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Abstract 

This paper explores the implications of the electron oscillator model in regard to the concept of an 

excited state and the way we think about electron-photon interactions (electron-photon scattering). We 

also offer some reflections if we can apply the model to a nucleon (a proton or a neutron).  
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The oscillator model, excited states,  
and electron-photon interactions 

Introduction 
Our oscillator model of an electron1 combines three equations: 

(i) a·ω = c (radius times angular velocity equals tangential velocity) 

(ii) E = m·c2 (Einstein’s mass-energy equivalence relation); 

(iii) E = ħ·ω (the Planck-Einstein relation). 

These relations give us the Compton radius of an electron: 

𝑎 =
𝑐

ω
=

𝑐 ∙ ℏ

m ∙ 𝑐2
=

ℏ

m ∙ 𝑐
=

λ𝐶

2π
≈ 386 × 10−15 m 

We associate this oscillator model with Erwin Schrödinger’s trivial solution for Dirac’s wave equation for 

free electrons, for which Schrödinger coined the term Zitterbewegung. Dirac summarized it as follows: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

The Zitterbewegung concept of an electron combines the idea of a pointlike charge and its motion. As 

such, it explains the difference between the classical (Thomson) radius of an electron and its Compton 

radius. Dirac’s reference to the ‘law of scattering of light by an electron’ may, effectively, be a general 

reference and, therefore, include both Compton as well as Thomson scattering. 

Compton scattering involves electron-photon interference: a high-energy photon (the light is X- or 

gamma-rays) will hit an electron and its energy is briefly absorbed before the electron comes back to its 

equilibrium situation by emitting another photon. The wavelength of the emitted photon will be longer. 

The photon has, therefore, less energy, and the difference in the energy of the incoming and the 

outgoing photon gives the electron some linear momentum. Because of the interference effect, 

Compton scattering is referred to as inelastic.  

                                                           
1 Jean Louis Van Belle, The Electron as a Harmonic Electromagnetic Oscillator, 31 May 2019. 
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In contrast, low-energy photons scatter elastically. Elastic scattering experiments yield a much smaller 

effective radius of the electron: the so-called classical electron radius, which is also known as the 

Thomson or Lorentz radius, and it is equal to re = α·a  a/137  2.818  10−15 m. We associate this radius 

with the pointlike charge, while the Compton radius is the effective radius of its local oscillatory motion. 

From the above, it is clear that when we say ‘pointlike’, we do not refer to a mathematical point: 10-15 m 

is the femtometer scale. That’s the order of magnitude of the size of a proton as measured in electron-

proton scattering experiments, which is a bit less than 1 fm. Hence, pointlike is small, but not zero. 

Form factors and conservation laws  
We mentioned that the size of a proton is measured in electron-proton scattering experiments. The 

reader the proton scatters particles (electrons) that are much bigger than itself: the Thomson radius of 

an electron (read: the charge inside) is more than three times larger than the proton.2 

Let us consider the scales involved in electron-photon scattering. Compton’s original experiment (1923) 

involved X-rays, which typically have wavelengths between 0.01 and 10 nanometer (10−9 m) or gamma-

ray photon will have a wavelength, which corresponds to energies between 100 eV and 100 keV. Hence, 

the wavelength is of an entirely different order of magnitude but the photon energies approach those of 

the electron (511 keV). So what happens here? 

A photon packs energy, but it also packs one unit of physical action: Planck’s quantum of action h.3 

Hence, as the electron absorbs the photon, it will, for a very brief time, pack two units of h. As such, it 

resembles the second Bohr orbital of an electron, which also packs two units of h. What about its 

angular momentum? Also two units of ħ? No. Here we need to remind ourselves that an electron packs 

one unit of physical action (h) but only half a unit of angular momentum: S = h but L = ħ/2. The 

conservation of angular momentum implies our electron should turn into a spin-3/2 particle for a brief 

moment. In other words, our theory implies its excited state has spin-3/2. Does that make any sense? 

Perhaps. Perhaps not. We’ll discuss this in the next sections. 

Let us first think about that 1/2 factor. It is important enough to warrant a small digression. Table 1 

summarizes the key formulas for a spin-only electron (a free electron) and an orbital electron 

respectively. The reader should note we introduce a form factor that is equal to 1/2 in the formula for 

the moment of inertia (I). We used to motivate this by pointing out that our Zitterbewegung electron is, 

effectively, a perpetual current and, hence, it creates a magnetic field, which explains its magnetic 

moment. The magnetic flux through the ring carries energy and we can, therefore, assume that the 

electron energy is not confined to the current ring. However, the attentive reader will note that the flux 

near the current will be larger than at the center of the ring. This challenges the legitimacy of the 1/2 

form factor. 

We acknowledge this. At the same time, there are so many other factors at play. We may wonder, for 

example, why the Zitterbewegung orbit would be circular: elliptical orbitals may also be allowed. In fact, 

the pointlike charge may perhaps pass the center while looping around in some more complicated 

                                                           
2 See: https://en.wikipedia.org/wiki/Proton_radius_puzzle. The upper and lower estimates of the proton radius are 
around 0.84 and 0.9 fm respectively. Hence, the ratio of the Thomson radius and the proton radius may be 
anything between 3.131 and 3.355. It must be a coincidence this ratio is some value around π. 
3 Jean Louis Van Belle, A Classical Quantum Theory of Light, 13 June 2019. 

https://en.wikipedia.org/wiki/Proton_radius_puzzle
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orbital (think of the nice shapes of Schrödinger’s electron orbitals). We will not digress any further on 

this, but it is an interesting hypothesis.      

Table 1: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐2 E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅  

𝑟 = 𝑟C =
ℏ

m𝑐
 𝑟𝑛 = 𝑛2𝑟B =

𝑛2𝑟C

α
=

𝑛2

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣𝑛 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=

E

ℏ
 ω𝑛 =

𝑣𝑛

𝑟𝑛

=
α2

𝑛3ℏ
m𝑐2 =

1
𝑛2 α2m𝑐2

𝑛ℏ
 

L = 𝐼 ∙ ω =
1

2
∙ m ∙ 𝑎2 ∙ ω =

m

2
∙

ℏ2

m2𝑐2

E

ℏ
=

ℏ

2
 L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

μ = I ∙ π𝑟C
2 =

qe

2m
ℏ μ𝑛 = I ∙ π𝑟𝑛

2 =
qe

2m
𝑛ℏ 

g =
2m

qe

μ

L
= 2 g𝑛 =

2m

qe

μ

L
= 1 

 

The excited states of an electron: a naïve model 
Let us come back to the idea of excited electron states. When the electron absorbs a photon, we would 

think that – besides briefly combining the energies of two particles (the photon and the electron) – the 

excited electron will now also pack two units of h. How would that work? Can we apply the Sn = n·h 

formula (n = 1, 2, 3, …) to the spin-only electron? 

Maybe. Maybe not. Let us try. We no longer have a unique energy and, therefore, we no longer have a 

unique frequency. Different frequencies imply different cycle times Tn = λn/vn. Hence, we have different 

radii an = λn/2π and different tangential velocities vn. It is just like Bohr orbitals, right? No. If our charge 

has no rest mass, then its tangential velocity should remain what we assumed it is: the speed of light. 

Hence, we have a different set of calculations here. Let us try an intuitive approach.  

If our equilibrium state – the non-excited state – is written and defined by E1·T1 = h, then our Sn = n·h 

formula implies that E2·T2 = 2·h, E3·T3 = 3·h, …, or – more generally - En·Tn = n·h. If we take the ratio, then 

we get: 

E𝑛 · T𝑛 

E1 · T1
= 𝑛 

Now, the cycle time is equal to the distance over the loop divided by the velocity: Tn = λn/vn. We can, 

therefore, write the EnTn/E1T1 ratio as: 
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E𝑛 · λ𝑛/𝑣𝑛 

E1 · λ1/𝑣𝑛
=

E𝑛 

E1
∙

λ𝑛 

λ1
∙

𝑣1 

𝑣𝑛
= 𝑛 

If v1 and vn have to be equal, and equal to the speed of light (v1 = vn = c), then this might work if En = n2·E1 

and if λn = λ1/n:   

E𝑛 

E1
∙

λ𝑛 

λ1
∙

𝑣1 

𝑣𝑛
=

𝑛2E1 

E1
∙

λ1 

𝑛 ∙ λ1
∙

𝑐 

𝑐
= 𝑛 

A shorter loop means a higher frequency. We can calculate the frequency as fn = 1/Tn = vn/λn = c/λn = n·f1 

or, writing it as an angular frequency, ωn = n·ω1. We invite the reader to further cross-check the 

formulas (Table 2) but, for the time being, they seem to make sense, don’t they? Note that the En = n2·E1 

and ωn = n·ω1 tell us that the energy in the oscillation is proportional to the square of its frequency, so 

that sounds perfectly reasonable. 

Table 2: The excited states of an electron? 

Excited states of a free electron? 

S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E𝑛 = 𝑛2E1 = 𝑛2me𝑐2 

𝑎𝑛 =
λ𝑛

2π
=

𝑎1

𝑛
=

1

𝑛

ℏ

me𝑐
 

𝑣𝑛 = 𝑐 

ω𝑛 =
𝑐

𝑎𝑛

= 𝑛
me𝑐2

ℏ
= 𝑛

E1

ℏ
= 𝑛ω1 

 

These formulas may remind the reader of the textbook explanation of the black-body radiation problem, 

where energy states were defined as E1 = h·f1, E2 = 2·h·f1 = h·f2, E3 = 3·h·f1 = h·f3,…, En = n·h·f1 = h·fn. These 

energy states were all separated by the same amount of energy: En − En−1 = ħ·ω1 = h·f1 = E1. However, it 

is not the same problem: we have a square of n in the En = n2·E1 = n2·h·f1 formula. The square is there 

because of the velocity factor: vn = c, always. The energy difference between two orbitals – or two 

excitation states, we should say – can now be calculated as: 

E = En − En-1 = n2·E1 − (n−1)2·E1 = [n2 − (n−1)2]·E1 = (2n − 1)·E1   

E is no longer constant: it is now a linear function of n, as shown in Table 3. Also note we get yet 

another variant of the Ritz combination principle here – but for excited states of the electron instead of 

electron orbitals. 
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Table 3: Energy differences: E = (2n − 1)·E1 

n 1 2 3 4 5 … 

En = n2·E1 E1 4·E1 9·E1 16·E1 25·E1  

E = En − En-1 = (2n − 1)·E1 E1 3·E1 5·E1 7·E1 9·E1 … 

E3 − E1   4·E1    

E4 − E1    15·E1   

E5 − E1     24·E1  

… … 

En − E1 n2·E1 − E1= (n2 − 1)·E1 

En − Em n2·E1 − m2·E1= (n2 − m2)·E1 

  

This looks quite neat because it establishes a parallel between the emission and/or absorption of a 

photon as a result of an electron jumping from one electron orbital to another and the emission and/or 

absorption of a photon as a result of an electron going from one state to another. Let us do an example. 

The energy difference between the second and first excitation state is equal to: 

E2 − E1 = 3·E1  3511 keV  1.5 MeV 

It is obvious that our model of an excited state doesn’t make sense: to go from one state to another, the 

electron would have to emit or absorb a multiple of its own energy ! We are back to square one ! 

Can we learn anything out of the failure of this naïve model? Probably not. You may think we can do 

something with this to produce the kind of transient particles that are produced in electron-positron 

colliders but we should probably not entertain such thoughts: electrons and positrons are happy to 

collide and produce all kinds of stuff, but electrons don’t collide with electrons. There is no such thing as 

a high-energy electron-electron collider. The model we explored here is just what it is: a nice try but 

non-sensical. We should try something else. 

Non-stable particles and the Planck-Einstein relation 
We are back to the hypothesis we advanced in our previous paper4:  

Stable particles respect the E = h·f = ħ·ω relation – the Planck-Einstein relation – and they do so exactly. 

That’s why they are stable.  

For non-stable particles – transients – that relation is slightly off, and so they die by falling apart in more 

stable configurations, until we’re left with stable stuff only.  

As for resonances – energy blobs with a lifetime of the order of 10−22 or 10−23, they are just that: some 

excited state of a stable or a non-stable particle. Full stop. No magic needed. 

Of course, this means angular momentum may not be conserved. At the very least, an incoming photon 

might change its direction.  

                                                           
4 See: Jean Louis Van Belle, Smoking Gun Physics, 21 July 2019. 
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In other words, the idea that the absorption of a photon briefly turns out electron into a spin-3/2 

particle or – equally likely – flips its spin (ħ/2 − ħ = −ħ/2) is not plausible. The electron remains what it is, 

but the incoming photon just disturbs its elementary cycle, and some force in Nature is going to restore 

that. 

What force? Physicists refer to it as the weak force but perhaps we shouldn’t think of it as a force.5 

Perhaps it’s just time doing its work.6  

So what’s going on, then, when an electron emits or absorbs a photon: the electromagnetic energy of 

the photon and the electromagnetic energy of the electron just mix and mingle. The end result of the 

mixing and mingling is the emission of another photon (with the same or lower energy – depending on 

the energy of the incoming photon) and an electron that’s in a different state of motion. That’s all. 

Nothing more. Nothing less. 

To conclude this rather short section, we’d like to say something about the neutron. A free neutron is 

not stable but its mean lifetime is quite long as compared to the micro- or nano-seconds of other 

particles: free neutrons have a mean lifetime of about 881.5  1.5 seconds, so that’s about 14 minutes 

and 41.5 seconds (the concept of the half-life of this process (611  1 s) is somewhat different but the 

order of magnitude is the same). Why would it be stable inside a nucleus? We think it’s the Planck-

Einstein relation: two protons, two neutrons and two electrons – a helium atom, in other words – are 

stable because all of the angular momenta in the oscillation add up to (some multiple of) Planck’s 

(reduced) quantum of action. The angular momentum of a neutron in free space does not, so it has to 

fall apart in a (stable) proton and a (stable) electron – and then a neutrino which carries the remainder 

of the energy. Let’s jot it down: 

n0 → p+ + e− + ν̅e
0 

Let’s think about energy first. The neutron’s energy is about 939,565,420 eV. The proton energy is about 

938,272,088 eV. The difference is 1,293,332 eV. That’s almost 1.3 MeV.7 The electron energy gives us 

close to 0.511 MeV of that difference – so that’s only 40% – but its kinetic energy can make up for a lot 

of the remainder! We then have the neutrino to provide the change⎯the Euro cents, so to speak. 

Let’s say something about neutrinos here. They are neutral, so what’s an anti-neutrino? Well… The 

specialists in the matter say they have no idea and that a neutrino and an anti-neutrino might well be 

one and the same thing.8 Hence, we might as well write e. No mystery there⎯not for me, at least.  

The equation above makes it quite tempting to think of a neutron as a proton with an added electron. 

That works out mass- or energy-wise, as evidenced by the energy numbers above. 

                                                           
5 See: Jean Louis Van Belle, Is the Weak Force a Force?, 19 July 2019 
6 Time doing its work? Time doesn’t do work, does it? A force – acting on a charge over some distance – does work. 
That’s exactly the point I am trying to make. There’s no force in play. 
7 CODATA data gives a standard error in the measurements that is equal to 0.46 eV. Hence, the measurements are 
pretty precise. 
8 See the various articles on neutrinos on Fermi National Accelerator Laboratory (FNAL), such as, for example, this 
one: https://neutrinos.fnal.gov/mysteries/majorana-or-dirac/. The common explanation is that neutrinos and anti-
neutrinos have opposite spin but that’s nonsensical: we can very well imagine one and the same particle with two 
spin numbers. 

https://neutrinos.fnal.gov/mysteries/majorana-or-dirac/
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You will wonder: do I really believe a neutron is the combination of a proton and an electron? My 

answer to you would be the same question: do you think it’s possible? Think for yourself ! 😊 It would 

be nice as an alternative model, wouldn’t it? 😊  

The Compton radius of a proton 
The whole discussion triggers an interesting question: can we build an oscillator model for some other 

(stable) particle – say, a proton – with our three equations? Let us have a look at them once again: 

(i) a·ω = c (radius times angular velocity equals tangential velocity) 

(ii) E = m·c2 (Einstein’s mass-energy equivalence relation); 

(iii) E = ħ·ω (the Planck-Einstein relation). 

The Planck-Einstein relation associates a frequency with an energy. Einstein’s mass-energy equivalence 

relation tells us mass and energy are proportional, so we don’t have another independent variable 

there. From a math point of view, this equation doesn’t give us anything extra.9 In short, we have two 

equation and two variables, and we can reduce this to: 

a = c/ω = c·ħ/E 

This relation doesn’t tell us why the electron has the energy it has. It could be heavier or lighter: we 

would just find a different Compton radius. Hence, it is tempting to see what other stable particles are 

around, and see if we can use the same calculation. The Universe doesn’t have much stable particles. 

Even the neutron decays outside of the nucleus. But we do have the proton. A priori, we should not 

expect a sensible result. Why not? Protons stick together – with other protons as well with neutrons – 

inside of the nucleus of an atom and, therefore, some other force – other than the electromagnetic, that 

is – must be involved: we refer to it as the strong or nuclear force. Hence, we would not expect to be 

able to explain its mass – or its energy – by a pointlike electric charge whizzing around at the speed of 

light.  

It is, therefore, rather remarkable we get a Compton radius for the proton that has got the order of 

magnitude right. Indeed, if we try the mass of a proton (or a neutron⎯almost the same) in the a = ħ/mc 

formula, we get a radius that’s about 1/4 of what’s measured in the mentioned proton radius measuring 

experiments: 

𝑎p =
ℏ

mp ∙ 𝑐
=

ℏ

Ep/𝑐
=

(6.582 × 10−16 eV ∙ 𝑠) ∙ (3 × 108 𝑚/𝑠)

938 × 106 eV
≈ 0.21 × 10−15 m 

The 1/4 factor cannot be explained by the fact our electrons have a size that’s at least three times larger 

than the size of what’s being measured. In fact, that’s something physicists need to explain to me: how 

do you get a proton radius of less than 1 fm out of experiments that involve firing particles whose hard-

core size is equal to 2.818 fm? I must assume the physicists have done their arithmetic – hopefully not 

                                                           
9 That’s from a math point of view. The E = mc2 equation does give us the physics of the model! 
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assuming an electron has no dimension whatsoever10 - and that they’re correct but… Still… It’s the kind 

of explanation I’d like to see in a physics textbook. 

Three-body problems, oscillators and symmetries 
The ternary structure of the strong force is a bit daunting. We know we don’t have an analytical solution 

for the three-body problem, so how can we hope to make sense of the strong force? 

We should make two remarks here. First, there is a very special case of the three-body problem that is 

referred to as the elastic 3-body problem. I’ll refer you to an animated gif-file – it’s one of those 

animations that is worth a zillion words11 – that shows starting conditions for the gravitational 3-body 

problem usually result in chaos. In contrast, there is no such problem (no chaos) for an elastic three-

body problem. So we may want to think along those lines. 

Three bodies? What about the gluons? We think gluons don’t exist: all those experiments only yield 

‘signals’ or ‘resonances’ that are consistent with the theoretical properties of ephemeral transients. We 

don’t need gluons: there is no conceptual difference between thinking of a red, blue or green quark and 

its anti-quark (an anti-red, anti-blue or anti-green quark with opposite electric charge) or – a bit simpler 

– to think of some parton with three possible colors and four possible charges. We prefer the parton 

approach. Why? What’s in a name? We just think the concept of some parton that comes in 12 possible 

varieties (three colors and four charges) separates stuff better. 

So we want to make particles of partons. We need to introduce some rules, of course. One of them is 

that the charges have to add up to the elementary charge (+1 or −1) or – for neutral particles – have to 

equal zero. That’s where the anti-color in the quark-gluon model comes in, but we don’t want to think in 

terms of anti-colors. The electric charge rule will do. What about our white-color rule? We can drop that 

for the time being. If we allow red to combine with itself and with blue and green, we get a matrix. To be 

precise, the strong force may be different for red and red, red and green, and red and blue, so we can 

put some coefficients in. 

 red green blue 

red sred-red sred-green = sgreen-red sred-blue = sblue-red 
green sgreen-red = sred-green sgreen-green sgreen-blue = sblue-green 
blue sblue-red = sred-blue sblue-green = sgreen-blue sblue-blue 

 

We have nine coefficients but only six of them will be independent. This is actually where the color 

mixing picture comes to mind: red and blue makes purple (or, to be precise, magenta), red and green 

makes yellow, and green and blue makes blue-green (which is also referred to as cyan). So we have 

three primary colors and three mixed colors. 

                                                           
10 After having de-constructed some of Feynman’s arguments (see: Jean Louis Van Belle, The Double Life of −1, 30 
October 2018), I don’t take anything for granted anymore (including Nobel Prize physics). I advise you to do the 
same: be critical. 
11 See: https://commons.wikimedia.org/wiki/File:3bodyproblem.gif#/media/File:3bodyproblem.gif 

https://commons.wikimedia.org/wiki/File:3bodyproblem.gif#/media/File:3bodyproblem.gif
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If you know anything about QCD, the matrix may make you think of the Cabibbo–Kobayashi–Maskawa 

matrix, but it’s got nothing to do with it: that matrix gives you the probability (or amplitude) for the 

flavor (u, d, c, s, t, b) to change into another. As for now, we don’t think we need quark flavors to explain 

transient particles. We have enough degrees of freedom here. 

We should probably remind ourselves of the properties of a symmetric matrix here: An n-by-n 

symmetric matrix will have n eigenvalues, and we can then find a set of n eigenvectors – one for each 

eigenvalue – that are mutually orthogonal. The matrix here is a 3-by-3 matrix: something inside of me 

tells me this should explain the three generations of matter in the Standard Model.  

The electric charge rule – the electric charge has to add up to +1, 0 or −1 – should then explain the rest. 

The concepts of quarks, gluons or flavors sounds a bit like the aether theory. The philosophical concept 

of a colorless, flavorless and zero-charge parton – onto which we can then load the various properties 

we need to explain reality – may work just as well. 

What about Yukawa’s e-r/a factor in the force and/or potential function? We can add it. In fact, the 

easiest functional form for the six color coefficients would be one with an e-r/a factor in which the range 

parameter a depends on the color charges. 

We could further delve into this, but we don’t not want to go too far off-track. When everything is said 

and done, the objective of this paper was only to do so thinking about excited states. We think we 

covered that subject for the time being. 

Jean Louis Van Belle, 24 July 2019 

 

 


