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Abstract. The basic aim of the 4+D-dimensional Kaluza–Klein theory is the unification of gravity and 

electromagnetism. A feature of unification theories is the relation between electromagnetic coupling, 

e
2
, gravitational coupling, GN, and the radius of the fifth dimension, Rc. The radius of the fifth 

dimension, Rc, is fixed by the elementary electric charge. From the known value of the elementary 

charge, we find that Rc is of the order of the Planck length. At energies well below the Planck energy, 

massive Kaluza-Klein states are extreme black holes. This can describe stable elementary particles 

(M.J.Duf, 1994). Based on this interpretation, we show that, if the observed harmonic pattern of the 

laboratory-measured values of GN is due to environmental or theoretical errors, these errors must also 

affect the elementary electric charge, e. We calculate the fundamental electric charge (e) values 

predicted by a 4- and a 4+D-dimensional space-time model. We find that, in the case of 4+D 

dimensions, the fundamental electric charge (e) value oscillates with the 5.9-year LOD oscillation 

cycle. In the case of 4-space-time dimensions, the fundamental electric charge, e, is constant. 

Furthermore, we propose an automated Millikan oil drop experiment over 5.9 years, to discriminate 

between 4 and 4+D space-time dimensions. The comparison between the drop distribution predicted by 

the 4+D-dimensional space-time model and the Stanford Linear Accelerator results is briefly discussed. 

 

PACS numbers: 04.60.-m, 14.80.-j, 04.80.-y  

Key-words: Extra Dimensions, Quantum gravity, Experimental studies of gravity, Atomic 

and Molecular Physics 

 
1. Introduction 

Newton's gravitational constant, G, has been measured about a dozen times over the last 40 

years. Recently, John D. Anderson and coauthors [1] found that the measured G values 

oscillate over time like a sine wave with a period of 5.9 years. They propose that this 

oscillation of measured G values does not register variation of G itself, but rather the effect of 

unknown factors on the measurements [46]. C.S.Unnikrishnan [47] provides a possible 

explanation to the 5.9-year period of G values oscillation by the gravitational link between the 
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Earth and Jupiter: there is a 5.9 year periodicity in the length of the Earth’s and an 11.86 year 

periodicity in Jupiter’s around the Sun. 

Klein (2015[2]) suggests that the observed discrepancies between G values determined in 

different experiments may be associated with a differential interpretation of Modified 

Newtonian Dynamics (MOND) theory applied to the galaxy rotation curves. Recent 

quantitative analysis (Lorenzo Iorio, 2015[3]) rules out the possibility that the harmonic 

pattern observed in laboratory-measured values of GN is due to some long-range modification 

of the currently accepted laws of gravitational interaction. This analytical approach may guide 

future investigations of the systematic uncertainties that plague measurements of GN. 

Based on Symbolic Gauge Theory (SGT), a formalism applied to General Relativity (GR) by 

R. Mignani, E. Pessa and G. Resconi [4,5] and further developed by I. Licata and G. Resconi, 

M.E. Rodrigues and E.Koorambas [8,9,10], the E. Koormabas and G. Resconi recently 

proposed a Non-Conservative Theory of Gravity (NCTG) which can explain the observed 

variations of G at a 5.9-year scale [9]. 

The strength of the gravitational force depends on the scale at which the latter is measured by 

Cavendish-type experiments where two masses (one of which is a test mass) are precisely 

known, or by (equivalent in principle) gravitational scattering experiments [11]. At laboratory 

scales, the strength of gravity is characterized by the reduced Planck mass Mpl = 2.435 × 10
18

 

GeV, which determines Newton’s constant GN = Mpl
−2

. Conventionally, the Planck scale MPl 

is interpreted as the fundamental scale at which quantum gravitational effects become 

important in nature. Like all other interactions in nature, nevertheless, the effective strength of 

gravity is affected by quantum corrections. This effect depends on the characteristic energy of 

the process probing gravitational interactions (see [12,13] for reviews of an effective theory 

of gravity). Potential problems of running gravitational couplings by focusing only on 

physically observable quantities (e.g. amplitudes, cross sections) are discussed in [14,15]. 

New approaches to the physics of particles with masses greater than 1TeV could offer 

insights to the problem of the variation of measured GN values. In such models there is no 

hierarchy problem [16], whereas quantum gravity can be assessed through experiments at 

TeV energy levels. That this can be the case in extra-dimensional models is already 

established [17,18]. Is such modification of gravity also possible in four dimensions [19,39]. 

Current data from the Large Hadron Collider (LHC) experiments at the European Laboratory 

for Particle Physics (CERN) do not confirm that gravity becomes stronger around 1 TeV [40-

44]. 

 

Recently, E.Koorambas suggested that if the observed harmonic pattern of the laboratory-

measured values of G is due to some environmental or theoretical errors, these errors must 

also affect the true value of momentum k transferred by the graviton in scattering experiments 

at the LHC [45]. Furthermore, environmental or theoretical errors could shift the scale of 

Quantum gravity at 100TeV. Quantum gravity can be investigated by a 100 TeV Proton-

Proton Collider as long as environmental or theoretical errors are present. This proposition 

may explain the current null results for black hole production at the LHC [45]. 

 

Although our world appears to consist of 3+1 dimensions (three dimensions of space; and 

time), it is possible that other dimensions exist, and that these appear at higher energy scales. 

From the point of view of physics, the concept of extra dimensions received great attention 

after Kaluza’s proposition, in 1921[48], to unify electromagnetism with gravity by identifying 

the extra components of the metric tensor with the usual gauge fields.   

No experimental or observational signs of extra dimensions have been reported. Many 

theoretical techniques for detecting Kaluza–Klein resonances by means of their mass coupling 
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with the top quark have been proposed. However, until the LHC reaches full operational 

power, observation of such resonances is unlikely. An analysis of results from the LHC in 

December 2010 severely constrains theories with large extra dimensions. [49] 

The observation of a Higgs-like boson at the LHC establishes a new empirical test that can be 

applied to the search for Kaluza–Klein resonances and supersymmetric particles. The 

loop Feynman diagrams for the Higgs interactions allow any particle with electric charge and 

mass to run in such a loop. Standard Model particles other than the top quark and W boson do 

not make large contributions to the cross-section observed in the H → γγ decay. However, if 

there are new particles beyond those predicted by the Standard Model, they could potentially 

change the ratio of the predicted Standard Model H → γγ cross-section to the experimentally 

observed cross-section. A measurement of any change to the H → γγ cross-section predicted 

by the Standard Model is, therefore, crucial in probing the physics beyond the Standard 

Model. 

A recent paper (July 2018 [50]), bodes well for this theory: in this, the authors dispute that 

gravity is leaking into higher dimensions as in brane theory. However, the paper does 

demonstrate that electromagnetism and gravity share the same number of dimensions. This 

lends support to the Kaluza–Klein theory, regardless of whether the number of dimensions is 

3+1 or in fact 4+D. The number D of compact extra dimensions is subject to further debate. 

2. The compact extra dimensions’ hypothesis 

The initial theory has five-dimensional general coordinate invariance. However, it is assumed 

that one of the spatial dimensions compactifies, so as to have the geometry of a circle S
1
 of 

very small radius [48,51,52]. Then, there is a residual four-dimensional general coordinate 

invariance, and an Abelian gauge invariance associated with transformations of the coordinate 

of the compact manifold, S
1
[48,51,52]. Put another way, the original five-dimensional general 

coordinate invariance is breaks spontaneously in the ground state. In this way, we arrive at an 

ordinary theory of gravity in four dimensions and a theory of an Abelian gauge field A . The 

parameters of the two theories are connected because both theories derive from the same 

initial five-dimensional Einstein gravity theory [48,51,52]. 

We adopt the coordinates x
m
, m = 1, 2,5 with 

5( , )mx x x   ,        (1)  

where 

, 0,1,2,3x x             (2) 

being coordinates for ordinary four-dimensional space-time, and 

5x             (3) 

being an angle to parametrize the compact dimension with the geometry of a circle S
1
.   

The line element is given by 

2 m n

mnds g dx dx  ,        (4) 

where m,n=1,2,..,5,and mng is the five-dimensional metric.  

The five-dimensional Einstein equations yields the following results: 
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a) For g g  , the four-dimensional Einstein equations for gravity; 

b) For 
5g A  , the Maxwell equations for electromagnetism; 

c) For 55 ( )g x , the Klein-Gordon equation. 

A feature of these theories is the relation between electromagnetic coupling, e
2
, gravitational 

coupling, GN and 
5p , the momentum of the particle in the fifth dimension: 

2 5 216 ( )Ne G p .          (5) 

Following [82], by applying the old Bohr–Sommerfeld quantization rule to the periodic 

motion, 5 02 ( ) 2r p n  , we deduce that, 5

0( ) ( / )cp n R . This implies that  

2 2 2 2 2

2

16 N
n

c

G
q n e n

R


   .       (6) 

The radius of the fifth dimension Rc is thus fixed by the elementary electric charge. From the 

known value of the elementary charge, we find that Rc is of the order of the Planck length: 

2 1

4 137

e

c



  , 

3222
3.7 10

8

N
c

G
R cm

c





   [82].   (7) 

Many years ago [53,54], it was pointed out that the field equations of N = 1 supergravity in d 

= 11 dimensions admit vacuum solutions corresponding to AdS x S
7
, and that, since S

7
 admits 

8-Killing spinors, and since its isometry group is SO(8), this gives rise (via a Kaluza—Klein 

mechanism) to an effective d = 4 theory with N = 8 supersymmetry and local SO(8) 

invariance. There is now a considerable literature on S
7
 compactification of d = 11 

supergravity [53-59]. An up to date account, paying particular attention to the Brout—

Englert--Higgs—Kibble spontaneous symmetry breaking interpretation of the different S
7
 

solutions, [57]. 

In the case of S
7
 compactification of d = 11 supergravity, Rc = m

-1
 is just the S

7 
radius. 

However, for more complicated geometries one must be more precise about the meaning of 

Rc. Weinberg [58] has shown how this is done for an arbitrary geometry with Killing vectors 

in terms of appropriate root-mean-square circumferences. The precise constants of 

proportionality in (5) depend crucially on the field content of the higher-dimensional theory. 

Although at the classical level the “size” of S
7
 is undetermined, Candelas and Weinberg [59] 

have pointed out that in a certain class of theories admitting a compactification due to one-

loop radiative corrections one may calculate R, and hence, in a realistic theory, the fine 

structure constant
2 / 4e   . 

3. The sinusoidal variations of Newton’s coupling constant 

Measurements of the gravitational constant (G) are notoriously difficult due to the 

gravitational force being by far the weakest of the four known forces. Recent advances, 

making use of electronically controlled torsion strip balances at the Bureau International des 

Poids et Mesures (BIPM) in the last 15 years, have improved the accuracy of G 

measurements (see [20] for details on experimental methods). These recent measurements 

have also revealed a peculiar type of oscillatory variation, seemingly following a 5.9 years 

cycle akin to the so called Length-of-Day (LOD) [1].  
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Although we recognize that the correlation between G measurements and the 5.9 year LOD 

cycle could be fortuitous, we think that this is unlikely, given the striking match between 

these two (Fig. 1). 

 

 

 

Fig. 1: Comparison of the CODATA set of G measurements) with a fitted sine wave (solid curve) and the 5.9 year 

oscillation in LOD daily measurements (dashed curve), scaled in amplitude to match the fitted G sine wave. 

Acronyms for the measurements follow the CODATA convention. Also included are a relatively recent BIPM 

result from Quinn et al. [21] and measurement LENS-14 from the MAGIA collaboration [22] that uses a new 

technique of laser-cooled atoms and quantum interferometry, rather than the macroscopic masses of all the other 

experiments. The green filled circle represents the weighted mean of the included measurements, along with its 

one-sigma error bar, determined by minimizing the L1 norm for all 13 points and taking into account the periodic 

variation. 

 

The observed correlation cannot be due to centrifugal force acting on the experimental 

apparatus, since changes in LOD are too small by a factor of about 10
5
 to explain changes in 

G. This is because the Earth’s angular velocity E  is by definition 

         (8) 

where 0 is an adopted sidereal frequency equal to 72921151.467064 prad s
-1

 and the LOD is 

in ms d
−1

 (www.iers.org). The total centrifugal acceleration is given by: 

 

        (9) 

 

where A is the amplitude of the 5.9 year sinusoidal LOD variation (= 0.000150/86400), and rs 

is the distance of the apparatus from the Earth’s spin axis. The maximum percentage variation 

of the LOD term is 3.47 × 10
−9

 of the steady-state acceleration, while dG/G is 2.4×10
−4

. Even 

the full effect of the acceleration with no experimental compensation changes G by only 10
−5

 

of the amplitude shown in Fig. 1. 

Following Anderson et al. 2015a [1], the shift from the true value of renormalized 

gravitational constant is given by: 

 

    (10) 

where 

 0 1 ,E LOD  

2

0 0

2
1 2 sin ( ) ,c sa r A t t

P




  
    

  

( ) ( ) sin( )

2 sin( ),

Error
ren ren ren ren G G
sh

ren ren G G

iftG t G G t G B a t

G G A a t

 



    

  
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,           (11) 

and 

 (Anderson et al. 2015a) [1].  (12) 

Here, the variation term due to environmental or theoretical errors in equation (10) 

is given by 

(0, ) ( ) ,

( ) 2 sin( )

error error
ren ren

error
G G

G t G f t

f t A a t







 
        (13) 

where is the renormalized gravitational constant and ( )errorf t  is the environmental or 

theoretical error.  

4. Gravitational action in the presence of environmental or theoretical errors 

A scalar-tensor theory of gravity (STG), first proposed by Brans and Dicke [66], was inspired 

by Dirac’s suggestion that the gravitational constant GN varies with time [67]. In the Scalar-

tensor theories of gravity, the gravitational action can be written: 

 

1
( ) ( )( ) ( ) [ , ]

16 2

n

N

R
S d x g f g V F g

G


      



 
        

 
  [72]  (14) 

 

What characterizes different STG models is the specific choice of f(φ), V (φ) and F [φ, gμv], a 

local scalar function of φ, gμv and their derivatives. The coefficient of the Ricci scalar R in 

conventional General Relativity (GR) is proportional to the inverse of Newton’s constant GN 

[66-72]. In scalar-tensor theories, then, where this coefficient is replaced by some function of 

a field which can vary throughout space-time, the “strength” of gravity (as measured by the 

local value of Newton’s constant GN) will be different from place to place and time to time 

[66-72].  

 

Following our previous paper [45], we propose a scalar-tensor gravity where the scalar field is 

the environmental or theoretical error ( )errorf t given by equation. (13). In this proposition, 

using the results of Appendix A, the variation of gravity due to environmental or theoretical 

errors is given by: 

 

00
0 0

1
( ( ) ) ( ( ) )( ( ) )

16 2

( ( ) )
16

n
G error error error

N

n
error

N

R
S d x g F f t g f t f t

G

R
d x g F f t

G






 
      

 

 
   

 





 ,  (15) 

where 

2 2 2
0 0( ( ) )( ( ) ) 4 cos ( )error error G G Gf t f t a A a t     , (vanish by equation.12),  (16) 

 

and 

 
1

( ( ) )
| ( ) | ( )

error
error error

F f t
f t f t




,  
( )

( )
( )

zeros

zeros
error

zeros error

t t

t t
f t

df t

dx









 
 
 

   (17) 

 

2G ren GB G A

4  80.10 9 , 2 /  5.89, 9 , .G GG Gdeg a P P yrA     

( )Error
renG t

renG
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In equation.17, ( )zerost t   is the delta function and zerost are the zeros of error function

( )errorf t  . 

Without any loss of generality, we assume that the variation of the gravitational constant 

 is defined by the absolute value of the function [45], and is 

calculated in Newtonian gauge (see Appendix B):  
2

( )

2

( )
( ) | ( ) | 2 | sin( ) | ,error

N N error G N G

Pl

g t
G t G f t A G a t

M


         (18) 

where 

 
2 2( ) 2 | sin( ) |,G Gg t g A a t          (19) 

2

2
.N

Pl

g
G

M
           (20) 

 

In equation18, the variation of gravitational constant δGN is absorbed by the dimensionless 

gravitational coupling δg, given equation.19. This differs from our earlier publication [45] 

where g was considered as a constant, and the variation of the gravitational constant δGN was 

inversely proportional to the variation of the square Plank mass 2

PlM . 

From action (15), we obtain the gravitational action in the presence of environmental or 

theoretical errors: 

 

EH GS S S   ,         (21) 

 

where 

16

n
EH

N

R
S d x g

G

 
   

 
 ,        (22) 

SHE is the Einstein-Hilbert action; GS  and ( )errorf t are as in equation 13.   

 

The zeros of the error function ( ( ))errorf t : ( ) Gt a t    (equation13) are calculated as 

follows: 

If 

( ) ( )

( ( )) 2 sin ( ) 0
error errori t i t

error G error G

e e
f t A t A

i

 

 



   ,    (23) 

then  

( ) ( )error errori t i t
e e
 

  or 
2 ( ) 21errori t k ie e
   , 0, 1, 2,...k        (24) 

Hence 2 ( ) 2errori t k i   and ( ) 0, , 2 ,...zeros
error t k       , i.e. the latter are all zeros and 

real.   

Now, we calculate the action.15 at zeros ( ) ( )zeros
errort t  : 

( )

( ( ) ) 0
16 zero

n
G error

N

R
S d x g F f t

G
 






  
     
   
  ,     (25) 

where  

( )( ) error

NG t  | ( ) |errorf t
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( ( ) ) 0errorF f t   ,at zeros ( )( ) ( )zeros
error errort t   (by equation.17),   (26) 

 

and ( ( ) ( ) ) ,zerost t     at zeros  .       (27) 

 

Using equations.13, 17-19, and the interactions of gravitons with matter in the presence of 

environmental or theoretical errors, it can be written: 

int 16 ( )G Nh
G t h T

     ,       (28) 

where h  is the graviton, and T
is the energy-momentum tensor. The requirement is that 

non-renormalizabele terms be suppressed by the inverse powers of Planck mass (equation 20). 

 

5. Kaluza-Klein gravity in the presence of Newton’s constant variation δGN in (4+1) -

space-time dimensions 

Following, D. Bailint , A.Love  (1987) [52], an effective action for the four-dimensional 

theory may be derived from the action for five-dimensional Einstein gravity in the presence of 

environmental or theoretical errors. Following equations15-20, we have the five-dimensional 

action: 

 

5 1/2 5 1/2| det | ( ) | det |
16 16 ( )

G g error

N N

R R
S d x g F t d x g

G G t


  

   
      

   
    (38) 

 

R ; is the five-dimensional curvature scalar, ( )errorF t is given by equation.17 and NG ,

( )NG t 
are the gravitational constant for five dimensions and its variation, respectively. 

 

After compactification, substituting the ansatz of ref [52]  for ABg to equation.38, and 

integrating over the extra spatial coordinate , gives the following effective four-dimensional 

action in the presence of environmental or theoretical errors for time scales t<<PG=5,8yr: 

 
2

5 1/2 55

5 1/2

2 2
| det |

416 ( ) 16 ( )

| det | ,

c c
G

N N

R g R
S d x g R

G t G t

d x g F F 



  


  

 
    

 







   (39) 

 

cR : the radius of the compact manifold as in equation.31; R: the four-dimensional curvature 

scalar, and 

 

F A A       .         (40) 

 

A
 is the Abelian gauge field and    is the scale factor. 

 

Now, the variation of the four-dimensional gravitational constant δGN becomes: 

 

( )
( )

2

N
N

c

G t
G t

R







   .        (41) 

The standard normalization for the gauge field [52], requires the following condition: 
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2
2

2

55

16 ( ) ( )
( ) N

c

G t t
t

g R

 




   ,      (42) 

where 

 
2( ) 16 ( )Nt G t   .         (43) 

 

Then, the effective four-dimensional action in the presence of environmental or theoretical 

errors for time scales   t<<PG=5,8yr is given by: 
 

5 1/2 5 1/21 1
| det | | det |

16 ( ) 4
G

N

S d x g R d x g F F
G t




 

       (44) 

 

5.1. The electron’s unit charge from the fifth dimension  

 

Based on Ref. [52], the Fourier expansion of the five-dimensional scalar field Φ(x,θ) on the 

compact manifold S
1
 is as follows: 

 

( , ) ( )n in

n

x x e   




   .        (45) 

 

The Klein-Gordon (KG) equation, 

 
2

2 2

1
( , ) 0,x

c

x

x
R

g  

  

 


 
  

 

     

  ,       (46) 

 

then gives the equations for the components: 

 

 2 ( ) 0n

nx
M x   ,        (47) 

 

where 

 
2

2

2n

c

n
M

R
 , 0, 1, 2, 3,........n            (48) 

All scalar particles have n ≠ 0. From (48), this means that they all have masses at the Planck 

scale Mpl, whereas the familiar particles have very small masses at the Plank scale.  In this 

way Klein explained (for the first time) the quantization of electric charge [51]. (Note also 

that charge conjugation is just parity transformation y → −y in the fifth dimension) [73]. 

  

5.2. On the variations of electron’s unit charge in the presence of environmental or 

theoretical errors in five-dimensional space-time  

Following Ref. [52], we apply the coordinate transformation in the presence of environmental 

or theoretical errors,  

( ) ( )t x               (49) 

 to the ( , )x   as in equation.(45). We have: 
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 ( ) exp ( ) ( ) ( )x i t x x             (50) 

Here, ( )t , 
given by equation 42, is treated as a constant for time scales t<<PG=5,8yr.   

The Abelian gauge field transforms in the manner: 

A A A      [52] .       (51) 

 

This means that, by applying equation 42, ( )x  has the variation of the unit electric charge 

δe due to the presence of environmental or theoretical errors: 

( )
( ) ( )

c

t
e t t

R


     ,        (52) 

Thus, the variation of electric charge δe
2
(t) is quantized in units of ( ) / ct R . Using 

equation.43, the variation of the unit electric charge δe
2
 can be written as: 

2

2

16 ( )
( ) N

c

G t
e t

R






   .        (53) 

Inserting equations 13 to 53, and using equation.6, the variation of elementary electric charge 

can be expressed as follows: 

2 2( ) 2 | sin( ) |G Ge t A e a t   .        (54) 

By using equation. (54), we obtain the time-depended unit of charge of the electron in the 

presence of environmental or theoretical errors, 

 

( ) 2 | sin( ) |G Ge t e e A a t    ,       (55) 

where
 

 [1], and e is the electron unit 

charge. 

For the 4-dimensional long-range sector of a 5-dimensional KK-system, we suppose that the 

radius of compact dimension, Rc, tends to zero, while discarding from the theory all those 

harmonic components with mass n/Rc, where zero mode is dominant [82]. This is not a 

satisfactory limit (in fact, the Maxwell gauge coupling e
2
 grows without limit [83]), and may 

lead to inconsistencies (Duff et al 1986 [84]). At sufficiently low energy scale, the Kaluza-

Klein theory is consistent, since it has an infinite tower of massive KK-states [84].   

7. The extreme black hole electron 

A.Einstein, et.al (1938) [94] showed that, if elementary particles are treated as singularities in 

space-time, it is unnecessary to postulate geodesic motion as part of general relativity.  

Carter (1968) [95] showed that the magnetic moment of such an object would match that of 

an electron.  More recently, the idea that elementary particles might behave like black holes 

has been explored by S. W. Hawking, Abdus Salam, and G.’t Hooft [96, 97, 98]. Calculations 

showed that the black hole electron should be 'super-extremal'; that is, it should display 

a naked singularity. In 1994, M.F Duff showed that the Kaluza-Klein string states are extreme 

black holes [73]. Following the latter work, the field equations that stem from the variation of 

action (44) have electrically-charged black hole solutions as follows [99, 100, 101, 102]: 

4  80.10 9 , 2 /  5.89, 9 , .G GG Gdeg a P P yrA     
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2 1/2 2 1 1/2 2 2 3/2 2ds dt dr dr d 

             ,     (56) 

 
1/232 3

2,e e F r r V
 

      ,      (57) 

where ∆± = 1 − r±/r, and V2 is the volume form on 2-sphere S
2
. The variation of electric 

charge δe and mass m is related to r± as follows: 

 
1/2

2

2 / 4 ,

/ 4 2

k e r r

k m r r

  

 

 

 



 
         (58) 

An event horizon, r+ ≥ r−, implies the bound: 

2 km e             (59) 

In the extreme limit r+ = r−, the line element becomes:  

2 1/2 2 1 1/2 2 2 3/2 2ds dt dr dr d 

             ,     (60) 

and the bound (59) is saturated, yielding exactly the same variation of charge (δe) to mass (m) 

ratio (53) as the massive KK-states. M.F Duff [73] showed that this is no coincidence: the 

massive KK-states are extreme black holes. The field equations stem from the variation of 

action (44), have magnetically-charged black hole solution with the same metric [73], with 

magnetic charge variation, δg, given by: 

 
1/2

2 / 4k g r r     .        (61) 

In the extreme limit r+ = r−, Equation (61) is the Kaluza-Klein monopole [101, 103, 104].  

The four-dimensional monopole exhibits a curvature singularity at r = r−.  Considering the 

metric ˜gµν = e
√3φ

gµν, the magnetic monopole line element is: 

2 1 2 2 2 2 2 2 2 2

1 2

(1 / ) (1 2 / ) ,

(1 / ), (1 2 / ),

ds dt dr dr d r r dt r r dr dr d

r r r r

 

   

 

   

          

     
  (62) 

at large r. The curvature singularity at r = r− has now disappeared. The significance of this 

metric is that it is the one that couples to the worldline of an electrically-charged point 

particle [73,105, 106] at large distance scale. As in [73], the way the theory accommodates 

this requirement is that, when expressed in terms of the metric e
√3φ

gµν that couples to the 

worldline of the particle, the elementary solutions are singular and the solitonic solutions are 

non-singular; when expressed in terms of the dual metric e 
− √3φ

gµν, it is the other way around 

[105, 106]. 

8. Higher-dimensional space-time 

There are convincing arguments that D=11 is the maximum dimension in which we can 

consistently formulate a supergravity theory and describe the Standard Model (SM) of 

particle physics [83]. If the internal space is a 7-dimensional sphere S
7
, the isometry group is 

SO(8), and the coupling constant, e 
2 

, is e 
2
=4/3m

2
 κ

2
. All gauge bosons appearing in the 
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consistent ansatz for pure gravity in D = 11 will also appear in the consistent ansatz for 

supergravity, but with a normalization differing by a factor of 2, which preserves the space-

time supersymmetry: g
2
(sugar) =(1/4)g

2
(gravity) [84].  

Furthermore, heterotic strings theories [107-110] use the 26-dimensional bosonic string for 

the left-movers Left-NL, and 10-dimensional superstrings for the right-movers Right-NR. The 

remaining 16 right-moving degrees of freedom required by N=1 supersymmetry are internal, 

and come from 16-dimensional, even, self–dual lattice constraints by modular invariance 

[107-110]. There are only two such lattices, corresponding to the weight lattices of lie groups 

E8×E8 and SO(32) [107-110]. Following [73], we consider the four-dimensional heterotic 

string obtained by toroidal compactification. At a generic point in the moduli space of 

vacuum configurations, the unbroken gauge symmetry is U(1)
28

 and the low energy effective 

field theory is described by the N = 4 supergravity ([110], see Table.1), coupled to the 22-

abelian vector multiples [73].  

Theory Spin=0 Spin=1/2 Spin=1 Spin=3/2 Spin=2 

N=4 2 4 6 4 1 

Table 1. Particle content of N = 4 supergravity.  

Duff et al. [73] worked with the Schwarz-Sen [111,112] O(6,22;Z) invariant spectrum of 

elementary electrically-charged massive Right-NR = 1/2, Left-NL = 1 states of this four-

dimensional heterotic string. They showed that the zero spin states correspond to the extreme 

limits of the Kaluza-Klein black hole solutions of Section 7 here.  

The bosonic sector is given by: 

4

2

1 1
(

2 12

1 1
(LML) F ( ))

4 8

G

a b

S d x Ge R G G G G H H

G G F G Tr ML ML

   

    

  

   




     

   



,   (63) 

where Fµν
a
 = ∂µAν

a
−∂νAµ

a
, and Hµνρ = (∂µBνρ+2Aµ

a
LabFνρ

b
)+permutations. Here, Φ is the D = 

4 dilaton, and RG is the scalar curvature formed from the string metric Gµν, related to the 

canonical metric gµν by Gµν ≡ e
Φ
gµν. Bµν is the 2-form which couples to the string world sheet, 

and Aµ
a
 (a = 1, ..., 28) are the abelian gauge fields. M is a symmetric 28 × 28-dimensional 

matrix of scalar fields satisfying MLM = L, where L is the invariant metric on O(6, 22): 

6

6

16

0 0

0 0

0 0

I

L I

I

 
 


 
            (64) 

The action is invariant under the O(6, 22) transformations: 

M → ΩMΩ T , Aµ 
a
 → Ω 

a
bAµ

b
 , Gµν → Gµν, Bµν → Bµν , Φ → Φ,    (65)  

where Ω is an O(6, 22) matrix satisfying ΩTLΩ = L [73].   

Action (24) can be consistently truncated by keeping the metric gµν, just one field strength F
1
 , 

and one scalar field φ via the ansatz Φ = φ/√ 3 and M11 = e
2φ/√ 3 

= M
−1

77 [73]. All other 

diagonal components of M are set equal to unity, and all non-diagonal components are set to 
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zero. In this way, Equation (24) reduces to (44). This yields the electric and magnetic Kaluza-

Klein monopoles [73]. 

Now, the purely electrically-charged solution with charge δe is expected to correspond to an 

elementary string excitation. Using Ref [73] for the mass of the state and our Section 7, we 

find that m
2
 = δe

2
/16πδGN, which coincides with Equation (59) in the extreme limit.  

9. Testing the number of space-time dimensions through the proposed PG=5,9yr-

repeated Millikan’s oil drop experiments 

The oil drop experiment was performed originally by Robert A. Millikan in 1909[74] to 

measure the charge of a single electron. The experiment apparatus (Figure.2) consists of an 

atomizer which sprays tiny oil droplets and of a short focal distance telescope, by means of 

which the droplets can be viewed. There are two plates, one of positive and one of negative 

charge, above and below the bottom chamber. A dc supply is attached to the plates. Some of 

the oil drops fall through the hole in the upper plate. The bottom chamber is illuminated with 

X-rays that cause the air to ionize. As the droplets move through the air, electrons accumulate 

over the droplets and negative charge is acquired. With the help of the dc supply a voltage is 

applied. The speed of droplet motion can be controlled by altering the voltage applied on the 

plates [74-78].  

 
 
Fig. 2. Design of the Millikan oil-drop experiment for determining the electric charge of the electron. 

 

By adjusting the applied voltage, a droplet can be suspended in the air. Millikan observed one 

drop after another, varying the voltage and noting the effect. After many repetitions, he 

concluded that charge could assume only certain fixed values. He repeated the experiment for 

many droplets and confirmed that the charges were all multiples of some fundamental value 

and calculated it to be 1.5924(17) ×10
−19

 C, within one percent of the currently accepted value 

of 1.602176487(40) ×10
−19

 C. He proposed that this was the charge of a single electron [74-

78]. Millikan’s paper [74], presented a complete summary of data on 58 drops studied over 60 

consecutive days. Mathematically, Millikan started with the following equation: 

 

1 2/ /v v mg Fe mg   .        (66)

   

With appropriate substitutions, the equation takes the following form: 

 
1/23/2 1/2

1 2 1(4 / 3) (9 / 2) 1/ ( ) ( ) / ...ne g v v v F          (67) 

Including the correction from Stokes’ law gives the equation: 

 2

1 2 / 9 ( ) 1 /v ga A             (68) 

Combining equations (57) and (58) gives the value of e: 
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3/2(1 / ) ne A e           (69) 

where v1:speed of descent of the drop under gravity; v2: speed of ascent of the drop in the 

electric field; mg: force of gravity; F: electric field; en: frictional charge on the drop; μ 

;coefficient of viscosity of air; s  density of the oil; d: density of air; a: radius of the drop; l: 

mean free path of a gas molecule; and A : correction term constant. The mean value obtained 

with this method was reported to be e =4.774 ±0.009×10
-10

 esu. At this stage, it is important 

to note that Millikan, based on his guiding assumptions, expected the value of en to be an 

integral multiple of e, where n = 1, 2, 3, . . . Apparently Millikan discarded values that did not 

turn out to be integral multiples [78]. Note that there is a larger gap between the values 

2.2x10
-19

 C and 2.9x10
-19

 C than between the other points that define the first five gaps 

(increments). We cluster the first six values (e1 to e6) together by averaging that group, and 

we assign that group to integer 1 (1 unit of charge). The next significant gap occurs between 

3.7x10
-19

 C and 4.5x10
-19

 C, so we average the values between 2.9x10
-19

 C and 3.7 x 10
-19

 C 

into the second cluster and assign them to integer 2 (2 units of charge) [78]. 

More recently, T Lee et al., at the Stanford Linear Accelerator (SLAC), carried out the largest 

search for fractional electric charge elementary particles using automated Millikan’s oil drop 

experiments. No evidence for such particles was found [113].  

Since the electron unit charge is given by Equation (75), we propose using an automated 

Millikan’s oil drop experiment (similar to [113]) over the duration of 5.9 years, equal to the 

LOD oscillation (PG=5,899yr) of the Newtonian constant of gravitation GN, as detailed in 

Tables 2,3.  

Lateral E field, vertical airflow apparatus 

Drop generation rate 1 Hz (limited by drop to drop hydrodynamic cross interactions) 

Fluid - Dow Corning silicon oil 

Number of drops - 211,2 million 

Mass –702,8 milligrams 

Duration - 72 months 

Table 2. Proposed experimental run utilizing automated Millikan apparatus.  

Charge magnitude < 40e 

Drop trajectory Chi Squared fit > 10-3 

Charge consistency of the positions <0.03e 

Minimum drop to drop separation >0.62 mm 

Table 3.  Charge measurements to be valid. 

Substituting Equation 55 to 69, we find the variation of electron fundamental charge 

measured by repeated Millikan’s oil drop experiments with time scale equally to PG=5,899yr: 

 

3/2 3/2( )(1 / ) ( | sin( ) |)(1 / )

1 2 | sin( ) | ( )

G G

n G G n

e t A e e A a t A

e A a t e t

  



    

   
    (70) 

for 4+D-dimensional space-time; 

3/2(1 / ) ne A e           (71) 

for 4-dimensional space-time, 
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with
 

 (Anderson et al. 2015a) [1], and e 

being of the currently accepted value of 1.602176487(40) ×10
−19

 C of electron charge [78]. 

The comparison between the values of fundamental electric charge e with the 5.9 year LOD 

oscillation cycle, predicted by 4-dimensional space-time model (Equation 71) and the set of 

e(t) values predicted by the 4+D-dimensional space-time model (Equation 70) is calculated in 

Table 1, and shown in Fig 3. 

t  (years) e (Coulomb) predicted by the 

4+D-dimensional space-time 

model  (Equation (70) 

e (Coulomb) predicted by 4-

dimensions  (Equation 71) 

0 1.62469×10-19 1.602176487(40)×10-19 

1 1.61997×10-19 1.602176487(40)×10-19 

2 1.61633×10-19 1.602176487(40)×10-19 

3 1.62477×10-19 1.602176487(40)×10-19 

4 1.61933×10-19 1.602176487(40)×10-19 

5 1.61719×10-19 1.602176487(40)×10-19 

6 1.62482×10-19 1.602176487(40)×10-19 

 

Table.4. Fundamental electric charge e predicted by 4+D-dimensional space-time model (Equation 70), and 4-

dimensional space-time model (Equation. 71), with the 5.9 year LOD oscillation cycle. The first column is the time 

decimal in years. 

 

 

Fig. 3 Comparison between the values of fundamental electric charge e predicted by 4-dimensional space-time, 

and the set of e(t) values predicted by the 4+D-dimensional space-time model with the 5.9 year LOD oscillation 

cycle.  The red curve shows the values of e predicted by the 4-dimensional space-time Equation (71); the black 

curve is the theoretical variation of e(t) predicted by 4+D-dimensional model (70).   

For any given drop, there is approximately 0.2% of uncertainty about its radius, which 

contributes to the relative error of electric charge q [113-116]. The absolute error of q thus 

increases linearly with q. Since the absolute error of q must be kept to the order of 0.03 e, 

Table 3 restricts the dataset to drops with q < 9.5 (thus keeping this contribution error <0.02 

e). The overall charge distribution is such that only a small percentage of drops have q values 

outside this range [113-116]. The drop distribution in units of electron charge (e) predicted by 

the 4+D-dimensional space-time model is given by: 

4  80.10 9 , 2 /  5.89, 9 , .G GG Gdeg a P P yrA     
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   2 2

drop(0), exp ( ) /drop nN n t N e t e   ,      (72) 

where 
6

drop(0) 10N  is the initial number of drops, and 
2 (t)ne is given by Equation (70). n is 

the number of units of electron charge (e) in a given drop. For any given drop, the units of the 

electron charge (e) have the same variation due to the same environmental or theoretical 

errors. This is called collective variation. Using the results of Appendix C, Equation (70) 

becomes: 

 2 2 2 2( ) sinn Ge t n e ne a t    .       (73) 

Using Equation (73), the drop distribution in units of electron charge (e) that was predicted by 

the 4+D-dimensional space-time model becomes: 

    

 

, (n)exp sin

( ) (n)sin ( ) ( , )

drop drop G

drop drop G drop drop

N n t N n a t

N n nN a t N n N n t



 

  

    
 ,    (74) 

where  

     2 2 2

drop(0) drop(0)exp / expdrop nN n N e e N n       ,   (75) 

 ( ) ( , ) (n)sincollective

drop drop GN n t nN a t   .      (76) 

 dropN n  is the Gaussian drop distribution in units of electron charge (e) predicted by the 4-

dimensional space-time model, and ( , )dropN n t  is the collective variation in drop distribution 

due to the presence of D-compact space dimensions. The drop distribution, N(n), predicted by 

the 4-dimensional space-time model (Equation 75),and the N(n,t) values, predicted by the 

4+D-dimensional space-time model (Equation 74) with the 5.9 year LOD oscillation cycle, 

are calculated in Tables 5(a),5(b) and shown in Figures 4(a), and 4(b).  

n (number of unit charges) / t (years) 0 1 2 3 4 5 6 

-3 0.0024 0.0008 0.0000 0.0000 0.0000 0.0005 0.0025 

-2 0.1320 0.0629     0.0084     0.0025     0.0058     0.0441     0.1350 

-1 0.9875 0.6816     0.2491     0.1361     0.2073     0.5706     0.9987 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1 0.1370 0.1986     0.5434     0.9945     0.6528     0.2372     0.1355 

2 0.0025 0.0053     0.0400     0.1339     0.0577     0.0076     0.0025 

3 0.0000 0.0000 0.0004 0.0024 0.0007 0.0000 0.0000 

(a) 

n (number of unit charges) / t years) 0 1 2 3 4 5 6 

-3 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

-2 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 

-1 0.3679 0.3679 0.3679 0.3679 0.3679 0.3679 0.3679 

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1 0.3679 0.3679 0.3679 0.3679 0.3679 0.3679 0.3679 

2 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 0.0183 

3 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

(b) 

Table.5.  (b);The drop distribution N(n), predicted by the 4-dimensional space-time model (Equation 75), and (a); 

the N(n,t) values, predicted by the 4+D-dimensional space-time model (Equation 74), with the 5.9 year LOD 

oscillation cycle. 
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(a) (b)  

Figure 4. Comparison between, (a) the drop distribution N(n) predicted by 4-dimensional space-time (Equation 

75), and, (b) the set of N(n,t) values predicted by the 4+D- dimensional space-time model (74), with the 5.9 year 

LOD oscillation cycle.  

10. Discussion  

In 2014, UK’s Royal Society hosted a conference titled “The Newtonian Constant of 

Gravitation: a constant too difficult to measure?” [79]. The conference aimed to resolve the 

problem of large discrepancy between recent GN values [80].  

A reasonable explanation for the discrepancy of GN measurements is that this is due to some 

still unknown physical cause [80,45,46]. In 2015, Anderson et al. [1], analyzed the 

measurement results and claimed that the recent values of GN varied sinusoidally with a 

period of about 5.9 years. They proposed that one possible reason for this variation was the 

activity of the Earth’s core. Schlamminger et al. corrected the acquisition time of these 

measurement results but did not find any remarkable correlation [46]. In 2017, Parra proposed 

that the temporal variation of GN was potentially caused by the sun’s dragging effect [81]. 

These hypotheses can be neither confirmed nor refuted at present, since the precision of GN 

measurement is low. GN measurements of higher precision, obtained by more methods, are, 

therefore, required.  

Following L. Iorio [3], the time-variation of G investigated here contrasts with virtually all 

the theoretical models that predict a G(t) varying over typically cosmological timescales. The 

boundaries of variation of G reported in the current literature (of the order of 10
-13

-10
-14

 yr
-1

: 

Williams, Turyshev & Boggs 2004; Muller & Biskupek 2007; Pitjev & Pitjeva 2013; Pitjeva 

& Pitjev 2013) may not be applicable to the present case, since this range of variation was 

inferred from least-square reductions of planetary and lunar positional data though modeling 

δG(t) as a secular trend [3]. 

It is possible that the oscillation of the gravitational constant GN given by Equation (13) is an 

artifact of unrecognized large systematic errors of measurement. If this is the case, the 

connection with compact D-dimensions is improbable.   

Future work can focus on the local flatness of the metric tensor gμν within the GR framework. 

We argue that an artifact of unrecognized large systematic errors of the GN measurement is 

improbable [117]: the Taylor series expansion of the metric (g00 =1-2GNm/r) around the 

origin, O, incurs no error. However, for other points, there is an associated truncation error, 
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and this must be accounted for [118,119]. So, the true metric g00(x) can be written as the 

Taylor series approximation g00(x)| plus a truncation error term: g00(x) = g00(x) + E00(x): 

1 1
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,   (77) 

where for some c strictly between 0x and 0x   that belong to tangent spaces Tp(M) of the 

manifold M ,and 

1 1

1 1

1 1

0 0 0 0 0

,..k

( ) | ... f( ) | ( ) ...( )
( 1)!

n

n n

n

k kN
N p k k error p

k

G
G x c x x x x

n
  

 



    


   (78) 

is the local variation of GN, and f( )errorc is any real function with bound n+1-derivatives in the 

tangent space Tp(M) of the manifold M.  The right side of Equation (78) approaches zero as n 

tents to infinity. It follows that GN is constant as should be as measure indirect from the light 

curves of type Ia supernovae [120], and by using gravitational wave observations of binary 

neutron stars [121]. We replace C
∞
 of the manifold M by C

n+2
 in all tangent spaces Tp(M) of 

the manifold M [117].  For our purposes the degree of differentiability of a manifold C
n+2

, 

n+2≥6 is not crucial; we will always assume that any manifold is as differentiable as 

necessary for the application under consideration [122]. Mining that the reported difficulties 

of the local measure of Newton constant GN [79] is a property of the gravitational field rather 

than an artifact error [117]. The implications of such a novel gravitational property to the 

differential manifold is under investigation [117]. 

At energies well below the Planck energy, the massive Kaluza-Klein states are extreme black 

holes which can describe stable elementary particles [73]. Based on this interpretation, we 

find that the variation of electric charge δe
2
(t) is quantized in units of 16 ( ) /

N c

G t R , and is 

proportional to the sinusoidal variation of δGN with a period of about 5.9 years (Table1; 

Figure 3). We also observe that the changes of electron charge due to the presence of a D-

space dimension should be about 10
-2

, with a period of about 5.9 years (as shown by the red 

curve in Figure 3). In the case of four space-time dimensions, the electron charge is constant 

and perfectly fits a straight line (black curve in Figure 3). The collective magnetic field that 

follows from Equation (55) is vanished by Equation (12). Furthermore, the adiabatic variation 

of electric charge (55) does not give any atomic transition (for details see [123]). 

In the proposed automated Millikan’s oil-drop experiment over 5.9 years (see above), we 

observe that the drop distribution N(n) predicted by the 4-dimensional space-time model 

(Equation; Fig. 4.b) is a symmetrical Gaussian distribution. The drop distribution N(n,t) 

predicted by 4+D-dimensional model (Equation; Fig.4. b) is symmetrical when the variation 

of gravitational constant δG(t) is positive or negative, and it asymmetrical when δG is 

changes sing for positive to negative and via versa (Fig. 4.b). A similar, flipped asymmetric 

charge histogram has been observed by the SLAC experimental run utilizing automated 

Millikan apparatus numbers 2 and 3 (Fig. 5. c), 5.b) with change from positive to negative 

δG(t) (see Fig.1). A symmetrical Gaussian charge histogram has been observed in the SLAC 

experimental run utilizing automated Millikan apparatus numbers 4 and 1 as shown (Fig. 5.a, 

5.d), with positive and negative δG respectively (see Fig.1). As long as we do not know what 

sets the charge distribution for a particular drop generator used in such experiments [113-

116]. It is remarkable that those charge distributions as shown (Fig. 5.a, b, c, d) may be the 

first event of synchronous variations at G and e. Of course, a synchronous variation at G and e 
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may also be accidental, due to the low time scale of SLAC results. An experimental run 

utilizing automated Millikan apparatus for the duration of 72 months, is, therefore, required.  

(a) (b) 

(c) (d) 

Fig.5. Charge histogram of the SLAC experimental run utilizing automated Millikan apparatus numbers 4: (a) 

(2004-2007; duration: 36 months [116]); 3: (b) (2000-2001; duration: 8 months [115]), 2: (c) (1999; duration: 5 
months [114]); 1: (d) (1995: duration: 9 months [113]). 

The coupling between e and G is a result of the 4+ D-dimensional theories and, therefore, a 

result congruent with the unification project. That this coupling and it resulting effects are 

absent from the 4-dimensional theory may be simply because the latter misses the unification 

try. Whatever the reason behind the variability of the G value, if there is a coupling, which 

justifies the unification try, it should have an effect, which could become measurable by the 

experiment proposed here, of by other experiments. 

It is still possible, of course that deviations of G result from systematic errors of measurement 

rather than periodicity. Synchronous deviations at G and e, however, would be a significant 

finding, whatever rule those follow. 

11. Conclusions 

 At energies well below the Planck energy, the massive Kaluza-Klein states are 

extreme black holes, which can describe stable elementary particles [73].  

 

 Based on this interpretation, we show that, if the observed harmonic pattern of the 

laboratory-measured values of the GN is due to some environmental or theoretical 

errors, these errors must also affect the elementary electric charge, e.  

 We calculated the values of fundamental electric charge e predicted by 4 and 4+D-

dimensional space-time models.  
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 We find that, in the case of 4+D space-time dimensions, the fundamental electric 

charge (e) values oscillate with the 5.9 year LOD oscillation cycle, while in the case 

of 4 space-time dimensions. the fundamental electric charge (e) is constant.  

 We also propose using an automated Millikan’s oil drop experiment over the duration 

of 5.9 years to discriminate between 4 and 4+D space-time dimensions.  

 We find that the collective drop distribution predicted by the 4+D-dimensional space-

time models is very close to the Stanford Linear Accelerator results. At present, we 

do not know what sets the charge distribution observed in these experiments. It is 

remarkable that this charge distribution, observed in the experimental run utilizing 

automated Millikan apparatus numbers at SLAC, may be the first confirmation of 

synchronous variation at G and e. 

Since the proposed Millikan’s oil drop experiment over 5.9 years would not give any 

information about the constants of the proportionality between the coupling constant 

charge g
2
 and the Newton constant GN, and is crucially dependent on the field content 

of the higher-dimensional theory, it is improbable to discriminate between one and 

seven compact extra dimensions through this experiment. However, the proposed 

experiment may reveal whether there exist one or more compact extra dimensions in 

our space-time. 
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Appendix A.  Following Ref. [119], the typical error length scale of the patch containing a 

point P should be ( ) (t)errort F  , where (t)errorF is given by Equation (17). Let the 

coordinates of the patch be x
µ
 and let the coordinates of P be x

μ
⋆. We define a new set of 

coordinates y
µ
 by: 

* ( )x x t y            (A.1) 

Then, 

2 2

*( ) ( ) ( ( ) y)ds g x dx dx t g x t dy dy   

          (A.2) 

We define the conformal metric 
2ds  by: 

2

*( ( ) y) (y, ( ))ds g x t dy dy g t dy dy   

          (A.3) 

In both coordinate systems, the geometry of the patch is described by the metric and the 

boundary of the patch. In the original x
µ
 coordinates, only the boundary depends on ( )t , 

whereas in the conformal coordinates y
µ
, the boundary is fixed but the metric depends on

( ) (t)errort F  . From the above it is easy to see that, at point P, 
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, , , ,, (t) , (t) ,

(t) , (t) (t)

a error error

error error error

g g g g F g F g

R F R R g g R F g g R F R

        

   

   

  

   
  (A.4) 

where R g g R 

  ,and the partial derivatives on the left are with respect to y and those 

on the right are with respect to x. By using equations (A.4), the gravitational action can be 

written as follows: 

( )
16 16

error

n n

N N

R R
d x g d x g F t

G G 

   
       

   
   ,   (A.5) 

where g g   follows from equations A.4. Action A.5 is the variation of gravity due to 

environmental or theoretical errors, as given by Equation. (15) in the limit of vanishing error 

kinetic terms 
2

0( ( ) )errorf t . 

Appendix B.  In the Newtonian gauge, Action.A.5 becomes: 

2( )
( )

16
error

n
m

N

d x g F t
G




 
    

 
  .     (B.1) 

To this equation, we have added the gravitational coupling to non-relativistic matter

001
002 g T . By varying with respect to  , we see that the usual Poisson equation for the 

gravitational potential is modified by the error term ( )
error

F t . The Poisson equation now 

reads: 

2

2

1

2M F(t)
m

pl error

  

       (B.2) 

By comparison with 2
2

2
m

plM

 
   
 

, we finally obtain the relation between measured 

gravitational constant, 2
1

pl
N M

G  , and its measured variation in the presence of 

environmental or theoretical errors in the Newtonian gauge:  

2

1
(t) f(t)

2M F(t)
N error N error

pl error

G G  

      (B,3) 

Appendix C. As explained in [13-116], the drop radius is determined from the horizontal 

terminal velocity Vx of integer charge particles. The measurement of en does is independent of 

the drop density and, also, of the gravitational force on the drop [113-116]. We consider the 

time-depended values of en(t) = ne(t), (n = 0, ±1, ±2, . . .) given by equation. (70). Following 

[113-116], we expect a time-depended sharp peak of Vx (t) measured values at (n = 0, ±1, ±2. 

. .).  For any given drop, the units of the electron charge (e) have the same variation, due to 

the same environmental or theoretical errors. This is a collective variation. As long as we do 

not know what sets the charge distribution for a particular drop generator [113-116], we 

consider the theoretical collective drop population. Let j drops, of radius r, density ρ, and time 

depended collective charges ejn (t)= jen(t), (j = 1, 2 . . ., Nc), falling in air through a horizontal 
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electric field of strength E.  Nc is the number of drops that enclosed at least one-unit charge. 

Then, as shown in [113-116], for 1 million drops, Nc should be 10
4
-10

5
. This implies that the 

collective number of drops, Nc, is about 1%-10% of the total drop number N.  

Now let us examine the square averages of equation. (68) for j collective drops: 

22

2

2 2

( )
( )

36

jn

jx

e t E
v t

r 

  
      

,       (C.1) 

where

2
2 2 2 2 2 2 21 1
( ) ( ) ( ) ( ) ( )jn jn jn jn n n

j jc c c

j
e t e e t e t j e t e t

N N N


 
        

 
  , (C.2) 

and

2 2 2 2 2
2 2 2 21
jn jn

j jc c c

n e n e j
e e j e

N N N

 
   

 
   ,   (C.3) 

2
2 2 2 2 2 21
( ) ( ) ( ) ( )jn jn

n n

j
e t e t n e t nj e t

n n
   

 
   

 
  ,   (C.4) 

2 2

n

n n  , 
2 2

j

j j ,       (C.5) 

where 
2 ( )jne t   are the square averages of j collective drops over time-depended drop charges; 

2

jne  are the square averages of j collective drops over drop charges; 
2 ( )jne t  are the square 

averages of j collective drops over the variation of n unit charges, 
2 ( )e t  is the square of the 

variation of  unit charge (e), given by equation.(54). For equations (C.1), (C.2), (C.3), and 

(54), we have: 

2 2 2 2 2 2 2( ) n e 2 ne sin( ) n e ne sin( )n c G G Ge t N A a t a t        ,  (C.6) 

where 
410cN  [113-116], and 

410GA  [1], implying that 2 (1)c GN A O . 
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