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Abstract—In this paper, we introduce the Prognostics and        

Health Management of gear bearing system using autoencoder        
neural networks. Bearings and gears are the most common         
mechanical components in rotating machines, and their health        
conditions are of great concern in practice. This study presents          
an outlier modeling method for forecasting the gear bearing         
system failure using the health indicators constructed from        
mechanical signal processing and modeling. Outlier modeling       
aims to find patterns in data that are significantly different          
from what is defined as normal. In the unsupervised outlier          
modeling setting, prior labels about the anomalousness of data         
points are not available. In such cases, the most common          
techniques for scoring data points for outlyingness include        
distance-based methods density-based methods, and linear      
methods. The conventional outlier modeling methods have       
been used for a long time to detect anomalous observations in           
data. However, this paper shows that autoencoders are a very          
competitive technique compared to other existing methods. The        
developed method is demonstrated using the IMS bearing data         
from NASA Acoustics and Vibration Database. 

Keywords—autoencoder, prognostics and health    
management, outlier modeling, remaining useful life, gear       
bearing 

I. INTRODUCTION 

Gear bearing condition monitoring and diagnostics has       
received considerable attention for many years because gear        
bearings are critical to almost all forms of rotating         
machinery [1], [2] and are among the most common         
machine elements. Bearing failure is one of the foremost         
causes of breakdowns in rotating machinery and such failure         
can be catastrophic, resulting in costly downtime. To        
prevent unexpected bearing failure, Prognostics and Health       
Management (PHM) has been used extensively for       
examining the gear bearing health conditions. One of the         
key issues in gear bearing prognostics is to detect the defect           
at its incipient stage and alert the operator before it develops           
into a catastrophic failure. Therefore, predicting their health        
condition is necessary to prevent any unexpected accidents        
caused by gear bearing failures. 

PHM [3], [4] is an emerging discipline to scientifically         
manage the health condition of engineering systems and        
their critical components, which has attracted much attention        
from engineers and scholars in recent years [5]–[9]. PHM is          
mainly concerned with three aspects: construction of health        

indicators, remaining useful life (RUL) prediction, and       
health management. Health indicators aim to evaluate the        
current health condition of an engineering system and its         
critical components, which is then used to infer their RUL          
[10], [11]. Based on the first two aspects, the optimal health           
management schedule is planned to minimize costs and        
prevent unexpected accidents [12]–[14]. 

In this paper, we introduce the outlier modeling using         
autoencoder neural networks to predict the health condition        
of a gear bearing system. The term “outlier” has come from           
the field of statistics, wherein outlier modeling has been         
studied for a long time. Outliers are also referred to as an            
“anomaly” in the literature. The most quoted definition of         
outlier comes from Hawkins’ 1980 book: “An outlier is an          
observation which deviates so much from other observations        
as to arouse suspicions that it was generated by a different           
mechanism” [15]. Detecting outliers is important because       
anomalous data often implies negative or even destructive        
consequences. Detecting and then removing outliers can       
improve the performance of classification, clustering and       
regression algorithms because even a single anomalous       
value can significantly bias these algorithms. For example,        
Chen recently showed that a single anomalously smooth        
exemplar will condemn semi-supervised time series      
classification algorithms to fail [16]. 

Similarly, an autoencoder is a special type of multi-layer         
neural network that performs hierarchical and nonlinear       
dimensionality reduction of the data. Typically, the number        
of nodes in the output layer is the same as the input layer,             
and the architecture is layered and symmetric. The goal of          
an autoencoder is to train the output to reconstruct the input           
as closely as possible. The nodes in the middle layers are           
smaller in number, and therefore the only way to reconstruct          
the input is to learn weights so that the intermediate outputs           
of the nodes in the middle layers represent reduced         
representations. Fig. 1 illustrates a fully connected       
autoencoder.  

Since the autoencoder creates a reduced representation       
of the data, it is a natural approach for discovering outliers.           
The basic idea here is that outliers are much harder to be            
accurately represented in this form than the inliers (or         
normal points). Therefore, on reconstructing an outlier, the        

 



 
error will be large. This provides a natural way to score a            
data point. Nonlinear dimensionality reduction methods      
such as spectral transformations [17] have recently been        
explored in the literature with some success. In this light, it           
is somewhat surprising that the success with neural networks         
has been limited. An important issue is that the outliers are           
often themselves included within the training model. As a         
result, overfitting becomes increasingly likely. This is one of         
the reasons that neural networks have not achieved much         
success in spite of the known success of other         
dimensionality reduction methods in outlier detection.      
Autoencoder ensemble learning methods [18] present a       
natural solution to address this dilemma. 

Outlier modeling aims to find patterns in data that are          
significantly different from what is defined as normal. One         
of the challenges of outlier modeling is the lack of labeled           
examples, especially for the anomalous classes. We describe        
an autoencoder neural network-based approach to detect       
anomalous instances in the IMS bearing data from NASA         
Acoustics and Vibration Database [19]. In this work, we         
train the net to build a model of the normal examples, which            
is then used to predict the class of previously unseen          
instances based on the reconstruction error. The input to this          
network is also the desired output. The results demonstrate         
that the proposed method is promising for the outlier         
modeling of the gear bearing system.  

The remainder of this paper is organized as follows. We          
will discuss related works in Section 2. Section 3 discusses          
our proposed autoencoder method for outlier detection.       
Section 4 discusses the experimental results, while the        
conclusions and future works are presented in Section 5. 

II. RELATED WORKS 

The problem of outlier modeling has been studied widely         
in the community [20]. Numerous methods such as        
distance-based methods [21]-[23], density-based methods     
[24], linear methods [25], and spectral methods [26, 17]         
have been proposed. Recently, ensemble methods have       
found an increasing interest in the literature [18, 27, 20].          
Several ensemble methods such as feature bagging [28],        
subspace histograms [29], high-contrast subspaces [30], and       
locally relevant subspaces [31, 32] have been proposed. The         
spectral methods in [26, 17] can also be viewed as nonlinear           
dimensionality reduction methods that reduce the data       
representation in a nonlinear way in order to score data          
points as outliers. 

Outlier modeling has been used for a long time to detect           
and, where appropriate, remove anomalous observations      
from data. Outliers arise due to mechanical faults, changes         
in system behavior, fraudulent behavior, human error,       
instrument error or simply through natural deviations in        
populations. The original outlier detection methods were       
arbitrary but now, principled and systematic techniques are        
used, drawn from the full gamut of Computer Science and          
Statistics. 

A number of distinguished engineers and scholars have        
also conducted reviews of RUL prediction. Heng et al. [11]          
summarised conventional reliability models,    
condition-based prognostic models, and their hybrid models.       
Ye and Xie [33] summarised a number of degradation         
models and comprehensively compared stochastic process      
models with general path models. Si et al. [34], [35]          
discussed various prognostic methods based on statistical       
modeling. Lee et al. [36] clarified the relationship between         
machine diagnostics and prognostics and then summarised       
many prognostic methods for predicting the RUL of critical         
components such as gear bearings. Zhang and Lee [37]         
reviewed prognostic methods for rechargeable lithium-ion      
batteries, which are also potentially useful for predicting the         
RUL of machines, especially gear bearings. The main        
difference between battery prognostics and gear bearing       
prognostics is that the health status of rechargeable        
lithium-ion batteries can be quantified and described by the         
battery capacity, which is calculated by integrating the        
battery current over time in the process of discharging.         
However, for gear bearing prognostics, it is rare to discover          
a simple and direct health indicator to track the current          
health condition. 

In this paper, we introduce autoencoders for       
unsupervised outlier modeling. One problem with neural       
networks is that they are sensitive to noise and often require           
large data sets to work robustly while increasing data size          
makes them slow. As a result, there are only a few existing            
works in the literature on the use of neural networks in           
outlier modeling. Experimental results comparing the      
proposed approach with state-of-the-art detectors are      
presented on the IMS bearing data set showing the         
robustness of our approach. 

III. THEORY OF AUTOENCODERS  

An autoencoder is a type of artificial neural network         
used to learn efficient data codings in an unsupervised         
manner. The aim of an autoencoder is to learn a          
representation (encoding) for a set of data, typically for         
dimensionality reduction. Along with the reduction side, a        
reconstructing side is learned, where the autoencoder tries to         
generate from the reduced encoding a representation as close         
as possible to its original input. 

 
Fig. 1 An autoencoder representation. 



 
Outliers are data points that differ significantly from the         

remaining data. In the unsupervised outlier modeling setting,        
prior labels about the anomalousness of data points are not          
available. In such cases, the most common techniques for         
scoring data points for outlyingness include distance-based       
methods, density-based methods, and linear methods. An       
overview of different outlier detection algorithms may be        
found in [20]. The basic approach in neural networks is to           
use a multi-layer symmetric neural network to reconstruct        
(i.e, replicate) the data. The reconstruction error is used as          
the outlier score. 

The motivation for the ability of autoencoders to detect         
outliers is based on two observations on reconstructions and         
outliers. First, all reconstructions must lay on the        
reconstruction manifold and this manifold follows the       
noise-free relations in the data. Second, outliers are rare and          
deviate from the general pattern in the data. Using these we           
can formulate the following main reasons that drive the         
ability of autoencoders to detect outliers: 

1. outliers are not projected orthogonally onto the        
reconstruction manifold, 

2. outliers often have a larger distance to the         
reconstruction manifold than normal observations 

The first reason holds because outliers are in general not          
well represented in the training data and the autoencoder has          
therefore not learned to map them to the closest point on the            
reconstruction manifold. The projection to the closest point        
corresponds to an orthogonal projection. In general, the        
projections of outliers on the reconstruction manifold will        
thus not be orthogonal. 

 

Fig. 2 Again, we see points generated by the same model 
but now six anomalous points are also depicted, along with 
their reconstructions. Reconstructions of normal points have 

been omitted for clarity. 

The second holds for outliers that do not conform to the           
general pattern in the data in that they deviate more from the            
noise-free relations between the variables, compared to       
normal observations. Because the reconstruction manifold      
does follow these relations, the outliers have a larger         

distance to the reconstruction manifold than normal       
observations.  

Both reasons lead to a high reconstruction error, which         
forms the basis of the outlier factor (OF), the metric used to            
distinguish normal observations from aberrant ones.      
Following Hawkins et al. (2002b) [38], we define the outlier          
factor of the ith observation to be the average squared          
reconstruction error over all P features: 

OFi  = (xi,p − fp(xi|θ))21
P ∑

P

p =1

 

. In Fig. 2, we see an example of an autoencoder applied           
for outlier modeling. The six outliers, depicted as blue         
points, have a larger distance to the reconstruction line than          
normal points because they show a large deviation from the          
noise-free relations between x1 and x2. Moreover, the        
projections onto the manifold are not orthogonal, indicating        
that the learned identity mapping is not optimal in a          
least-squares setting for these observations. 

The length of the line that connects each point to its           
reconstruction in Euclidean space is the reconstruction error        
[38]. These reconstruction errors are larger for outliers in         
comparison with normal observations and can thus be used         
to identify outliers, where large errors indicate that a data          
point might be corrupted. 

In this paper, we employ multi-layer perceptron neural        
networks with one or more hidden layers, and the same          
number of output neurons and input neurons, to model the          
data. In this model, the input variables are also the output           
variables so that this forms an implicit, compressed model of          
the data during training. A measure of the outlyingness of          
individuals is then developed as the reconstruction error of         
individual data points. This approach has linear analogous in         
Principal Components Analysis [39]. The insight exploited       
in this paper is that the trained neural network will          
reconstruct some small number of individuals poorly and        
these can be considered as outliers. We measure        
outlyingness by ranking data according to the magnitude of         
the reconstruction error. This compares to SmartSifter [40]        
which similarly builds models to identify outliers but scores         
the individuals depending on the degree to which they         
perturb the model. 

The selection of the number of hidden neurons has a          
couple of implications. If it is too large, the system will be            
over-specified. Conversely, if it is too small, the system can          
become overgeneralized and therefore poorly infers specific       
cases. We find that the choice of hidden unit quantity          
significantly affects the technique accuracy. Interestingly,      
further experiments on different data sets show that having         
the number of hidden units equal to the input-output units          
consistently yields good detection rate even though       
depending on the data set, it may not be the optimum           
architecture. 



 
Architecturally, the simplest form of an autoencoder is a         

feedforward, non-recurrent neural network very similar to       
the many single layer perceptrons which makes a multilayer         
perceptron (MLP) — having an input layer, an output layer        
and one or more hidden layers connecting them — but with         
the output layer having the same number of nodes as the           
input layer, and with the purpose of reconstructing its own          
inputs [39].  

In the context of outlier modeling and condition        
monitoring, the basic idea is to use the autoencoder network          
to “compress” the sensor readings to a lower-dimensional        
representation, which captures the correlations and      
interactions between the various variables. 

The autoencoder network is then trained on data        
representing the normal operating state, with the goal of first          
compressing and then reconstructing the input variables.       
During the dimensionality reduction, the network learns the        
interactions between the various variables and should be        
able to reconstruct them back to the original variables at the           
output. The main idea is that as the monitored equipment          
degrades, this should affect the interaction between the        
variables (e.g. changes in temperatures, pressures,      
vibrations, etc.). As this happens, one will start to see an           
increased error in the networks reconstruction of the input         
variables. By monitoring the reconstruction error, one can        
thus get an indication of the health of the monitored          
equipment, as this error will increase as the equipment         
degrades. We, then, use the probability distribution of the         
reconstruction error to identify whether a data point is         
normal or anomalous. 

IV. EXPERIMENTAL RESULTS 

Any machine, whether it is a rotating machine or a          
non-rotating machine will eventually reach a point of poor         
health. This signals that there might be a need for some           
maintenance activity to restore the full operating potential.        
In simple terms, identifying the health state of the equipment          
is the domain of condition monitoring [13]. The most         
common way to perform condition monitoring is to look at          
the sensor measurements (i.e., data from vibration sensors,        
temperature sensors, and rotational speed sensors, among       
others) from the machine and to impose a minimum and          
maximum value limit on it. If the current value is within the            
bounds, then the machine is healthy. If the current value is           
outside the bounds, then the machine is unhealthy and an          
alarm is sent. 

This procedure of imposing hard coded alarm limits is         
known to send a large number of false alarms, that is, alarms            
for situations that are actually healthy states for the machine.          
There are also missing alarms, that is, situations that are          
problematic but are not alarmed. Hence, the health of a          
complex piece of equipment cannot be reliably judged based         
on simple Statistical analysis [20]. That is why we have          
presented an autoencoder neural network-based approach in       
this paper. 

The vibration signals used in this paper were provided         
by the Center for Intelligent Maintenance Systems (IMS),        
University of Cincinnati, USA, in collaboration with the        
National Aeronautics and Space Administration (NASA). A       
schematic of the experimental test rig is shown in Fig. 3.           
Four Rexnord ZA-2115 double row bearings are installed on         
the shaft. Each bearing contains 16 rollers (for each row), a           
pitch diameter of 2.815 in., a roller diameter of 0.331 in.,           
and a tapered contact angle of 15.171 [19]. 

 
Fig. 3 Bearing test rig. 

Three sets of tests were made. Each set is an experiment           
of 4 bearings. In this way, 12 bearings are used but only 4             
bearings have reached failure with known defects. Each data         
set describes a run-to-failure experiment. It consists of        
individual files that are 1-second vibration signal snapshots        
recorded at specific intervals (every 10 min). Each file         
consists of 20,480 points with the sampling rate set at 20           
kHz. The rotation speed was kept constant at 2000 RPM by           
an AC motor coupled to the shaft via rub belts. A radial load             
of 6000 pounds is applied onto the shaft and bearing by a            
spring mechanism. All bearings are force lubricated.       
Records (row) in the data ASCII files are data points. Data           
collection is provided by NI DAQ Card 6062E [41]. In this           
paper, only the bearing 1 of the second ending with an outer            
race defect is used as shown in Fig. 4. 

 
Fig. 4 Outer race defect of bearing 1 of testing 2. 

Our goal is to detect gear bearing degradation and give a           
warning that allows for predictive measures to be taken in          
order to avoid a gear bearing failure. 

Generating an outlier modeling model involves training       
a neural network and then finding a suitable threshold. The          
methodology is: 



 
1. Generate a training set of N normal examples. 

2. Generate a validation set of M normal examples. 

3. Create a feed-forward network with random initial        
weights. The number of units in the input-output layer is          
equal to the number of variables in the data set. The number            
of hidden neurons is determined empirically.  

4. Use back-propagation to train the network. Training        
ceases when the error on the validation set begins to rise. 

5. Choose the maximum error in training to be the          
threshold [39]. 

Three sets of data each consisting of four bearings were          
run to failure under constant load and running conditions.         
The vibration measurement signals are provided for the        
datasets over the lifetime of the bearings until failure. The          
failure occurred after 100 million cycles with a crack in the           
outer race [19]. As the equipment was run until failure, data           
from the first two days of operation was used as training           
data to represent normal and healthy equipment. The        
remaining part of the datasets for the time leading up to the            
bearing failure was then used as test data, to evaluate          
whether the different methods could detect the bearing        
degradation in advance of the failure. 

This approach consisted of using an autoencoder neural        
network to look for outliers (as identified through an         
increased reconstruction loss from the network). We also        
here use the distribution of the model output for the training           
data representing “healthy” equipment to detect outliers. The        
distribution of reconstruction loss (mean absolute error) for        
the training data is shown in Fig. 5. 

 

Fig. 5 Distribution of reconstruction loss for “healthy” 
equipment. 

Using the distribution of the reconstruction loss for        
healthy equipment, we can define a threshold value for what          
to consider an outlier. From the distribution above, we can          
define a loss > 0.25 as an outlier. The evaluation of the            
method to detect equipment degradation now consists of        
calculating the reconstruction loss for all data points in the          
test set and comparing the loss to the defined threshold value           

for flagging this as an outlier. Using the above approach, we           
calculate the reconstruction loss for the test data in the time           
period leading up to the bearing failure, as illustrated in Fig.           
6. 

In Fig. 6, the blue points correspond to the         
reconstruction loss, whereas the red line represents the        
defined threshold value for flagging an outlier. The bearing         
failure occurs at the end of the dataset. This illustrates that           
this modeling approach was able to detect the upcoming         
equipment failure about 3 days ahead of the actual         
breakdown (where the reconstruction loss crosses the       
threshold value). 

 
Fig. 6 Predicting bearing failure.  

V. CONCLUSIONS AND FUTURE WORKS 

In this paper, we studied the relationship between health         
indicators and RUL prediction in the framework of PHM         
and pointed out that health indicators are the key to RUL           
prediction. We have shown how autoencoders can be used         
for outlier modeling. The number of units in the input and           
output layer corresponds to the number of data attributes.         
Only normal instances are used for training. We use this          
model to develop a score for outlyingness where the trained          
model is applied to the whole data set to give a quantitative            
measure of the outlyingness based on the reconstruction        
error. The output of the training process is a predictive          
model and a corresponding threshold value. Our method not         
only gives a ranked estimation of the anomalous degree of          
each instance but also provides an outlier label for direct          
decision-making. Our approach takes the view of letting the         
data speak for itself without relying on too many         
assumptions. 

The experiment result demonstrates that using an       
autoencoder with only one hidden layer is a promising         
approach for outlier modeling. Even though the optimum        
number of hidden neurons is dependent on the data         
dimensionality, we have managed to narrow down to an         
optimum range. We suggest having this number slightly        
fewer than, equal to or slightly higher than the number of           
input-output units are all reasonably good options. When an         
exhaustive search is impossible, we recommend using the        
same number of units for all three layers. This finding is           
somewhat surprising because the intuition is that the number         
of units in the hidden layer should be smaller than that of the             



 
two outer layers to enable data compression and helps the          
network generalizes unseen examples. 

With the reduced cost of capturing data through sensors,         
as well as the increased connectivity between devices, being         
able to extract valuable information from data is becoming         
increasingly important. Finding patterns in large quantities       
of data is the realm of machine learning and statistics, and           
there are huge possibilities to harness the information hidden         
in these data to improve performance within several        
different domains. Moreover, an outlier modeling system       
provides you with a real-time interpretation of data activity.         
Outlier modeling and condition monitoring, as covered in        
this paper, are just one of many possibilities. The long-term          
learning potential of these outlier modeling systems puts        
them in a constant state of evolution. The more experience          
these tools develop, the more potent they will become. In the           
future, this will not just result in quicker response times but           
better insights as well. 

Another important future work would be to investigate        
other alternatives for choosing a threshold value. For large         
data sets, we plan to investigate whether increasing the         
number of hidden layers can help in improving performance.         
We also would like to have the method tested on more data            
sets of different dimensions and application domains. This        
paper will be helpful for designing further advanced gear         
bearing health indicators and provides a basis for predicting         
the remaining useful life of gear bearings. The proposed         
technique improves significantly over the traditional      
methods for outlier modeling. Furthermore, it is also        
competitive with respect to state-of-the-art methods. 
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