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Current text is to be considered as an addendum for the earlier text: "Turbulence as structured Route of
Energy from Order into Chaos, by Udo E. Steinemann, vixra.org/vixra:1801.0037". The recent script introduced
a sphere with surface-tension as an appropriate eddy-model in a discussion on energy-transport through a
turbulent fluid-volume. Maybe this vortex-model seemed to be a bit arbitrarily chosen at the publication-time
of the article mentioned above. By the current text I have tried to justify tire former model-idea on account of
outcomes from REYNOLDS-equations and PRANDTLs mixing-distance-theory.
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L. Introduct'ion.

Most Information contained in this chapter has been extracted from [1].

L.L. Flui,d properties.

A set of properties presented in the scheme below maybe appropriate for the characterization of a turbulent
fl uid during subsequent discussions.

)density:p( o
)pressure in turbulence fluid: a(4,t) = äE)+a'(r,t)K a

) speed'vector of turbulence fluid: c(r,t) = C$+S E,t)K a o
conpwed of I + +

)mean portion:0G)K o o
)mean portion: ä(r)KrlO = const€ o a

)stochastic portion representing fluctuation: g'(t,t)( o o
)stochastic portion due to flucluation: a'(r,t)( o

wrth + +
)(location.vector: q) n (time.variable: t)K o o

deconposed into + + +
)components: clAc2Aca(r>components: örAö2AeB<I>components: c'1Ac'2Ac'3( o o t

according to + + +
) rectangu lar coordinate.system( o "o o

+ + +
)(x1-axis) A (x2-axis) A (x"*axis)K o o o

Properties of turbulent Fluid

L.2. Equations of Fluid,s Motion.

As shown below there is direct way from I\AVIER-STOKE equation for a non-stationary fluid to the
RtrYNOLDS*equation, which finally will deliver fluid-tensions due stochastic fluctuations of the fluid.

>NAVIER-STOKE.equation for non.stationary fluids( o
I represmted by +

)dqldt = (o e/ o tl+e(V.d = f-p-1(Va)+y(AdK o

dc/ dt = (ä c,/ ät)+cu(äc, / äI*) = f .- p-l{Ea / O xr\+vl|z c,/ E*or)K O o o
where +

)[rk = (1,2,3)] A [fi = external forces] n [u = viscosity]( a
takes into consideration I I I tea* to + t

)fluctuation-property: c = ö+c'( o

)time-everage of a proper§: (...»< o
>@e t/ O!)+ek(oe,/ ax) = f.-0-1(aä / ox,l+v(72ä.,/ oxuz)-(cu,(oci / oxu)\§ a o

with I +
X(cu'(dc,'/dxu)) = (d(cut,')/dx")-(c,'(dc"'/dx,))( a

)continuity-equation: Oci / 0x,= O§ o
leads to I +

>REYNOLDS.equation( o
represented by +

>@e J Aü+eu(Oe,/ Exul = fi-Q-l(Oä / Ox,l+v(}zä.1/ Oxu2l-«d(cu,c,,)/dxu)K a a
with +

* lv (O2 ä", / O xuz) = p-\ö r iu / O xull n [(d(cut,') / dxn) = (d(co'c, ) /dxo)] ( a
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leads to +
>(ae 1/ atl+eu(oe,/ ?xul = f.-a-1(aä / ox,l+B-t(o I lxo[r,o-p(c,'cu1)l) o o

results in +

)stress-tensor: -q(c,'co) =

((c 1 l2)(c1'c rTK. r' 
" 
r)

( - p ) -(.r'".)((cr')2X(.2'cr )
(ca'c 

1 ) (c a'c, 1X((c., J2) K
a a o

gives + +
)normal tensions: {(-S.((c,')')) --- U = 1,2,3)}< o
)shear-tensions: {(-p.(c,c")) -,(p,q = 1,2,3)}( a

REYITIOLDS-Iensions

t .3 " P hy s;t cal I nt er pr etati,on o f the H§Y N O L D S -T ens,ions .

Obviously exist an analogy - as demonstrated by scheme trelow - between tensions as they exist e.g. in
mechanics and those entities introduced by O. REYI{OLDS, which can rightly be called tensions.

)rr: shear-tensions: {(-9.([c,'c")) n (p,q = 1,2,3)]( a
)normaltensions: {(-p.([c,]')) n (i = 1,2,3)]< o a

represent | | | considered as | | | actiag as + +
)macroscopic anisotropic analogy( r p'pendant( a ü

)parallel-motion in (x,,x2).planeK a o
intersecting +

)'A-plane within (x2,x").plane( o o
attackedbyl | | causes + +

)shear-tensions: rr( I pshear.force: F = A.rr = gA(cz'cr)€ o a
ofl + +

)molecular-motions in kinematic gas-theoryK o o
where is specified I +

leads to + +
)statistical pressure: p = 3-rm.n(sz)4 r yr, = q(A/F)(c2'"r)€ o a

)in x,-direction: {(p, = p.((c,12 )} n (i = 1,2,3»< o
with +

)number of molecules per unit.volume: n( o

)molecule-mass: m + (m.n = o)< o

)mean kinetic-energy per molecule-mass: (s2)4 a
Physical lnterpretation of the REYNOLDS-Iensions

:.|.,;l/.i.||...-.ii.::l',::il,]i...,1i;r,:;;-1,.

Local non-stationary time-modifications of energy in a turbulent fluid-volume are due to interactions of
fbur different time-dependent effects: production, dissipation, convection and diffusion. Two of them -
production and dissipation - have to be considered as source and sink of turbulent energy, the other two effects -
convection and diffusion - are responsible for transportation of the energy through the turbulent fluid-volume.
While prodrtction is strongly related with RtrYNOLDS-tensions and creates order in fluid-volume on this base.
dissipation on the other hand transfbrms turbulent energy by fiction into heat and creates chaos thereby.
Production and dissipation - equally sized - turn out to be counterparts in creation and destruction of order.

)in complete flow.area of the fluid( o
)local non.stationary time.modification of turbulent energy< o

contains | | tb constantly ftr lfi lled + +
)terms( o

for I +
)production: acceptance of turbulent-energy from tensions( o o a o o o

dae to + +
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)normal-tensions: -,=, E'[((c',)')i (ä6,/Ox,)l K o o
as | ) | can be contared with I + +

)shear-tensions: *(c'1c'2\[(Oe1/ 0x2) +@ e2 / Ox)l*
(c!c's) [( ä0, I oxr\ + (o e, / o *r)1-
(c'2c'3) [( äö, / O xr\ +{O e,z / Oxz\14

o o

)source( o
I can be conbined to +

* t=rE'( u=, l' ['r,o( äö,1äxo)l)(
)dissipation: waste of turbulent-energy by transition into heat( a a o o o o

I specilied hyl I I as I I I in specilic sense ofl + +
}u{2 [,=tXö ((O c' r0 x,)2$ +

([(O c' j Ox2) +(O c' 2 / Oxr)J2)+([(Ac' r/ 04)+(0 c' * I Ox)12).+
([( O c', I 0 x,l +( O c', / O x,)l 2]< a

*sinkKr äenergy-transition from order into chaos( o a
)convection : transportation of turbulent-energy due to mean-motion( a a

specilfedbyl t I represent + +
}-%{,=rE'( ACi(k=1»3( c' ))11 / Ox,)l § o

)d iffusion : transportation of tu rbulenlt-energy due to f luctuations( a o
specifred by +

}-,=rl'( ä (c',{p' f p+a/zL=rX' (c'o)'l }) /ax, )] ( o
)energy-changes in the considered fluid.volume( o

Production for Creation of Order and Dissipatr'on for Destrucfron into Chaos playing
the roles of Counterparß in turbulent Fluid-Volume

L.5. Measu?"e for Sizes of energet'icVortices and di,ssi,pati,ng Vorti,ces'in a DissipCI,ti,orl-
State'i,nd"ependent o f HEYN O LDS -Number s.

Dissipation in turbulent fluid for large REYNOLDS-numbers enables estimates about measures of average-
sizes (L) for energetic vortices and (X) for dissipating vortices as well. This is made obvious in the following
scheme:

)dissipation: waste of turbulent-energy by transition into heat( o
I as specified by +

}'u{2[,=rx3((Acjäx,)'z[+
K[(0 c' t / }xz)+(O c' 2 / Oxr)]2]+([(Ac' rl Exr)+(O c' r/ Ox)12]+

{l(O c' 2 / O xs) +(O c', / Ox, )]')K
o

written nore densely +
*u[,*=rX'([( Oc',äxu)+( Ac'*Ax, )] ( Ac'uäx,))( a o

leads to +
}- v((äs')'»/\'< o o

tf lI I wherel + +
)turbulent state independent of REYNOLDS.numbers( o o

>X = ,=rxu( (c',)z / (Ac, /äx,)2)1/24 o a
except for | | | to be considered as I I I becones independent for + +

)small structures strongly influenced by: u (rltypical size (micro-scale) of dissipating vortices( o a
>REYNOLDS-number: Re,. = (L/\)'< o

where I +
)L: "integral correlation.lengths" or typical size of energetic vortices( O

Measures for Mean-Sizes of Vortices in a Dissipation-Sfafe indepen dent from REYIUO[DS-IVumbers

Further measures were added bv PRANDTL on base of his "mixing distance hypothesis". Llnder assumptions:

. ör:er(xr) nez:et = 0 Ac'1,=1-3yl0

he developed an impulse-exchange-model for turbulent shear-tensions. Starting from kinetic gas-theory he
specifiecl a molecular viscosity as product of molecular speed and average-free-distance of the molecules and
proposed for the pendant - the turbuient motion - a similar connection will have to exist. This means, he
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proposed for vortices a viscosity as product of a characteristic velocity of the turbulent flow and a length (the so-
called mixing-distance length). Details of PRANDTLs theory are sketched shortly by the scheme below:

)transported quality< o
)turbulent motion of a fluid( a o

assaned to 0e | | I uansports I I I becones I + +
)macroscopic pendant(r),quality: q(x2)< o a

)Q = (c'z[(q xz)z)-q(xz).1»< a a
of + +

with +
)kinetic gas-theory( o o

)a turbulenceball( r)'q(xz)r-(q(xz)2) = q(x2+Axz)r-(q(xz)zl( o a
expanded into I +

)'TAYLOR-series( o
I leads to + +

with + +
)molecular viscosity: v = Lß2»t/2K r ävelocity: c'r€ a a

yq = (c'2 Ax2)((dq/ dx2\l 2+Yz (c' 2( Lx) t\ (d') q/ d( r, )') l, + -. - ( o
)a similar correlation( o a

I wherel I lneans 0 acrossl 0 I leadsto + + +
)mean distance between molecules: \(rlvortex.viscosity( o a

)Q = (c'rAxr)(dqldx2)12( a o
I tecones | 1 I nrl I teats to I + + &

)speed of a molecule: g<r>product€tlvery small: AxrK a a a
of +

ächaracteristic speed(rlQ = -l*(( c'r\'bl/'4 o e
where +

)characteristic length( r )Ax, = (*r)r-(*r)r( o a
}-(c'2Ax2) = 1*((c'z)'»' /' < a a

for 0 where + +
/c' 2Lx2 < 0< a >exchange.length: l*( o ..

Overview of PRA^IDIL's Mixins-Distance-Hypothesis

As outcome - in connection with the above considerations - a iength (1," = mixing-distance-length) can be
be estimated, which informs about the average*distance a turbulent-ball (vortex) must travel until it loses its
individuality - being transformed into another vortex or due to viscosity into heat. This is further demonstrated
in the foliou,ing scheme:

}[c'r = Ax2(dc./dxr)]n [((c'r)') = (Axr2(dc, /d*rl\) A l(c'r) - (c'r)]< o o
)quality:q(x2)< o

identiliedbyl I I teadsto + +
)impulse: (p) = p(c.)K o a

>("', )')'/? - (Axr21d c1 f dx2)2111 / 
2 

= (Ax2) l/'? 
| 
(dc1/dx2) 

| 
( o a

leads to I + +
I where +

)c'r = (c1(x1))-(c.(*, ))K a
shear-tension: r, = -B(c'rc'r) = -pl*(Axr2)1/'?1((dc, /dv)l(dc, /dv)( o a

*r, = -pl-2 l(ac, /av)l(dcr /dv)K o a
where +

X*'= l*(Axr2)1/24 o o
specifies +

)measure for distance where in transported entity loses its individuali§( o
Conseguences from Mixing-Distance-Hypothesis
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The existence of REYNOLDS-tensions witirin a turbulent fluid-volume give rise to a picture of sub*
structures within the fluid-volume (e.9. shaped as spheres or balls as proposed by PR.ANDTL in the development
of his mixing-distance-theory). The sub-structures are separated from each other by complicated surfaces with
individual surface-tensions, directly or indirectly related to the REYNOLDS-tensions. The spheres are fiiied
with certain amounts of turbulent transiation- and rotation-energy and due to the dynamic of the turbulence
permanent folces will act on their surfaces. which finally cause a cascade of spiitting-steps.

Discussions [2] are relevant in a turbulence-range with dissipation independent from REYNOLDS-numbers;
the REYNOLDS-equations enable these numbers to be estimate (as shown in chapter 1). Additionally typical
size-measures:

e L: for energetic vortices and
o X: fbr dissipating vortices

could be obtained from R.trYNolDS-equations as well; these estimates are of relevance in discussions [2]
because:

o The splitting-cascade starts with a vortex of size (L) and
o Difference between (L) and (\) is decisive for the step-number of the splitting-cascade.

A final parameter (1,,,) of turbulence couid be estimated from PRANDTLs "mixing-distance-theory" and is
decisive for a measure where a vortex loses its individuality under the actual turbulence-conditions:

r Measure for tire distance where energetic vortices will split into follower-vortices and
o N4easure where dissipating vortices are transformed into heat on account of the fluids vlscositv (u).

... .,- ,l:r...'iii';:::;:;;;,,,:'';'... r' rrrl i.:.r.1;':1.'. i. i....r.,...::.:,

Ft'om the proceeding explanations in connection with the statements of chapter 1, it becomes obvious that the
assnmption of discussiorr [2] seems to be appropriate. to consider eddies in turbulent flow a^s sp]reres. The
assumption seems appropriate because it harmonizes with turbulent-tensions and measures as outcomes from
REYNOLDS-equations and PRANDTLs "mixing-distance-theory". Moreover is an existence of a splitting-
cascade - fi'om energetic to dissipating vortices with the final dissolution of the latter ones into heat - supported
by PRANDTLs "mixing-distance-theory".

., :.;': ir,i, r.,; -.
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