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Abstract 
 

      Here I present a new model for the itinerancy of the strings of holes in the 

Cuprates HTSC. The model assumes various scenarios with respect to the order of the 

holes hopping and evaluates the weighting parameters for the different scenarios. The 

new model still results in the aggregation of holes into strings, but yields a spectral 

distribution for the itinerancy rates of the strings. From this distribution I infer a 

spectral distribution for the magnetic interaction between the strings, which suggests 

also a spectral distribution for the pseudogap parameter, and some relevant 

experimental functions. Apart from these distributions, the basic assumptions of 

former relevant theories remain intact. Such assumptions are the existence of the anti-

ferromagnetic phases A and B, the basic structure of the pseudogap ground state, the 

excitation operators, and the field. The ground state and the field are basically divided 

into two bands, the gapless low energy band, and the high energy band. Due to the 

wide distributions, the bands may be partially overlapped.  
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1. INTRODUCTION. 
 

      More than three decades have passed since the first experimental discovery of 

high temperature superconductivity (HTSC) in Cuprates. Since then, there has been 

extensive research on the subject, both experimental and theoretical. The experimental 

research has accumulated large and important volume of data, which brought 

important characterizations and insight [1,2,3]. The theoretical research, however, has 

been less successful, since it has not yet provided a consensual theory of the 

phenomenon. This is so despite of many various attempts, starting soon after the 

experimental discovery. Already in 1987 Mott wrote: “There are as many theories as 

theorists”, and he continued in 1991 that: “It is almost still the case now” [4]. The 

theory that has accepted the support of some researchers, but that has not become 

consensual, is the RVB theory of P. W. Anderson, that was first proposed in 1987 [5].  

      The present author started a theoretical study of some aspects of the subject 

roughly a decade ago, which has yielded some preliminary publications [6-9]. Only 

eight years ago, these studies have been matured to have yielded a significant paper 

whose title is: “The Origin of the Pseudogap in Underdoped HTSC”. This paper was 

published only in the arXiv.Org (of Cornell University) [10], and had been rejected by 

many known scientific journals, until its eventual acceptance by the J. of 

Superconductivity and Novel Magnetism in January 2013 [11]. Since then, several 

papers based on the “Origin”, have been published by the same author in the same 

journal. None of these papers, neither the “Origin” have ever been cited by any 

researcher, except for the author himself. This total ignorance stands in clear contrast 

to the vast interest in the arXiv publication of the “Origin”. I speculate that the lack of 

reference from colleagues in the physics community stems from the psychological-

sociological basis that controls the scientific peer-reference, acceptance and credit. 

This basis has some features which, although of human nature, act sometimes against 

the advancement of science. The first feature is the tendency to accept the work of a 

“scientific Guru” with less criticism, and to reject every conflicting work. The second 

is to form scientific groups which act like cliques, and reject or ignore works that 

contradict former works of the clique. The third is to stick to former perceptions 



 

 

4 

without being open minded to accept new ones. In the usual case, these three features 

are mixed together with various proportions. 

      The wide rejection of the “Origin” is somewhat surprising since, as I show below, 

its basic features are almost self-suggestive. The most basic presumptions of the 

“Origin” are the following. The t-J Hamiltonian is assumed to be the proper 

Hamiltonian to deal with the high temperature superconductors (HTSC) cuprates. The 

t-J Hamiltonian has been used by various works [12-14]. It is given by Eq. (1) in [11], 

where it was divided into its hopping part - tH , and its magnetic part - JH , namely: 

tJ t JH H H  . In the un-doped anti-ferromagnetic parent materials, every spin is 

surrounded by other four anti-parallel spins that results in reducing the average 

magnetic energy by J  per spin. Suppose now that a certain amount of holes, which 

makes a fraction   of the total number of unit cells, is doped into the parent material 

to produce under-doped HTSC cuprate. Let us also assume that each of these holes is 

segregated, and it is not the nearest neighbor to any other hole. Then, the magnetic 

energy per one plane of 
2N unit cells, is 

2 (1 2 )N J   . Thus, the magnetic energy is 

raised by 2J  per hole. If, on the other hand, all the holes are agglomerated into one 

squared area, and we neglect the energy of the edges, then the magnetic energy 

increase per hole is only J , one half of the energy of the segregated holes. Obviously, 

when Coulomb interaction and holes hopping are not considered, it is energetically 

favorable to agglomerate the holes. So far, we have not considered hopping energy 

and its consequences, which happen to be very important in HTSC Cuprates. When 

tH  is turned on, segregated holes become even less acceptable, because their 

movements would destroy anti-ferromagnetism, not only at their close neighborhood, 

but also across their former tracks. As about the big single conglomerate, it is also 

unacceptable because it cannot preserve its form after the holes start hopping. 

Experiments suggest strongly that the holes agglomeration should be in the form of 

straight strings, in the vertical and the horizontal directions, as in checkerboard 

geometry. When a large number of holes are aggregated to form a straight string, their 

magnetic energy increase is 3
2 J  per hole, an intermediate between the increase of the 

segregated holes, 2J  per hole, and of the big single conglomerate, which is J  per 

hole. The big advantage of the said checkerboard linear aggregation of holes is their 

itinerancy, and their ability to enable the pseudogap state, and superconductivity. The 
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itinerancy of the linear aggregation of holes has been demonstrated in [11]. However, 

since some steps of that procedure are questionable, the subject of the itinerancy will 

be re-evaluated, and consequently, will be better established in the present paper. 

      The agglomeration of the holes into itinerant columns and rows (in a checkerboard 

geometry), each separated by two phase-inverted anti-ferromagnetic areas of spins, 

leads immediately to important consequential agreement with experiment. Simple 

considerations of how to contrast the reciprocal space of the described physical 

picture are given in the “Origin”, considerations which led directly to its Fig. 1a. The 

agreement with experiment is demonstrated by Fig. 1b [11]. Fig. 1a in the “Origin” 

depicts the boundaries of areas in the Brillouin zone (BZ) that enclose the ground 

state of the spins and holes in the two dimensional 2CuO planes. It is often referred to 

as the “underlying Fermi surface” (UFS). Other theoretical models have obtained such 

a rough agreement with experiment only after elaborate calculations, using 

unjustifiable adjustable parameters. One such parameter is the second nearest 

neighbor hopping parameter- 't , which in general is adjusted to be as a significant 

fraction of the first nearest neighbor hopping parameter- t [14, 28, 29]. Recalling that 

the second nearest neighbor is located in the nodal directions (1,1)  and (1, 1)  , 

implying that such an adjustment is unacceptable. This is so because in the tight 

binding approximation the hopping energy is given by 

†( ) ( )[ ( ) ( )] ( )n

n

ik R at at at
m m n m n

R

E k e r V r V r R r R dr      , where the 

superscripts “at” denote atomic functions, and nR  is the location of the crystalline cell. 

The strong directionality of the 2 2x y
d


 lobes of the Copper, and the xp , yp  lobes of 

the oxygens suggest the strong exponential diminishing of hopping in the nodal 

directions. Contrary to this unacceptably adjustment of parameters, the BZ in Fig. 1a 

is an unavoidable consequence of the itinerant columns and rows of holes in the two 

dimensional 2CuO planes, as shown in [11]. Besides, without the assumption of holes 

aggregation, hopping of holes lead to losing local anti-ferromagnetic order, contrary 

to Neutron scattering measurements, where the elastic incommensurate peaks appear 

at (1 2 ,1)
a


  and  (1,1 2 )

a


 . They appear as satellites around the wave-number 
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of the anti-ferromagnetic order- (1,1)
a


, indicating only wave modulations around 

that order, without its destructing.  

      The main features of the UFS of Fig. 1a in the “Origin” are the following: The 

holes states, which are enclosed by the shaded areas, are located in the anti-nodal 

directions, around the boundaries of any two adjacent BZ. They are located within 

rectangles of ( / 2 )a  by (2 / )a . Obviously, the boundaries of these shaded areas 

are nested, since the whole physics is semi one dimensional. However, there are 

differences between these two kinds of nesting, as has been explained in the “Origin”. 

The nesting in the string direction produces the 4x4 CDW, whereas the nesting 

parallel to the string direction produces the incommensurate Neutron Scattering peaks 

[11]. The width- ( / 2 )a , in the strings direction, is a direct consequence of the 

checkerboard geometry, as explained in the “Origin”. If the physics was in accordance 

with strip models [15-17], then this width should be doubled, which would be against 

STM and ARPES experiments [11]. The width- ( / 2 )a , in the strings direction, is 

bordered by two nested straight lines at ( / 4 )a . Usually, such situations create 

some irregularities in the spectrum of the states at these wave-numbers, which could 

be reflected in electronic and ionic polarizations. The states with the wave-numbers- 

4
k

a


  , in the string directions, are scattered and interfered by each other to create 

a self-sustained field of 
2

k
a


 . This is a charge density wave electronic field, which 

may produce an ionic field, by means of the electron-ion interaction. The 

wavenumber width of ( / 2 )a  fits a modulation by a period of four lattice units in 

the real space, which makes the field self sustained. Such modulations have been 

measured by STM and reported in several papers [18-20]. Qualitatively speaking, 

such perception has been described in the “Origin”, although no quantitative analysis 

has been given so far to the energy spectrum of the states in the string directions. 

      Nesting in directions that are transverse to the strings creates interferences 

between string states of wave-vectors k  and k , where

2
( )2 ( )Fk k sign k k sign k

a


   . This, as is usual in such mixings, creates an 

energy gap that separates the particle-like spectrum from the anti-particle-like 
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spectrum. The parameters of the above mixing may be of the same sign or reversed in 

sign. It turns out that, besides the energy-gap, there are energy shifts of the above 

mentioned spectra. For reversed sign parameters, both the particle-like and the anti-

particle-like spectra, shift towards the Fermi level, and bridge the gap. Thus, 

converting the gap into a pseudogap. The experimental fact that the HTSC Cuprates 

are conducting, and even superconducting, stems from these shifts of the energy 

scales. These conclusions have been reached already in the “Origin”. The present 

analysis obtains large imaginary parts for both the itinerant states, and the pseudo 

gaps, which probably has important implications on the density of states and the 

transport properties of the pseudogap state.   

      The above mentioned mixing of every two states whose wave-number difference 

is 2 Fk , produces SDW of the same wave-vectors normal to the string directions. 

These results are in a good agreement with elastic Neutron scattering experiments, 

where incommensurate peaks around the anti-ferromagnetic wave-number, at 

(1 2 ,1)
a


  and  (1,1 2 )

a


 , have been reported by many authors [21-25]. The 

fact that these peaks have been observed in elastic Neutron scattering experiments is 

additional evidence that we have made the proper choice of the sign of mixing of the 

k  and k states. 

      In this introduction, I have used concepts and perceptions that are typical to 

systems of Fermions. The reader could rightly question this, because usually 

excitations of collections of Fermions, like Plasmons and Magnons, are Boson-like. 

Here the strings of holes are treated like Fermions because a crystal cell of the 2CuO  

plane can have either one hole or one spin. This suggests the relations: | 0 0jC  , 

† | 0 1j jC C  , and
† † | 0 0j jC C  , where | 0   is the vacuum anti-ferromagnetic 

state, and 
†

jC  creates a string of holes in the j column (row) as defined in the 

“Origin”. In addition one has the freedom of choosing phase so that 

† † † †{ }| 0 0j i i jC C C C  . These relations are the Fermi anti-commutation relations. 

Despite the above relations, we shall see during the analysis of the present paper that 

the strings of holes are far from satisfying the basic requirements of Landau’s Fermi 

systems. This is so because the dispersion of the self-energies of the “quasi-string-

particles” is much smaller than the magnetic interactions between them. This feature, 
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together with the broad spectrum of their itinerancy, result in inverse life-times that 

are of the same order as the excitation energies. However, the strict Landau criteria 

for Fermi systems are violated also in other systems, such as for example highly 

disordered metallic system where the electron conductivity is affected by Coulomb 

blockade or Coulomb gap. This suggests that one should be less restrictive in using 

Fermi system concepts in dealing with systems that are not strictly Landau’s Fermi 

systems. 

      The main purpose of the present paper is to re-establish the theory of the linear 

strings of holes in Cuprate HTSC. This will be done by reassuring the basic model, 

together with the correction of some faults. The two main parts of this re-

establishment are: 1) The re-evaluation of the itinerancy of the string states that are 

arranged in a checkerboard geometry, its deduced dispersion and life times. 2) The re-

evaluation of the magnetic interactions and their consequential pseudogap order 

parameter. 3) The implications to some properties of the pseudogap state. 

 

2. MODELING THE ITENERANCY OF THE LINEAR STRINGS 

OF HOLES. 

 

      In the “Origin” the holes were assumed to conglomerate into linear strings which 

make rows and columns, and which move by means of the application of tH  on the 

neighboring spins repeatedly and continuously, one by one. This is done formally by 

applying the time development operator on the string. During the process the 

magnetic energy is increased by J , but comes back to its original value after the 

whole string is moved by one crystal unit. This energy restoration results from the 

magnetic energy restoration of the string, and from the fact that on both sides of the 

string there are two perfect anti-ferromagnetic regions, as before the string movement. 

Here I shall re-evaluate this process, discuss its faults, and suggest an alternative. 

      The t-J Hamiltonian is given by 

 

† 1
( ) ( )

4
t J is js i j i j

ij ij

H a a hc J S S n n
   

         

          t JH H  .                                                                                                      (1) 
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The various parameters in the equation were defined in the “Origin”. Notice that the t-

J Hamiltonian does not include Coulomb interaction. The time development operator 

is given by  

 

1
0 0

( , ) ( ) .....
nt tn

n n n
n n

U t U i dt dt
 

 
 

         

                   
2

1( ... )

1 1( )... ( ) n
t t t

t n tdt H t H t e
 


                                                            (2) 

 

The time development operator operates adiabatically, by means of the perturbation 

Hamiltonian, on states of the unperturbed Hamiltonian, to result in the approximate 

solutions of the total Hamiltonian. In the usual perturbation problem the unperturbed 

Hamiltonian is soluble, and the perturbation Hamiltonian presents only a small 

perturbation, so that the application of a few lower orders of nU  is sufficient. In the 

present problem, the time development operator was used in an unusual manner. The 

magnetic Hamiltonian JH was taken to be the unperturbed Hamiltonian, because its 

eigenvalue is known for any configuration of spins. Given the small amounts of 

doping, in the under-doping regime, the absolute value of the magnetic energies is 

still much larger than the kinetic energies due to the itinerancy of the strings. 

Nevertheless, the kind of application of the perturbation theory in the “Origin” was 

unusual, because the kinetic parameter   is larger than the magnetic parameter J . 

The magnetic coupling is given by 

24
J

U


 , where it is usually assumed that 

4U  , so that J  . In the literature the ratio ( / )j  was reported to be between 

2.5 and 4.0 [12,14,16], and it is reasonable to assume that it is roughly equal to 3.0. 

The application of nU  on 
†

jC  produces the pre-factor: ( / ) 1nj  , which suggests 

that nU of the largest order dominate, which means that hopping of only part of the 

spins to the next column is insignificant.  

      There is a major problem with the above described application of the time 

development operator (beside additional problems). When NU is applied, where N  is 

the number of cells along the string directions, the total time to move the string one 

step becomes semi-infinite. This is so because the one step hopping time of each spin 
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is at least of order
1 
 , so that the total time necessary to move the whole string is at 

least of order 
1N 
. In the following I present a new model for the itinerancy of

†

jC , 

which suggests that the hopping time for each spin is even larger than
1 
. Anyway, 

this makes the states 
†

qC  stationary and dispersion-less. The dispersion given by Eq. 

(18) in the “Origin” is erroneous because it does not take into account the above time 

consideration. ARPES data suggest that the dispersion of 
†

qC  is quite small [26-30], 

but it is not as small as / N . In the following analysis I present a new model for the 

itinerancy of
†

jC . The main innovation of the new model is that it takes into account 

the rows of holes while applying nU on the columns of holes, and wise versa. Fig.1 

depicts an area of spins and holes that includes parts of two columns and three rows. 

Each part of a column that is enclosed between two rows will be referred to as a 

segment.  
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+ 
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Fig. 1. Two column segments (and their surroundings) after the first mutual hops that 

start the movement of the whole columns. The right column and the rows are in 

different hopping sequences than the left column. The signs indicate spin projections 

on the z-axis. Cells with holes are colored blue.  

 

Since there are 
1

2
N rows along each column, the average number of holes in each 

segment is 2 / ,  which equals 16 for a typical under doping parameter of- 

0.125  . If one excludes the holes that are shared by the rows of holes, then this 
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number is: 15l  . The numbers of holes in a segment in the figure is arbitrarily 

chosen to be ten (not including the hole in the row). The new model for the strings 

itinerancy applies ( )tH t  as a sum, where the different terms of the sum operate 

simultaneously on different segments. This is depicted in Fig. (1), where one sees 

three spins, in three different segments of the same (left) column of holes that have 

just hopped to the lowest position of their segment. 

      The other innovation of the new model is the starting of the adiabatic application 

of the time development operator at a finite time, 0t  , which is necessary in order to 

avoid the infinite times in Eq. (2). Suppose that one tries to calculate the time 

development operator by calculating a typical integral that hops one spin from the 

edge of a segment in the column j+1 , into the edge of the same segment in the 

column j, 

 

 
2 2

1 1

† † †

2 1 1 1 1, , 1 1, 1, 10 0
( ) ( ) ( ) ( )

t t

t j j s j s jI t i dt H t C i dt a t a t C     .                                    (3) 

 

In Eq. (3) the time dependence of the creation and annihilation operators is 

 

1 1

1,† †

1, , 1, , 1( ) exp( )
2

j

j s i j s

n
a t a iJ t  .                                                                           (4a) 

 

1 1

1, 1

1, 1, 1, 1, 1( ) exp( )
2

j

j s i j s

n
a t a iJ t



  .                                                                     (4b) 

 

In equations (4) 1, 1jn  , and  1, jn are the nearest neighbors of opposite spins before, and 

after the hopping, respectively. Carrying on the integration in (3) yields 

 

1 1

† †

2 2 1, , 1, 1,

ˆ2
( ) [exp( ) 1]

ˆ 2
j s j s j

n
I t iJ t a a C

Jn


  ,                                                            (5) 

 

with 1, 1 1,
ˆ

j jn n n  . The unity that results from the lower time limit of the integral 

indicates that the application of 1( )tH t  has not been adiabatic, since it yielded a finite 

result even at 0.t   To eliminate this difficulty, I multiply each ( )t iH t by 
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2
(1 ).ite


  Now, (0) 0tH  , and ( )t iH t assumes its regular value as in Eq. (1), at 

1

it   .  The adiabatically applied ( )tH t becomes 

 

2 †( ) ( 1) ( ) ( )t

t is js
ij

H t e a t a t 

 

   .                                                                          (6) 

 

The adiabatic application of Eq. (6) is convenient, because when we perform the 

integrations of the time development operator, we obtain zero for the lower limit. For 

the upper limit we may neglect the first term with the factor 
2 ,te 

and have only the 

second (ordinary) term. Thus, with this kind of adiabatic application, the result of 

Eq.(5) is replaced by  

 

1 1

† †

2 2 1, , 1, 1,

ˆ2
( ) exp( )

ˆ 2
j s j s j

n
I t iJ t a a C

Jn


                                                                       (7) 

 

      In the new model for the strings itinerancy, ( )tH t is applied as a sum, where each 

term of the sum operates on a different segment. Each such term then continuous the 

time development by the hopping of other holes of the segment. At the end, the results 

of all segments are multiplied to yield the whole string. Here, however, I write the 

results of only one representative segment. This mode of simultaneous operation 

applies to rows as well as to columns. Here we examine a hopping sequence in which 

the first spin to hop in a segment is located at the edge of the segment, a choice that 

makes the exponential in Eq. (7) equals- 2exp( )
2

J
i t . This exponential in (7) 

expresses an intermediate energy excitation. To incorporate a built-in mechanism that 

takes into account the finite life-time of an intermediate energy excitation, let us add 

to the energy parameter J , in equations (4), the inverse of its life-time parameter-
1 
. 

Consequently, J in Eqs. (4a) and (4b) should be replaced by: J J i  . Now 

everything is set for the application of the time evolution operator according to the 

scenario whose beginning is depicted in Fig. 1. With the replacement of J by J , 

setting ˆ 1n  , Eq. (7) is replaced by 

 



 

 

14 

1 1

† † †

2 2 1, , 1, 1,

2
( )C exp( )

2
j j s j s j

J
I t i t a a C

J


 .                                                                 (8) 

 

The next step is to apply 2( )tH t  on 
†

2( )C jI t , and perform the 2dt  integration. The 

only time dependence of the integrand is the one seen in Eq. (8), because ˆ 0n   for

†

, , , 1,i ii j s i j sa a   with any row index i that is different from the edges, namely for 1 i l 

. Consequently, after setting n l , the result after the ( 1) hl t  integration is    

 

1 † †

, 1, , , 1

2
( ) ( ) exp( )

2 l l

l

l l l l j s l j s j

J
I t i t a a C

J

 

   .                                                           (9) 

 

On performing the last integration we note that the time dependence of ( )t lH t cancels 

the one in Eq. (9), so that the integrand of the ldt integration is time independent. This 

would yield a result that is linear in time. This is disturbing since it suggests that the 

final time parameter in 
†( ,0)Cl jU t is limitless- the more you wait- the larger is the 

final result. 

 

† 1 † †

1 1

2 2
( ,0)C ( ) ( )

2

l l

l j j j

iJt
U t i t C C

J J

 
 

                                                          (10) 

 

In the present problem, the time cannot be limitless, because ( )tH t  continuous to act 

as a perturbation even after the hopping of the last spin to the j th  column. The 

index of ( ,0)nU t  is not limited to n l , as seen from Eq.(2). This suggests that the 

time t in (10) should be replaced by some fixed time average- t . Moreover, the 

exponential factor in (9) is exp( ) exp( )
2 2 2

l l l

J J
i t i t t


  . The decay factor 

exp( )
2

lt  reduces the large factor 
12

( )l

J

 
, and therefore renormalizes the time 

evolution of 
†

jC . The removal of this renormalizing factor from (10) is unacceptable, 

and suggests the reevaluation of our calculation procedure, which is done in the 

following.  
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      We expect a time decay factor because we have implemented a time decay 

mechanism to limit the time duration of the extra energy excitation that is caused by 

“breaking” a column. The exponential decay factor is completely missing from (10), 

because (10) represents a final result of an unbroken holes column. This is 

unacceptable because, although the final result of (10) is unbroken column, it has 

been obtained during intermediate time with the energy excitation of a broken 

column. The time parameter of the implicit decay factor- exp( )
2

lt in (9) includes 

the time that has passed to reach (10), which implies the need for renormalizing (10) 

by the same decay factor. I have considered two ways to correct this problem. The 

first is to apply the time dependence of the last ( )t lH t  by means of equations (4a,b) 

with exp( )
2

liJt
  , instead of exp( )

2

liJt
 . This would yield a result that includes the 

exponential time decay factor- exp( )
2

t
 , but the choice of this time dependence of 

( )t lH t is doubtful. The second way to obtain the time decay factor in (10), is based on 

evaluating the times- mt , which appear in the integrals of the time development 

function. This is discussed below.  

      Generally speaking, the perturbation by tH  causes a mixing between 
†

jC , and  

†

1jC  , for most of the time. The movement of strings of holes from 
†

jC  to 
†

1jC  , is not 

sudden as for single spins. It is gradual and takes long intermediate times. To see this 

let us write 
†( ,0)l m jI t C , as an intermediate time development of 

†( ,0)l jU t C , for 

1 m l  . It is equivalent to (9), but with (m-1) integrations. After substituting 

11 ( / )iarctg JJ J e    we get, 

 

† 1 † †

1, 1 1,

2
( ,0) ( ) exp{ [ ( )( 1)] }

2 2

m

l m j m m m j l m j

J
I t C i t arctg m t C C

JJ

  

       .    (11a) 
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In (11a) 
† †

1, 1 1,m j l m jC C    denotes a “broken column”, where (m-1) holes have been 

transferred to the column (j+1), and (l-m+1) still remain in the column j. For m=l we 

get 

 

† 1 † †

1, 1 1,

2
( ,0) ( ) exp{ [ ( )( 1)] }

2 2

l

l l j l l l j j

J
I t C i t arctg l t C C

JJ

  

     .                 (11b) 

Note that the phase of the exponent includes a shift of [ ( )( 1)]arctg l
J


  . Since l is 

an index of the holes along the string, the imaginary part of the exponent describes a 

wave along the string direction, a wave of the spins that have hopped from the column 

j+1 to the column j. The absolute value of its wavenumber is ( ) /arctg a
J


, and its 

phase velocity is / 2 ( / )v aJ arctg J . Thus, we get  

 

0 ( 1) 2( 1) ( / )
l

l a l arctg J
t

v J

 
  .                                                                      (12) 

 

In (12) 
0

lt  has the superscript zero to distinguish it from the last integration time 

variable lt . Now we set the time dependence of ( )t lH t to be- 

0( )
exp[ ]

2

l lJ t t
-i


, 

which results in 

 

† 1 †

1

2
( ,0) ( ) exp[ ( 1) ( / )]l

l j jU t C i t l arctg J C
JJ

 
 

   .                                    (13) 

   

Equation (13) is similar to (10) except for time decay factor- 

0

exp( )
2

lt . This decay 

factor makes an important correction to the weighting factor of the described process. 

The calculation of (13) implies a rule which one should keep in general: With the 

application of any new ( )t mH t which implies a change of the intermediate energy 

excitation, the zero of its time dependence should coincides with its application time, 

as demonstrated in the calculation of (13). The rate for transporting all the holes from 
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a column (or a row) to its adjacent column (or row) by the described process is 

approximately 

 

1
2( 1) ( / )

J
r

l arctg J



.                                                                                         (14) 

 

      Now, we begin to get better insight into this different kind of perturbation, where 

tH  perturbs JH , and where 3 / J . The application of 
†( ,0)l m jU t C , in a  

sequential manner starting from an edge of a segment, produces the pre-factor 

1(2 / )mJ 
 in (11). This pre-factor is much larger than unity, and becomes 

exponentially larger with the number of spins hops. However, this large pre-factor, is 

only one of the factors that determine the relative weighting of the various 

possibilities of calculating
†( ,0)l m jU t C . Another one is the time decay factor 

exp( t / 2)m in (11). Still another one is the probability of the occurrence of the 

sequence of the spin hopping process. 

      As stated before, we have chosen a particular model in which the first hole to hop 

from a column is the nearest neighbor to a row of holes, and the next holes hop in a 

sequence. Some readers may think that such a particular choice is artificial, and 

wonder how the system makes its choices anyway? Why, for example, different terms 

of the sum of ( )tH t  do not operate on different sites of the same segment? The 

answer is that such a mode of operation would create a sum of terms for one segment. 

When the results for all the segments are finally multiplied, the product cannot 

represent one string, even not a “broken” one. Instead, it is a sum of terms, where 

each is a product of holes from different segments, and different terms represent 

different holes. Results of this type are contradictory to experiment. Thus, if one 

wants to calculate 
2

† †

1 1

0 0

( ,0)C ( ) ( ).... ( )C

tt
n

n j n t n t jU t i dt H t dt H t    , where ( )t mH t  is 

given as a sum of hops to neighboring positions, then every term of the sum should be 

applied on a different segment. The following sequential applications of the ( )t mH t ’s 

should keep each time sequence within each segment. The separation by rows (of 

holes) between segments of column (of holes) is a natural separation to break the 
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sequential application of ( )t mH t . It does not mean that the scenario that has been 

described in the former sections (which hereafter is referred to as scenario 1) is the 

only possible one. In the following we examine other scenarios. 

      Another sort of perturbation which is examined below assumes that the first spin 

to hop to the string of holes is not located at an edge of the segment, but somewhere 

along the segment (hereafter this scenario is called scenario 2). Suppose that the first 

spin to hop to 
†

jC  is located m rows away from the nearest row of holes that borders 

the segment, namely 1 / 2m l  . We assume a sequential hopping of the spins from 

the column (j+1) into the column j, starting from the spin at m and covering all the 

spins except for the two at the edges. Here “sequential hopping” means that we keep 

the order of spin hopping so that there are exactly two break points before the hopping 

of the last edge spins. This means that ( 2)l  spins should hop, and ( 2)l  time 

integrations should be performed on integrands with the time dependence of 

exp( )iiJt , which should yield the pre-factor 

 

† 2 † †

1 1 1 2, 2, 1( ,0) ( ) exp{ [ ( 2) arctg( / ] }l

l l j l l j l jI t C i Jt l J) t C C
J


 

              (15a) 

 

0

1

( 2)
( )l

l
t arctg

J J





                                                                                          (15b) 

 

The next integration is 1 1 10
exp( ) ( )

lt

l l t ldt iJt H t   , where the time dependence of   

1( )t lH t   is 
0

1 1exp[ ( )]
2

l l

J
i t t   . This yields  

 

† 1 † †

1, 1, 1

( 2)
( ,0) 2( ) exp{ [ arctg( / ] ( / )}

2 2

l

l l j l j l j

i l
I t C Jt l J) arctg J C C

JJ

 
 

 


   

                                                                                                                                (16a) 

 

0 ( )l

l
t arctg

J J


                                                                                                   (16b) 
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The last integration yields  

 

† 1 †

1(0, ) 2( ) exp[ ( 1) arctg( / )]l

l j jU t C i t l J C
JJ

 
 

                                  (17a) 

 

The rate is the inverse of 
0

lt , which is  

 

2
( / )

J
r

l arctg J



                                                                                            (17b) 

 

It is about twice the rate of scenario 1 because of shorter times.  

      The two mentioned scenarios for spin hopping, scenarios 1 and 2, are only 

prototypes. There are many other possible scenarios- isc ; each comes with its 

probability of occurrence- ip , its weighting factor- if  , and its transferring rate- ir . 

Let us now examine scenario 3, which is different from the former two mainly 

because it produces more than two breaking points along the string in the segment. It 

is a combination of the former two scenarios, and therefore it produces three breaking 

points. Scenario 3 starts as scenario 1 by hopping an edge hole, which produces the 

first break point. The second step hops a hole in the middle of the segment, just as in 

scenario 2, and produces additional 2 break points. After these two steps we get 

 

2

3 3

2 3 2
( ) 3( ) exp{ [ 4 ( / )] ( / )}

23
I t i Jt arctg J arctg J

JJ

 
    .                       (18) 

 

Now, as in scenario 2, we perform ( 4)l  integrations without changing the number 

of break points, and get, 

 

2

1 1

2 3 2
( ) 3( ) exp{ [ ( / )] ( / )}

23

l

l lI t i Jt l arctg J arctg J
JJ

 
 

     .              (19) 

 

Now we apply the hopping Hamiltonian twice, in the first step a middle hole hops to 

eliminate two break points, and in the second step an edge hole hops and eliminates 
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the last break point. As about the time dependence of the relevant ( )t mH t , we apply 

the rule that has been applied for the former scenarios. Finally we get, 

 

† 1 †

1

2
( ,0) 9( ) exp[ ( 2) ( / )]

3

l

l j jU t C i t l arctg J C
JJ

 
 

    .                           (20a) 

For the rate we get  

 

0 1

3

3
( )

2( 3) ( / )
l

J
r t

l arctg J

 


                                                                       (20b) 

 

      A comparison between the three scenarios shows an obvious trend: 2 12r r , 

3 13r r . The rate is proportional to the number of break points, the more break points, 

the higher is the intermediate energy excitation, and the faster are the hops. 

Surprisingly, the time decay factor is not strongly dependent on the scenario. It 

depends only through the ratio / J , which according to the uncertainty principle it 

is assumed to be / 1J  .  On the other hand the pre-factor is largely reduced with 

increasing the number of the break points. The probabilities- ip , for the three 

scenarios, have not been evaluated so far.  

      I have also tried to evaluate scenarios with higher numbers of break points. The 

scenario with the highest number of break points hops [( 1) / 2]Int l   set of holes 

that none of its members is either an edge hole, or the nearest neighbor to another. We 

assume that these holes hop, one after the other, to the next column. Every hop 

increases the number of break points by 2. After this set of hops, the holes between 

the formerly hopped ones start to hop one after the other. Now every hop decreases 

the number of break points by 2. The hopping of all these (l-2) holes yields the pre-

factor of 
2 1

2
( )

! J

 




. The hopping of the last two holes contributes- 2 ( )i t

J


 , so 

that the pre-factor is
2

2
2 ( )

!
i t

J

 



. The time decay factor- 

2 ( / )
exp[ ]

arctg J

J

  
 , is similar to the decay factor of the former scenarios. The 

weighting factor is negligible. This last scenario demonstrates the reducing weighting 



 

 

21 

factors of scenarios with large number of break points. We estimate that the limit 

number of break points for a scenario should be three to four.  

      Consequently, scenarios 1,2, and 3 are good prototype scenarios, from which 

other scenarios may be derived. An example of a scenario that might be derived from 

scenarios 1 and 2 is a scenario that starts as scenario 2 but does not utilize all the 

possible hops with two break points. Instead, at some early stage it completes the 

sequence of hops to the close row of holes, and continues from this stage as scenario 

1. This is only one example and many other examples may be thought of as 

combinations between scenario 1 and 2, or 2 and 3, etc. This way, one can think of a 

continuous spectrum of scenarios, each with substantial probability and weighting 

factor, and with a rate somewhere between 1r  to 3r . The time development operator 

( ,0)lU t , is therefore expressed as a sum of all its scenarios’ time tracks ( ,0)i

lU t , so 

that 
† †( ,0) ( ,0)i

l j l j
i

U t C U t C .  

      During our discussion of the various scenarios, we have ignored the possibilities 

of the holes hopping to their initial string positions
†

jC . These scenarios may exist, but 

they only renormalized the string
†

jC , and make it dressed by the hopping 

Hamiltonian tH . They do not change the former analysis in principle, and we have by 

passed them for the sake of simplicity.     

      The string operators 
†

jC , define the string states 
† | 0jC  , that are not eigen-states 

of the Hamiltonian, even after transforming them back to the Schrödinger picture. The 

eigen-states of the Hamiltonian are linear combinations of the string states. Let us 

denote them by 

 

0 0† †1 1
| ( )e C | 0 ( )e e C | 0

iE t iE t ikaj

k j j j
j j

B t B t
N N

                             (21)         

 

In (21), the ( )B t  dependence on time results from transferring holes to neighboring 

columns (rows) with the rate r, whereas the energy 0E  represents some zero energy 

without this transferring. Therefore, the Schrodinger equation for ( )jB t  should be 
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0 1 1

( )
( ) ( ) ( ) ( ) r ( )

j

r j j j j

dB t
i E k B t E B t rB t B t

dt
                                            (22) 

 

Inserting (21) into (22) leads to  

 

0( ) 2 cos( )rE k E r ka  .                                                                                      (23)   

 

Setting arbitrarily our zero energy scale at 0E , makes the eigen-state (21) become 

  

† †1
| ( ) ( )C | 0 exp[ 2 cos( ) ] | 0k j j k

j

t B t i r ka t C
N

                                    (24) 

 

In (24) 
†

kC  is defined in the forth-coming equation (27). The rate r depends on the 

order of the spin hopping for a single scenario, while we have a distribution of 

scenarios isc  with various weighting factors- if   and different probabilities of 

occurrence- ip  . Thus, (24) is generalized for multiple scenarios to become 

 

† †

,
,

1
| ( ) ( )C | 0 exp[ 2 cos( ) ]C | 0k j i j i i k

j i i

t B t B i r ka t
N

         

            
†( , ) | 0i k

i

A k t C  .                                                                                (25a) 

 

The normalization of | ( )k t   suggests that 

 

2
( ) 1i

i

A k  .                                                                                                    (25b) 

 

In (25a,b), ( , 0)i i i iB cp f A k t   , where c  is a general normalization constant. 

The function iA  may be considered the spectral distribution of the states | k  , 

because of its dependence on the rates of the different scenarios, which in turn 

determine the energy spectrum. Each i- component of | ( )k t   is an eigen-state of the 

Hamiltonian with the eigen-value ( ) 2 cos( )i ie k r ka  . The state | ( )k t   is an 
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eigen-state of the Hamiltonian with the weighted averaged eigen-value 

( ) 2 cos( ) 2 cos( )i i
i

e k B r ka r ka    . 

      We remark again that the string state is a product of all the segmental states. 

Naturally this product is a weighted sum of terms that are products of many scenarios. 

We speculate that mixed scenarios terms should be weighted weaker than single 

scenario terms. This is so because the time development of the rows and the columns 

are coordinated. Two neighboring column segments that propagate in different rates 

produce mismatch with the propagation of the row between them. This translates to a 

reduction in the weighting factor. Consequently, there is a kind of coherence in the 

sense that terms with same rate scenarios are weighted stronger than terms with mixed 

scenarios. Thus, (25) that have been derived for one segment may be generalized for 

the whole string, provided that 
†( , ) | 0i kA k t C   is defined as a string distribution 

function of the string scenario- isc .   

      Now let us evaluate the dispersion of our strings. We have already estimated that 

the three scenarios 1, 2, and 3, define roughly our spectrum range, with scenario 2 in 

the middle rate. The rate of scenario 2 by (17b) is about 10meV. This makes the 

Fermi energy only a couple of meV above the bottom of the band. Thus, there is a 

dispersion of only a couple of mev for a momentum range of / 8a . This very small 

dispersion has been measured by ARPES in many investigations [26-30].   

      We sum up this section by asserting that the strings of holes that are arranged by 

checkerboard geometry are established both experimentally and theoretically. These 

strings move gradually by means of combinations of holes hops, that we named- 

scenarios. They are itinerant, but with kinetic energies of very small dispersion.  

Different scenarios cause different rate of propagation, causing a spectrum 

distribution of the kinetic energy for any single state. There is also broadening of the 

wave-number of the states, since the strings move gradually as broken strings, but this 

broadening is small in comparison to Fk . Although the strings’ length is ideally equal 

to Na , there are other lengths that are characteristic of the system. One such length is 

the length of a segment, namely- 
12a 
. Another one is 4a , which is the reciprocal 

of the width of the arms of the Brillouin zone in the anti-nodal direction, as in Fig. 1 

of [11].       
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3. MAGNETIC INTERACTIONS BETWEEN THE STRINGS. 

  

      The linear strings that have been analyzed in the last section make a narrow band 

of itinerant strings. These states make up only the basic ground state from which an 

ordered state is constructed- the pseudogap ground state [11]. Two features are 

essential for producing this phase transformation and for giving it its characteristics. 

One is the semi one-dimensional character of the string states, which produces nesting 

in the Brillouin zone. The other is the strength of the interactions between strings in 

comparison with their small itinerant energy. Generally speaking one should consider 

three sorts of interactions: Coulomb, phonon mediated interactions, and magnetic 

interactions. Keeping with the line of treatment of the present paper, here we treat 

only the magnetic interactions.  

      The analysis of the magnetic interactions between two strings of holes is much 

more complex than the analysis of their itinerancy that has been made in the former 

section. This is so because it involves hopping of holes of two strings up to contacts 

between them and then a continuation of hopping that leads to separation after the 

contact has been made. Suppose that we examine two segments of columns one at j

and the other at ' 3j j  , and that they move towards each other. Magnetic energy 

is reduced when holes from j  hop to 1j   and make contact with holes from 3j  , 

which have hoped to 2j  . This evaluation has to be done at the same time, which 

means that the two segments have to be examined by the same time evolution 

operator 
† †

3( ,0)m j jU t C C  . Preliminary analysis of this sort posed some difficulties. In 

the present paper I would rather use the simpler approach that is presented below.  

      Let us analyze the magnetic interaction between two perfect full linear strings (of 

N holes each). The interaction in the real space of these two strings, 
†

jC  and 
†

'jC ,  is 

given by [] 

 

, ' , ' 10.5j j j jV JN                                                                                                  (26) 

 

The interaction energy is negative and none zero only for two closely neighboring 

columns (rows). The Fourier transform of (26) is defined by means of the strings in 

the momentum space  
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† †1
| 0 exp( ) | 0k j

j

C C ikja
N

                                                                      (27) 

 

The interaction in the momentum space is calculated when (26) is sandwiched 

between two initial states and two final states 

 

† ( ') † '( ')

' ' , ' 1 , ' 12
, '

1
( ' ) 0 | [ ( )] | 0

2

iaj k k iaj k k

j j j j j j j j
j j

V k k q C C e C C e NJ
N

   

 


               

 

                        cos( )J qa  .                                                                                (28) 

 

      Equations (26) and (28) give the magnetic interactions between two complete 

perfect strings, in the real and the reciprocal spaces, respectively. Equation (28) has 

been obtained by considering 
† | 0kC   and 

†

' | 0kC   as complete species, without 

working out the details of their interactions. Thus, its use for interactions between real 

stings of holes is doubtful. We have seen that real strings are divided into segments, 

and are broken in a couple of break points (in each segment) during their propagation. 

If we ignored these fractures, and only normalize the interaction for one segment, then 

(26) becomes , ' , ' 10.5j j j jV Jl    and (28) becomes ( ) cos( )
Jl

V q qa
N

  . However, 

this normalization does not take into account the complexity of two fractured strings 

that are first propagating towards each other, toughing in parts, and then propagating 

away from each other. Suppose that we try to evaluate the interaction in the real space 

between two segments of the strings 
†

jC  and 
†

'jC , that are propagating towards each 

other, and let us assume that at 0t  , ' 3j j  . We apply the time development 

operator ( ,0)i i

l mU t on the segments, where the superscript denotes the scenario, and 

i

mt  is an intermediate time for the scenario, as the notation in (11a). We write 

equations like (11a) for any scenario- isc  , not only the prototype ones, but all the 

derivatives.  
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† † †

1, 1 1,( ,0) ( )i i i

l m j i m m j l m jU t C c t C C                                                                         (29a) 

 

† † †

' 1, ' 1 1, '( ,0) ( )i i i

l m j i m m j l m jU t C c t C C                                                                       (29b) 

 

In (29a,b), ( )i

i mc t is the time dependent normalization factor, and we assumed the 

same ( )i

i mc t for the same scenarios in (29a) and (29b). However, this assumption is 

valid only when the hopping in (29a) and (29b) are independent of each other. In 

reality they become dependent of each other, and then their analysis should be based 

on mutual strings scenarios, which complicates the calculations. Calculations of this 

type have not been carried on. 

      Despite the above mentioned difficulties, we assume that the segmental strings 

approach each other, touch in part of their holes, and then depart away from each 

other. Thus the magnetic interaction in a segment is 

 

( ) cos( ) ( ) cos( )i i i
i

J J
V q qa r n qa n

N N
    .                                              (30a) 

 

For the whole string the interaction is  

 

( ) cos( ) ( ) cos( )i i i
i

J n
V q qa r n J qa

l l
    .                                               (30b) 

 

Equations (30a,b) are subject to: i i
i

n n l   , and 1i
i

  , and to the 

assumption that the scenarios isc  are mutual strings scenarios. We assume that:  

1 n l  , so that the interaction between two strings is much larger than their 

kinetic energies ( ) ( )V q e q . An important interaction is (2 )FV k , when 

12 2Fq k a   , since this is the interaction that determines the pseudogap 

parameter  . The pseudogap parameter  can easily be deduced from experiment, 

and from which one can get  (2 )FV k . The reader should note, however, that   is 
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obtained by (2 )FV k after averaging over the interactions with all the other strings, 

according to the Hartree-Fock diagrams.  

 

4. THE SPECTRAL REPRESENTATION OF THE PSEUDOGAP 

STATE. 

 

      The ground state of the pseudogap symmetry is 

 

1

1
0

,

| ( ) | ( ) | ( )
c r

c r

a

k k

k k a

t t t








      .                                                             (31) 

 

In (31) | ( )
ck t   is a ground state of a column string, and | ( )

rk t   is a ground 

state of a row string. Hereafter we proceed only with column functions (without 

special notation), just for the pedagogical simplicity. The basic characteristics of the 

pseudogap state are given in the “Origin”. Here we add the new feature which is the 

outcome of the wide spectral distribution of the string energy and the pseudogap 

parameter. Any ground state with specific wavenumber is a product of two such 

functions, one for each of the two anti-ferromagnetic states- A and B, as is shown in 

the “Origin”. Consequently,  

 

1
| ( ) [| ( ) | ( ) ]

2
k k A k Bt t t       .                                                            (32) 

 

      The ground state and the excited states are defined by the following two field 

operators, , ,B,k A k  - for particle-like operators, and , ,,k A k B  - for anti-particle-like 

operators. 

 

, ,B ,(t), ( ) ( , )[ ]k A k i k k k A Bk
i

t D k t w C v C                                                       (33a) 

 

† †

, , ,(t), ( ) ( , )[ ]k A k B i k k k A Bk
i

t D k t v C w C                                                        (33b) 
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In (33a) the minus, plus sign corresponds to , ,B,k A k  , respectively, and in (33b) the 

plus, minus sign corresponds to , ,B,k A k  , respectively. In (33a) and (33b), ( , )iD k t  

is the spectral distribution of the field operators, which is given by 

 

2 2( , ) d exp[ ( ) ] d exp[ ( ) ( ) ]i i i i i iD k t iE k t i k k t     .                                (33c)                                        

 

The operators , ,B,k A k  , and , ,B,k A k   are defined as in the “origin” except that here 

they are weighted by their spectral distribution ( , )iD k t . This spectral distribution is 

the analog of ( , )iA k t except that it is calculated by means of the two string interaction 

scenarios and its energy scale is at least an order of magnitude larger. This is so 

because, as shown in the “Origin”, the basic excitation energies of the
† †

, ,,k A k B  , and

† †

, ,,k A k B  are 
2 2( ) ( ) ( )E k k k  , where ( ) [ ( ) ( )] (k)Fk e k e k     . Here 

it becomes
2 2( ) ( ) ( ) ( )i i i iE k k k k   , where ( ) ( ) ( )i i i Fk e k e k   , and 

2 2F Fk k k   . The field of the pseudogap state is given by 

 

† †

, , , ,B

1
( ) [ ( ) ( ) ( ) (t)]

2

k k k k

k k A k A k B k

k k k k

w v w v
t t t t

v w v w
    

       
          

       
.        (34) 

 

The Hamiltonian density for the pseudogap state is the field average of the energy 

operator, namely: †

0 ( , ) ( , )
d

H i x t x t
dt

  , where 

2

2

( , ) ( )exp( )
F

F

k

k

k k

x t t ikx 


  . 

The range of k  in the sum is doubled because the pseudogap state is defined on both 

k and k . With the notion that , ,k kk k
w v v w , and ,, k Ak A

   , ,B,B kk
   , we 

can express the Hamiltonian as a sum over Fk k , and get 

 

2 2† †
0 , , , ,

1
( ){ (1 2 ) (1 2 )

2

F

F

k

i i k k k A k A i k k k A k A

k k i

H E k d w v d w v    



      
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2 2† †

,B ,B ,B ,B(1 2 ) (1 2 ) 2}i k k k k i k k k kd w v d w v         .                    (35) 

 

In (35) the terms that are pre-factored by 2 k kw v have been obtained by the product 

of 
† ( )
k

t  with ( )k

d
t

dt
 . Note that there are excitation energies with the spectral 

components ( ) ( )(1 2 )i i k kE k E k w v   , and energies with the spectral components 

( ) ( )(1 2 ).i i k kE k E k w v    The latter correspond to very low excitation energies, of 

order 
2(k) / 2 ( )i i k  , that are obtained from the difference between two very close 

energies. This made us assume for ( )iE k  a new spectral distribution- ( )id k , which 

is roughly the difference between ( )id k  and the very close distribution of ( )i k . We 

have no knowledge about ( )id k , but we assume that ( )id k takes substantial values 

at very small energies. However, the reader should differentiate between the energy-  

( )iE k , and its spectral distribution. When the distributions of 
2(k)i  and ( )i k

overlap, the peak of the distribution of 
2(k) / 2 ( )i i k   should move to higher 

energy than the peak of 
2(k)i , since the distribution of ( )i k  is increasing around 

the latter peak. The reader can have a rough evaluation of ( )id k through the ARPES 

data that will be given in the end of this section. The distribution ( )id k is roughly 

similar to ( )id k , when the energy scale is doubled, because it is the distribution of 

( ) ( )i iE k k . 

      The Hamiltonian in the presentation of , ,

,

k

k A B

k A B

C

C


 
  
 

 is given by 

2 2
2 †

0 , ,2 2

2 21
( ){

2 2 2

F

F

k
k k k k k k

i i k A k A

k k i k k k k k k

w v w v w v
H d E k

w v v w w v
 



   
  

    
   

                       

         

2 2

†
,B ,B2 2

2 2
}

2 2

k k k k k k

k k

k k k k k k

w v w v w v

w v v w w v
 

  
  

   

}                                 (36a) 
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With 
2 2 ( )1
, [1 ]
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i
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i

k
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
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2
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i
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 
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 
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( )
2

( )

i
k k

i B

k
w v

E k

 
  
 

, 

equation (36a) becomes 

 

2 †
0 , 3 , 1 ,A

1
{ [ ( ) ( )( )]

2

F

F

k

i k A i i A k

k k i

H d k k I    


                                    

         
†
,B 3 , 1 ,B[ ( ) ( )( )] }k i i B kk k I       .                                                      (36b) 

 

The Hamiltonian in (36a,b) takes the form of (35) after diagonalization. 

      The Hamiltonian of (35) demonstrates clearly a separation into two bands, the low 

excitation energy band- ( ) ( )(1 2 )k kE k E k w v   , of 
†

,k A  and 
†

,k B , and the high 

energy band- ( ) ( )(1 2 )k kE k E k w v    of 
†

,Bk  and 
†

,Ak . Due to the broad spectral 

distributions, the two bands may have some partial overlap. While the high energy 

band peaks around 2 k , the low energy band is gapless and enables the conductivity 

and the superconductivity of the system. This suggests that the field in (34) may also 

be divided into the low energy field   , and the high energy field   . 

( ) ( )† †

, ,B

1
( ) [ e e ]

2

i i
k kiE k t iE k t

k i k A i k
i k k

w v
t d d

v w
   

  

   
    

   
                     (37a) 

 

( ) ( )† †

,B ,A

1
( ) [ e e ]

2

i i
k kiE k t iE k t

k i k i k
i k k

w v
t d d

v w
   

  

   
    

   
                          (37b) 

 

The propagators of the low energy band are 

 

21 1 1
( , ) [ ]

2 ( ) i ( ) i
i

i i i

G k d
E k E k


   

 

 

 
   

 .                      (38a) 

 

The propagators of the high energy band are  

 

21 1 1
( , ) [ ]

2 ( ) i ( ) i
i

i i i

G k d
E k E k


   

 

 

 
   

 .                     (38b) 
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Equations (38a,b) present the propagators in a diagonal presentation.  On the other 

hand, equation (37) in the “Origin” presents the propagator of the low energy band in 

a non-diagonal presentation, divided into its 3 1( , , )I    matrix components. The major 

difference between (38a) and the propagator of the “Origin” is the spectral 

distribution of the propagator here.   

 

5. CONCLUDING REMARKS. 

       

      The present paper is a continuation of a former paper by the present author, the 

“Origin” [11]. It accepts the basic perception of the “Origin”, namely the aggregation 

of the holes into linear strings, as rows and columns that are arranged in checkerboard 

geometry. However, contrary to the “Origin”, it presents a realistic model for the 

itinerancy of the strings, a model that results in a spectral distribution for the rates of 

the itinerancy. The basic features of this model also suggest a wide spectral 

distribution for the magnetic interaction between the strings. This is inferred from the 

nature of the propagation of the strings, but no quantitative analysis has been done. 

The wide spectral distribution of the interaction should result in a wide spectral 

distribution of the pseudogap parameter, which is a basic presumption in section 4. 

Apart from these wide distributions, all the basic assumptions of the “Origin” stay 

intact, as is shown above. Such assumptions are the existence of the anti-

ferromagnetic phases A and B, the basic structure of the pseudogap ground state, the 

excitation operators, and the field. The ground state and the field are basically divided 

into two bands, the gapless low energy band, and the high energy band. Due to the 

wide distributions, the bands may be partially overlapped.  

      The ultimate test of any theory is its agreement with experiment. In the above 

discussions we have presented such agreements in several kinds of experiments, some 

qualitatively and some quantitatively. Here I wish to remark on a basic difficulty 

regarding to comparison with experiment. Many relevant and important experiments 

in the field probe single electron or hole, whereas our theory deals with strings of 

holes. The present paper does not provide the translation of our results to 

experimental functions of single particle/anti-particle. This translation is obvious for 

Neutron elastic scattering, but less so for ARPES and electron tunneling. For the latter 
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measurements we remark that the itineration rates of the strings are the same as the 

itineration rates of the individual hole within the string (or the individual spin that is 

the close neighbor to that hole). 

       The wide spectral nature of the magnetic interactions between the strings has 

resulted in wide spectra of the propagators in (38a,b). These wide spectra show up 

clearly in data which reflect density of states or spectroscopic intensities. Tunneling 

density of states in the normal pseudogap state has usually a finite minimum at zero 

energy, and rises continuously on both sides of the energy polarity, with no energy 

gap [31-33]. Neutron scattering measurements show incommensurate peaks at 2 Fk , 

and zero energy loss [21-25]. Energy Distribution Curves (EDC) of angular resolved 

photo-emission spectroscopy (ARPES) provide intensities of photo electrons as a 

function of energy and momentum. When the momentum is in the anti-nodal region, 

by the edge of the Brillouin-zone, the photo electrons are adjacent to the strings of 

holes, and reflect their states. There is much data of this sort, but here we discuss only 

a couple of papers that exhibit the two kinds of spectra iE and iE . EDC of ARPES 

measurements on Bi2201 crystals on the anti-nodal direction show clearly the said 

two spectra superimposed [29]. The low energy spectrum of iE is seen as a 

dispersion-less low energy shoulder in Fig. 2 and Fig. 4. The energy of the “shoulder” 

in Fig. 4M is roughly 20meV, but given that the claimed energy resolution is 10meV 

and given the uncertainty in the zero of the energy scale, the energy of this shoulder 

could be even smaller. The high energy peak in the same figures (the “hump”) is 

roughly at 80meV. The difference between the shoulder energy and the high energy 

peak is roughly 60meV. In our model this should be equal to 2  , so that for this 

material the pseudogap parameter equals 30meV.  

      The second paper which we would like to discuss reports ARPES on 2 4 8YBa Cu O  

(YBCO124) [30]. All spectra were measured at 25K, when the sample is in the 

superconducting state. The measurements demonstrate asymmetry with respect to the 

direction of the Oxygen 1O  chain- the Y-S direction ( (0, ) to ( , )  ), versus the 

direction perpendicular to the 1O chain- the X-S direction ( ( ,0) to ( , )  ). This 

suggests that strings in the Y-S direction could correspond to higher doping level than 

strings in the X-S direction. The symmetry between columns and rows of holes in this 

material is broken. The authors remark that cleaved surfaces of samples of the YBCO 
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family are known to exhibit over-doping qualities relative to the bulk. Therefore, 

results in the Y-S direction are suspect of being over-doped, and results in the X-S 

direction are supposed to better fit our under-doping requirement. High and low 

energy peaks were observed in both directions, and are shown in Figs. 1, 2, and 3 

[30]. The low energy peak in the X-S direction goes down to the Fermi level. The 

high energy peak right at the symmetry point X is at 200meV, which suggest that 

100meV , for this direction.  
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