 / \partial x_3) + (\partial \hat{c}_3 / \partial x_2)] \langle \langle c'_2 c'_3 \rangle]$										
≫source≪								•		
can be combined to				Ŧ				\wedge		
$\gg_{\mathrm{j=1}}\Sigma^3\langle_{\mathrm{k=1}}\Sigma^3[au_{\mathrm{jk}}(\partial\hat{\mathrm{c}}_{\mathrm{j}}/\partial\mathrm{x}_{\mathrm{k}})] angle$										
Solution: waste of turbulent-energy by transition into heat <	•			•	•			•	•	•
specified by 🛛 as 🔶 in specific sense of	^				+			4	¥	
$\gg \nu \{2 [j_{j=1} \Sigma^3 \langle (\partial c'_j \partial x_j)^2 \rangle +$										
$\langle\!\langle [(\partial c'_1/\partial x_2) + (\partial c'_2/\partial x_1)]^2 \rangle\!\rangle + \langle\!\langle [(\partial c'_1/\partial x_3) + (\partial c'_3/\partial x_1)]^2 \rangle\!\rangle +$					•					
$\langle\!\!\langle [(\partial c'_2/\partial x_3) + (\partial c'_3/\partial x_2)]^2 \rangle\!\!\rangle \ll$										
Sink ≪■ Senergy-transition from order into chaos								•	•	
Sonvection: transportation of turbulent-energy due to mean-motion <	•					•				
specified by 🔶 represent	Λ					Ŧ		I.		
$ \hspace{-1.5cm} \gg \hspace{-1.5cm} - \hspace{-1.5cm} \frac{1}{2} \{ \hspace{-1.5cm} _{j=1} \hspace{-1.5cm} \Sigma^3 (\partial \hat{c}_j \langle \hspace{-1.5cm} \rangle_{k=1} \hspace{-1.5cm} \Sigma^3 (c'_{k})^2 \rangle \hspace{-1.5cm} / \partial x_j) \} \hspace{-1.5cm} \ll \hspace{-1.5cm}$						•				
≫diffusion: transportation of turbulen]t-energy due to fluctuations	•						•			
specified by							Ŧ			
$ \gg_{j=1} \Sigma^3(\partial \langle\!\!\langle c'_j \{p'/\varrho + \frac{1}{2} [_{k=1} \Sigma^3(c'_k)^2] \} \rangle\!\!\rangle / \partial x_j)] \leqslant $							•			
≫energy-changes in the considered fluid-volume								•		
Production for Creation of Order and Dissipation for Destruction into Chaos playing										
the roles of Counterparts in turbulent Fluid-Volume										

1.5. Measure for Sizes of energetic Vortices and dissipating Vortices in a Dissipation– State independent of REYNOLDS–Numbers.

Dissipation in turbulent fluid for large REYNOLDS-numbers enables estimates about measures of averagesizes (L) for energetic vortices and (λ) for dissipating vortices as well. This is made obvious in the following scheme:

	and the second	Statute and the	ton the second second	State of the local division of the	Statistics and statistics
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	•				
as specified by	+				
$\gg \nu \{ 2 [_{j=1} \Sigma^3 \langle \! \langle (\partial c'_j \partial x_j)^2 \rangle \! \rangle +$					
$\langle\!\langle [(\partial c'_1/\partial x_2) + (\partial c'_2/\partial x_1)]^2 \rangle\!\rangle + \langle\!\langle [(\partial c'_1/\partial x_3) + (\partial c'_3/\partial x_1)]^2 \rangle\!\rangle +$	•				
$\langle\!\!\langle [(\partial c'_2/\partial x_3) + (\partial c'_3/\partial x_2)]^2 \rangle\!\!\rangle$					
written more densely	+				
$\gg \nu [_{j,k=1} \Sigma^3 \langle \langle [(\partial c'_j \partial x_k) + (\partial c'_k \partial x_j)] (\partial c'_k \partial x_j) \rangle \rangle \langle \langle \langle c'_k \partial x_j \rangle \rangle \rangle \rangle \langle \langle c'_k \partial x_j \rangle \rangle \rangle \langle \langle c'_k \partial x_j \rangle \rangle \rangle \langle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle \rangle \rangle \langle c'_k \partial x_j \rangle$	•	•			
leads to		Ŧ			
$\gg \sim \nu \langle\!\!\langle (\partial \underline{c}')^2 \rangle\!\!\rangle / \lambda^2 \ll$		•	•		
if ♦ where		Ŧ	÷.		
≫turbulent state independent of REYNOLDS-numbers		•			•
$\gg \lambda = \sum_{j=1}^{3} \langle \langle (c'_{1})^{2} / (\partial c_{1} / \partial x_{j})^{2} \rangle \rangle^{1/2} \ll$			•	•	
except for to be considered as becomes independent for		Ŧ		Ŧ	4
Small structures strongly influenced by: v ≪■ >typical size (micro-scale) of dissipating vortices		•		•	
$ ightarrow$ REYNOLDS-number: $\mathrm{Re}_{\mathrm{L}}pprox(\mathrm{L}/\lambda)^2$					•
where					+
\gg L: "integral correlation-lengths" or typical size of energetic vortices \ll					•
Measures for Mean-Sizes of Vortices in a Dissipation-State independent from REYNOLDS-Numbers	I				

Further measures were added by PRANDTL on base of his "mixing distance hypothesis". Under assumptions:

•
$$\hat{c}_1 = \hat{c}_1(x_2) \wedge \hat{c}_2 = \hat{c}_3 = 0 \wedge c'_{(j=1\rightarrow 3)} \neq 0$$

he developed an impulse–exchange–model for turbulent shear–tensions. Starting from kinetic gas–theory he specified a molecular viscosity as product of molecular speed and average–free–distance of the molecules and proposed for the pendant – the turbulent motion – a similar connection will have to exist. This means, he

proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so-called mixing-distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

≫transported quality≪					•			
≫turbulent motion of a fluid≪		0		•				
assumed to be to transports to becomes		ŧ		Ŧ	1			
>>macroscopic pendant ≪■>>quality: q(x ₂)		•		•				
$ Q = \langle c'_2 [\langle q(x_2)_2 \rangle - q(x_2)_1] \rangle \langle q(x_2)_2 \rangle - q(x_2)_1 \rangle = 0 $					•	•		
of		Ŧ	4)	Ŧ				
with						Ŧ		
≫kinetic gas-theory≪	•	•						
a turbulence-ball $\ll \mathbf{I} q(x_2)_1 - \langle q(x_2)_2 \rangle = q(x_2 + \Delta x_2)_1 - \langle q(x_2)_2 \rangle \ll 1$				•		•		
expanded into						ŧ		
≫TAYLOR-series≪						•		
leads to	Ŧ					Ŧ		
with		Ŧ		Ŧ				
\gg molecular viscosity: $\nu = \lambda_m \langle \underline{s}^2 \rangle^{1/2} \ll \blacksquare \gg$ velocity: c' ₂ \ll	•			•				
$ \gg \mathbf{Q} = \langle \langle \mathbf{c}_2' \Delta \mathbf{x}_2 \rangle \rangle \langle \langle \mathbf{d} \mathbf{q} / \mathbf{d} \mathbf{x}_2 \rangle _2 + \frac{1}{2} \langle \langle \mathbf{c}_2' (\Delta \mathbf{x}_2)^2 \rangle \rangle \langle \mathbf{d}^2 \mathbf{q} / \mathbf{d} (\mathbf{x}_2)^2 \rangle _2 + \dots \ll $						•		
≫a similar correlation <i>≪</i>		•	•					
where 🔌 means 🔶 across 🔌 leads to	Ŧ		Ļ	¥		ŧ		
\gg mean distance between molecules: $\lambda_{m} \ll \blacksquare \gg$ vortex-viscosity \ll	•		•					
$Q = \langle c_2 \Delta x_2 \rangle \langle dq / dx_2 \rangle _2 \ll$						•	•	
becomes 💊 for leads to	Λ		Ŧ			Ŧ	Ŧ	
\gg speed of a molecule: $\underline{s} \ll \blacksquare \gg$ product $\ll \blacksquare \gg$ very small: $\Delta x_2 \ll$	•		•			0		
of			ł				194	
\gg characteristic speed $\ll \blacksquare \gg Q = -1^* \langle (c'_2)^2 \rangle^{1/2} \ll$			•				•	
where			\wedge				₽	
≫characteristic length \ll ■ ≫ $\Delta x_2 = (x_2)_2 - (x_2)_1 \ll$			•	•				
$ \gg - \langle \langle c'_2 \Delta x_2 \rangle \rangle = l^* \langle \langle (c'_2)^2 \rangle \rangle^{1/2} \ll $							•	•
for 💊 where							Ŧ	1
$c'_2 \Delta x_2 < 0 \ll \blacksquare$ $exchange-length: 1* \ll$							•	•
Overview of PRANDTL's Mixing-Distance-Hypothesis								

As outcome – in connection with the above considerations – a length ($l_m = mixing$ -distance–length) can be be estimated, which informs about the average–distance a turbulent–ball (vortex) must travel until it loses its individuality – being transformed into another vortex or due to viscosity into heat. This is further demonstrated in the following scheme:

$ \gg [c'_1 = \Delta x_2 (dc_1/dx_2)] \wedge [\langle\!\langle (c'_1)^2 \rangle\!\rangle = \langle\!\langle \Delta x_2^{-2} (dc_1/dx_2)^2 \rangle\!\rangle] \wedge [\langle\!\langle c'_1 \rangle\!\rangle \sim \langle\!\langle c'_2 \rangle\!\rangle] \ll $			•	•		
≫quality: q(x₂)≪	•					
identified by ♦ leads to	Ŧ		Ļ	\land		
≫impulse: 《 p 》 = ϱ《c₁》≪	•	٠				
$\gg \langle (c'_2)^2 \rangle^{1/2} \sim \langle \Delta x_2^{-2} (dc_1/dx_2)^2 \rangle^{1/2} = \langle \Delta x_2 \rangle^{1/2} \langle dc_1/dx_2 \rangle \ll$			•	•		
leads to	Ŧ			Ŧ		
where		+				
$\gg c'_1 = \langle c_1(x_1) \rangle - \langle c_1(x_2) \rangle \langle c_1(x_2) \rangle$		•				
shear-tension: $\tau_T = -\varrho \langle c'_1 c'_2 \rangle = -\varrho l^* \langle \Delta x_2^2 \rangle^{1/2} \langle dc_1/dy \rangle \langle dc_1/dy \rangle \ll$	•			•		
				V		
$ \gg \tau_{\rm T} = -\varrho l_{\rm m}^2 \langle dc_1/dy \rangle \langle dc_1/dy \rangle \ll $				•	•	
where					¥	
$\gg l_m^2 = l^* \langle \Delta x_2^2 \rangle^{1/2} \ll$					•	•
specifies						Ŧ
≫measure for distance where in transported entity loses its individuality <						•
Consequences from Mixing-Distance-Hypothesis						

2. Effects on Vortex–Model in Discussions [2].

2.1. About Eddies shaped as spherical Fluid-Elements.

The existence of REYNOLDS-tensions within a turbulent fluid-volume give rise to a picture of substructures within the fluid-volume (e.g. shaped as spheres or balls as proposed by PRANDTL in the development of his mixing-distance-theory). The sub-structures are separated from each other by complicated surfaces with individual surface-tensions, directly or indirectly related to the REYNOLDS-tensions. The spheres are filled with certain amounts of turbulent translation- and rotation-energy and due to the dynamic of the turbulence permanent forces will act on their surfaces, which finally cause a cascade of splitting-steps.

2.2. Measures relevant for Sizes of the Splitting-Cascade.

Discussions [2] are relevant in a turbulence—range with dissipation independent from REYNOLDS—numbers; the REYNOLDS—equations enable these numbers to be estimate (as shown in chapter 1). Additionally typical size—measures:

- L: for energetic vortices and
- λ : for dissipating vortices

could be obtained from REYNOLDS—equations as well; these estimates are of relevance in discussions [2] because:

- The splitting-cascade starts with a vortex of size (L) and
- Difference between (L) and (λ) is decisive for the step-number of the splitting-cascade.

A final parameter (l_m) of turbulence could be estimated from PRANDTLs "mixing-distance-theory" and is decisive for a measure where a vortex loses its individuality under the actual turbulence-conditions:

- Measure for the distance where energetic vortices will split into follower-vortices and
- Measure where dissipating vortices are transformed into heat on account of the fluids viscosity (ν) .

2.3. Concluding Remarks with regards to Discussion [2].

From the proceeding explanations in connection with the statements of chapter 1, it becomes obvious that the assumption of discussion [2] seems to be appropriate, to consider eddies in turbulent flow as spheres. The assumption seems appropriate because it harmonizes with turbulent-tensions and measures as outcomes from REYNOLDS-equations and PRANDTLs "mixing-distance-theory". Moreover is an existence of a splitting-cascade – from energetic to dissipating vortices with the final dissolution of the latter ones into heat – supported by PRANDTLs "mixing-distance-theory".

3. References.

[1]	Fiedler, H.E.	Turbulente Strömungen, Vorlesungsskript, TU Berlin (Hermann– Föttinger–Institut) & TU Braunschweig (Institut für Strömungsmechanik), 2003
[2]	Steinemann, U. E.	Turbulence as structured Route of Energy from Order into Chaos, 2018, http://vixra.org/vixra:1801.0037