The equation we now give is the riemann zeta function valid on the critical strip 0 <
Re (s) < 1. if youwould like to see a proof of this equation,
you can see the equation on wolframalpha.com. Simply type
in the search engine on wolframalpha.com the term
"riemann zeta function" and look for "integral representations";
click on the top right - hand button in the box where it says
"more" and search for equation where it says valid for Re (s) >
0. Itisdifficult to type the demonstration of the equation here;

go to the website. So we begin :

2s ) t-1+s
g (s) = f dt forRe (s) > 0 (validon the critical strip)
(-2+2%) (T (s)) Jo L+e®

This is the Riemann Zeta Function, valid on the critical strip.Assume an arbitrary zero,
a, of the Riemann Zeta Function above, lies anywhere on the critical strip
(ax = a+bi, where “a” and “b” belong to the reals, and “i” is the imaginary number) .We

set for the above Zeta Function, on left - hand side of the equation, s = a.Therefore :
E(a) =0
(Eq . 2)

Since the left side of the above Eq .1 is equal to zero by Eq .2, we see the following :

2s t—1+s
0 = -r dt
(-2+2%) (T (s)) Jo L+e®
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(Eq .3)

We take the absolute value of both sides of Eq .3 :

2s t—1+s
0= | | | J‘” at
(-2+2¢%) (T (s)) 0 l+et

(Eq. 4)
We immediately note that :

| =
(-2+2%) (T (s))
(Eq .5)

|>0

We divide both sides of eq. (4) by the left - hand side of inequality (5), and we get :

t-1+s
0 = |r dltl
0 1l+et
(

Eq.6)

Since eq.6 above is complex fora = a +bi,
we expand eq. 6 above by complex expansion.Moreover, the expression underneath

the integrand is equal to zero.Making use of these two concepts, we conclude :

t—1+s
0 = | r dt | is equal to the following:
0o l+et

= t71*2 (Cos (bLn (t)) + i Sin (bLn (t)))
| J‘ dt | =0
0 1+ et

l+a
4

(by using complex expansion of t~
resulting in t™1*® = ¢-1*2 (Cos (bLn (t)) + 1 Sin (bLn (t) )) wherea = a + bJ'J.)

(Eq .7)

We see that since Eq .7 above has an integral,
then we see that we can "distribute" over the integral,

since integrals are linear functions :
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® t-1*2 Cos (b Ln (t o t-1*agin (bLn (t
j ( ())d1t+1'1j ( ())d]t

0 1+ et 0 1+ et

(Eq. 8)

We see that in the immediate Eq .8, we took an absolute value of the function

t-1*3Cos (bLn (t)) . t-1*3s8in (bLn (t)) . .
'rn dt +1i r dt . Then this absolute value yields :
0 1+ et 0 1+ et

-1l+a -1l+a :
U«at Cos (bLn (t)) at)?s [J‘mt Sin (bLn (t)) dat)2 = 0
0 0

1+ et 1+e*

(Eq . 9)

Since Eq .9 is equal to zero,

and is also the sum of two non - negative numbers,

then each termin Eq .9 is equal to zero. Therefor we get : (p2 = Omeans thatp =
0 if pis a real number, like the squared integral inEq .10 below) :
(Eq .10)

© t-1*2 Cos (bLn (t 2

U ( (£)) dt| =0 (Eq .10)
0 1+ et

Then :

t*2Cos (bLln (t

JM ( ( ))dlt=0 (Eq .11)

0 1+ et

(Eq. 11 holds because if the square of a real number is equal to zero,

like inEq .10, then, that real number, is equal to zero)

Then :
@ t-1*2 Cos (b Ln (t)) ] )
J dt = 0 isequal to the following :
0 1+ et

t=0 (Eq .12)

J.mt-ha cos ((2) (1/2) bLn (t)) 4

0 1+ et

Note the inner function of the cosine in (Eq . 12) ,
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where we will use the trigonometric identity cos (2x) = (cos (x))? - (sin (x))?,
implying that Cos ((2) (1/2) b Ln (t)) =
(cos ((1/2)bIn (t)))? - (sin ((1/2) bIn (t)))® (Eq.12a)
(Before we continue, we note the use of the trigonometric identity inEq .12 a;
itisvalid. The integral inEq .12 is in andefinite integral at a pointa =

(a, b) (a is the zero inEq . 1) . Eq. 12 is an area underneath a curve

whose sum total area is zero at the point "a". Because of this,

we are justified in using the trigonometric identity in Eq .12 a above. )

Therefore :

(5q.13) 0 = J«m t1*2Cos ((2) (1/2) bLn (t)) e

0

1+ et

(note inner function of Eq. 13 1like inEq .12 a)

1) [ oo (/20 (©)))? - (sin ((1/2) b1n (8)))?

dt =
0 1+ et

J~mt‘1+a (cos ((1/2)p1a (0)))® J‘mt‘“a (sin ((1/2)bIn (89)))"
0 1+ et

i e t (Eq .15)

(In Eq .14, we "distribute" over the integral

since the integral is a linear function, whichyields Eq . 15)

So, byEq. 13, Eq .14, Eq .15, wesee:

(Eq. 16) J;m -1l+a (cos (5-1+/Z)tbLn (t)))2 1t J_mt_ha (Sin ((1/2) bLln (t)))2

0 1+ et

dt =0

Then:J:t_ha (cOs((l1+/Z)tbLn (t)))2 i =th_1+a (sin ((1/2) bLn (t)))2

T ot dt (Eq.17)
+ e

(In Eq .16 above, we see that we move one expression from the left -

hand side of Eq. 16 to the right - hand side, yieldingEq .17)

We will now try to show a contradiction;

namely, we will demonstrate thatEq .17 is false.
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We show the following argument, which is correct by rather

simple techniques frommathematical analysis to contradictEq .17 :

Since the followingholds : e® s 1+e®forallt € [0, »| , implies: (Eq.18)

et 1+et 1 1
< is equivalent to < (Eq . 19)
(et) (1 + et) (et) (1 + et) (1 + et) (et)

Moreover, we see :

l+e® < et +etisequivalenttol+e® < 2et;

then, by dividing this inequality through by (1 + et) (et + et) , weget:

1+ et et+ et

< implies that ! < ! so that : (Eq .20)
(1+et) (et+et) (1+et) (et+et) (et+et) (1+et)

Seeing the inequality of Eq .19 and Eq .20, by transitivity:

( t) < ( t) and ( " t) < ( t) , then, by transitivity :
l+e e et +e l+e

1
< s — (Eq. 21)

Nowmultiply Eq. 21 aboveby (Cos ((1/2) bLn (t)))?, where (Cos ((1/2)bIn (t)))?2

0 is non - negative so there' s no change in direction of inequality for Eq .21 :

(cos ((1/2) bLn (t)))2 . (cos ((1/2) bLIn (t)))2 . (cos ((1/2) bLIn (t)))2
(et +et) B (1+et) B (e*)

(Eq. 22)

Now, multiply Eq .22 above by the term t™1*2,

where t™!*® is greater than zero forall t > 0 and for "a" belonging to interval (0, 1/2) :

ti*2 (cos ((1/2) bIn (t)))? ) ti* (cos ((1/2) bIn (v)))® )

(et+et) (1+et)

t1*2 (Cos ((1/2) bLn (t)))z

()

(Eq. 23);
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then, we integrate through the inequality of Eq .23 :

dt <

jf,c,t-1+a (cos ((1/2) bIn (v)))?

0 (et+et)

£ (Cos ((1/2) bIn (8)))? (=t (cos ((1/2) bIn (1)))?
J: (1+et) < J; (et) (Eq .24)

The above Eq .24 has 3 parts, the left - hand side, themiddle,
and the right - hand side. We integrate, usingMathematica (for ease of use),

the left - hand side and the right - hand side, yielding the following :

(1/2) ((1/4) T (a-ib) + (1 /4) T (a+ib) + (1/2) T (a) ) =
jmt_m (cos ((1/2) bLn (t)))? )
0 (1+e")

((1/4)r (a-ib) + (1/4) T (a+ib) + (1/2) T (a) ) (Eq. 25)

The upper and lower bounds of the middle function,

f,t-ha (cos ((1/2) bIn (v)))?

, inEq .25, areall real,
0 (1 +et)

not complex - valued. To see this, note fromEq. 24 and Eq .25 that

dt =

JW £+ (Cos ((1/2) bLn (t)))?

0 (et +et)

(1/2) ((1/4)r (a-ib) + (1 /4) T (a+db) + (1/2) T (a) ),

so that because the left - hand side of this equation is real,

and by consequence, its right - hand.

So, now we want to show the lower and upper

t—1+a Si 1 2) b L & 2
boundsforJm (ln(( / ) n ( )))
0

1+ et

o £-1l+a 2 2
aswedid in Eq. 25 forj £ (Cos ((1/ ) b Ln (t))) .
0 (1 +et)

dt,

Look at Eq. 22 :
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(cos ((1/2) bLn (t)))? . (cos ((1/2) bLn (1)))? . (cos ((1/2) bLn (t)))?
(cet + et) h (1 + et) h (et)

Replace (Cos ((1/2) b Ln (t) ))2 with (Sin ((1/2) bLn (t) ))2 above
(everything still holds, like in the argument we made in Eq . 22) ,
and integrate, like inEgs. 22-24. :

dt <

Jwt-m (sin ((1/2) b1In (t)))z

0 (et+et)

t12 (sin ((1/2) b1 (8)))® (et (sin ((1/2) pIn (0)))?
J: (1+et) < J; (et) (Eq .26)

Then :

The above Eq .26 has 3 parts, the left-hand side, themiddle,
and the right - hand side. We integrate, usingMathematica (for ease of use),

the left - hand side and the right - hand side, yielding the following :

(1/2) ((-1/4)r (a-ib) + (-1/4) T (a+ib) + (1 /2) T (a) ) <
_r t**2 (sin ((1/2) bIn (t)))? )

0 (1+et)

((-1/4)r (a-ib) + (-1/4) T (a+ib) + (1 /2) T (a) ) (Eq. 27)

Eg. 25 and Eq. 27 are now as follows :

(1/2) ((1/4) T (a-ib) + (1 /4) T (a+db) + (1 /2) T (a) ) =
J-mt-ha (cos ((1/2) bIn (t)))? )

0 (1+e®)

((1/4)r (a-ib) + (1 /4) T (a+ib) + (1 /2) T (a) ) (Eq. 28 a)

(1/2) ((-1/4)r (a-ib) + (-1/4) T (a+ib) + (1 /2) T (a) ) =
J-m t*2 (sin ((1/2) bIn (t)))? )
0 (1+et)

((-1/4)r (a-ib) + (-1/4) T (a+ib) + (1 /2) T (a) ) (Eq. 28Db)

Now, to demonstrate a contradiction, note thatEq .17 stated:
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jmt-“a (cos ((1/2) bIn (t)))? gt J-mt-1+a (sin ((1/2) bIn (t)))?

t t

0 l+e 0 l+e

o t1* (Cos ((1/2) bln (t)))?

Now substitute J-

0 1+ et
o £-1l+a : 2 2
dt insteadofj £ (Sln ((1/ ) bin (t))) into Eq. 27;
0 (1 +et)

o1 (cos ((1/2) b1n (8))?

we can do this because of the equality of J
0 1+ et

dt andJ\cm Ll (Sin ((1/2) bIn (t)))2

. dt concluded inEq .17 .
0 l+e

-l+a 2
Now, we insertht (Cos ((1/2) bin (8) )) intoEq .27 :
0

1+ et

(1/2) ((-1/4)r (a-ib) + (-1/4) T (a+ib) + (1/2) T (a) ) =
J-wt-“a (cos ((1/2) bLn (t)))? )

0 (1+et)

((-1/4)r (a-ib) + (-1/4) T (a+ib) + (1 /2) T (a) ) (Eq. 30)

(Note again that the expression in the middle of above Eq .30 is real,
therefore the right - hand side and the left -
hand side expressions in above Eq .30 are both real as well. )

Now substituteb = 0 in Eq . 30 above :

(1/2) ((-1/4)r (a-40)+(-1/4) T (a+20) + (1/2) T (a) ) =
rt_1+a (cos ((1/2) orn (t)))? )
0 (1+ef)

((-1/4)r (a-40) + (-1/4) T (a+i0) + (1 /2) T (a) ) (Eq. 31)

Thenbyb = 0, Eq .31 becomes :

(1/2) ((-1/4)r(a)+(-1/4)T(a)+(1/2)T (a)) =
o t—1+a
J; (1+et) <

((-1/4)r(a)+(-1/4)T(a) +(1/2) T (a) ) (Eq. 32)

((Cos ((1/2) 0 Ln (t)))2 = 1 forb = 0inEq. 31 and Eq .32)

dt (Eq.29)
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InEq .32, the expressions (1/2) ((—1/4) T (a) + (—1/4) T (a) + (1/2) T (a) ) =0,
andalso, theterm ((-1/4)T (a)+(-1/4)T (a)+(1/2) T (a)) = 0. Then,
by Eq .32, weget:

t-1+a
0x< r— < 0 (Eq. 33)
o

1+et)

Then, by the "Pinch" Theorem inmathematical analysis,
t—1+a t—1+a
0 < r— < 0 implies that r— =0 . Now,
o (L+ef) o (L+ef)

t—1+a
r— = 0 for all "a" in interval (0, 1) . The proof of this is:
o (1+et)

The above Eq. 33 is easily seen to yield a positive,

finite value for the integral, andwe see this since :

1 1 1 t—1+a t—1+a t—l+a ) t—1+a 0 t—1+a
< < — = < < =j—dtsj—dlts
+et 1+ et et et+ et 1+ et et 0 et+ et 01+ et

"~ t—1+a
j " dt (Eq. 34) (by integrating the previous inequality), which implies:
o e

o t—1+a o t—1+a t—1+a
J—dtsj—dltsf dt =
0 et+ et 01+ et o et

1 t—1+a o t—1+a
—T (a) sr—dlt <T (a) sincej —dt =
2 01+ et 0 et + et

1
— T (a) (useMathematica if the integration is too hard;

T (a) is the gamma function) . So,

1
since — T (a) is strictly greater than zero forallO<a<1 (like we said we were working

on this interval from the very first few lines of the paper inEq .1 and Eq . 2) P
-l+a

1
and since — T (a) < J.m—t , then the value of the integral in Eq. 33 is greater
2 0ol +e

than zero for all "a", contradictingEq .33. Therefore, inEq. 17, where it states that

dt ,

rt_ha (cos ((1/2) bLn (t)))? gt J-mt-ha (sin ((1/2) bLn (t)))?
0 1+ et

we see these two expressions are in fact,

0 1+ et

unequal. Since we have a deductive argument starting fromEq .1 without any errors,

then, this contradiction of Eq .17 by the argument leads us to conclude that
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the arbitrary zero fromEq .1 - Eq .2, seenasa = a +bi (as an assumption),

and lying hypothetically anywhere in the critical strip, does not exist.

Iwill be further researching on what exactly is

the cause of this anomaly in the critical strip; obviously,
there can be no zeros in the critical strip with my technique. However,
we see by other methods that are involved in the subject of the riemann

hypothesis analysis that zeros are supposed to exist on the critical line. So,
if you like this paper, please donate tomy paypal account; any amountwill

be more than helpful. My email for the paypal account is vkalaj@gmail.com,
and my name, as stated at the top of the paper, isViktor Kalaj.



