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Abstract

The theory consists of:
I. a clear formulation of the turbulence problem by

1. definition of a fluid continuum,

2. definition of a turbulent fluid continuum,

3. derivation, that Navier-Stokes-like equations cannot describe a turbulent fluid
continuum

II. solution of the turbulence problem by establishing the link between the theory of
deterministic fluctuating vector fields and stochastic vector fields in the sense of an
ensemble theory as a counterpart:

1. derivation of a deterministic equation system of coupled vector vortex and cur-
vature vector fields

2. derivation of a complete equation set for turbulent fluid movements

The formulation of geometrodynamics of turbulence does not need an existent local
thermodynamic equilibrium.

In the case of fluid turbulence there is no requirement for establish-
ing chaos theories.
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1. Introduction

Feynman[4]: “Nobody in physics
has really been able to analyze
it mathematically satisfactorily in
spite of its importance to the sis-
ter sciences. It is the analysis of
circulating or turbulent fluids.“

The description of turbulent movements within the framework of continuum me-
chanics turned out to be difficult since more than 165 years. However, laminar fluid
movements can be calculated by the known basic equations successfully confirmed in
experiments: equation of continuity, Navier-Stokes-Equations and energy equation.
The efforts, treating movements of turbulence in a similar way, must be considered
as failures. There are substantial reasons for believing, that the above equations
describing turbulent collective movements of non-homogenously distributed
molecular matter are inadequate. This was the situation that inspired the
idea, to explain the phenomenon of turbulence by stochastic methods. In that
context, particularly approaches of Kolmogorov are to be mentioned, which lead
to spectral energy distributions, assuming highly hypothetically, that turbulence is
statistically isotropical und homogeneous. Between them there is a wide range of
models with physically not well founded hypotheses. Overall, this leads to the state-
ment of Feynman cited at the beginning, whereupon not much has changed since then.

This situation is characterized in recent treatises as for example by Trinh, Khanh
Tuoc [6] in the following way:

“ the study of turbulence is immediately hampered by the surprising lack of a clear and
concise definition of the physical process. Tsinober (2001) has published a long list
of attempts at a definition by some of the most noted researchers in turbulence. The
most common descriptions are vague: ”a motion in which an irregular fluctuation
(mixing, or eddying motion) is superimposed on the main stream” (Schlichting 1960),
”a fluid motion of complex and irregular character” (Bayly, Orszag, Herbert, 1988)
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1. Introduction

or negative as in the breakdown of laminar flow (Reynolds’ experiment 1883). Some
of the definitions are quite controversial like Saffman’s (1981) ”One of the best
definition of turbulence is that it is a field of random chaotic vorticity” because the
words random and chaotic would imply that a formal mathematical solution, which
is necessarily deterministic, does not exist. Perhaps the most accurate definition
can be attributed to Bradshaw (1971) ”The only short but satisfactory answer to the
question ”what is turbulence” is that it is the general-solution of the Navier-Stokes
equation”. This definition cannot be argued with but it is singularly unhelpful since
no general solution of the NS yet exists 160 years after they were formulated.“

A definition of a continuum of such fluctuation elements is mathematically a
prerequisite deducing equations of motion in form of partial differential equations.
In physics one is often happy having numerical results which are approved for special
situations. This is the status of turbulence research assuming the turbulent fluid
as a continuum. The known fluiddynamic equations are experimentally approved
in the limiting case of laminar fluiddynamics but failed for the general turbulent
case, because there is no one to one mapping of a continuum and an associated
fluidelement set. The used equations are based on a hypothesis.

Fluctuation elements of the presented theory always form a dense point set.
The fluidelement movements are described by interacting vortex- and vector-
curvature fields. This is the consequence of the local movement of single turbulent
fluid elements composed to a turbulent fluid continuum.

The interrelations of the deterministic and an associated stochastic ensemble theory
of an unlimited number of in parallel existent deterministic systems enable a complete
equation set of turbulently moved continua. The formulation of stochastically fluc-
tuating processes of continua within the meaning of an ensemble theory is innovative
for physics and mathematics. The known Navier-Stokes-Equations are not integrated
in the complete equation system of turbulent moved fluids. The inclosed accellera-
tion field d~v

dt
of the associated momentum equation is not sufficiently described by the

usual Navier-Stokes equations and such the known energy equation, a composition of
Navier-Stokes euations and continuum equation, proves to be not correct.

The complete system of equations consists of 12 equations with 12 unknowns and
contains only variables of motion in form of the vector fields: velocity, vortex, cur-
vature and an accelleration field. So the developed theory of turbulence proves to
be a geometrodynamics in a 3+1 dimensional Euclidian Space. Thermodynamics
and matter distribution do not occur explicitly. These quantities depend on the ini-
tial and boundary conditions, alone and are over time uniquely linked to the motion
quantities. This theory of variables of motion is principally exact and is valid too,
if no local thermodynamic balance is existent. A smeared distribution of matter
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1. Introduction

over Space-Time results by evalution of the calculated velocity vector field and the
equation of continuity.
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Part I.

Formulation of the Turbulence
Problem
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2. A fluid can allways be
represented by a continuum

At every time, space points (~x) are assigned to fluid elements in a unique correspon-
dence. As this applies to every space point (~x) of the fluid field, the set of fluid
elements is seen as a continuum. A Continuum of fluid element points (simply called
fluid elements) is considered, where a fluid environment of non infinitesimal size is
uniquely allocated to every fluid element point. Two infinitesimally neighboring fluid
elements differ apart from their distance by their velocities and not quite identical
material distributions of their neighborhoods. The neighborhoods of two nearby fluid
elements overlap. A fluid element is shifted moving the material of its neighborhood.
Though the material of such a fluid element may have changed marginally after an
infinitesimal time interval tε, it can be identified principally by its prior material
status. As every molecule possesses its own identity, there has to be at least an in-
finitesimally greater difference of material distribution to the neighborhoods of other
fluid elements.
The neighborhoods exchange material with neighborhoods of adjacent fluid elements
and vary their thermodynamic state (a local thermodynamic state does not neces-
sarily exist). Their size is not infinitesimal, because a local thermodynamic state (if
physically existent) has to be detectable at least in thought experiment. The open
neighborhoods have equally sized spherical shapes, generally. Near a solid border
they are descibed by parts of spheres. Infinitesimally adjacent fluid elements possess
overlapping neighborhoods. In an ε-surrounding they move in parallel. So one ob-
tains a fluid, which is assumed to be a dense fluctuating point set, though there is
no continuous matter distribution in Space-Time. That means it is possible to follow
theoretically the history of every fluid element, though it has exchanged a lot of its
initial material altering its local thermodynamic state.
Recapitulated:
Every space point (~x) of the open point set of a considered fluid area is
at every time in unique correspondence to a fluid element. The fluid is an
abstract, dense set of fluctuating fluid elements, which do not generally correspond
to material points. A continuum of moved fluid elements is considered each uniquely
assigned to a neighborhood and a velocity.

~vtε =
~x2 − ~x1

tε
(2.1)
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2. A fluid can allways be represented by a continuum

The fluidelement first determined in space point ~x1 and tε-time later detected at ~x2 is
identified having at time t0 + tε in ~x2 the most similar material to that of ~x1. In this
connection it is remarqued, that parts of the individual particles or molecules may be
identified, too.

The accuracies of the considered motion quantities are determined by tε-measurement
processes tε characterising the accuracy. After a limiting process lim tε → 0 the fluid
elements move along with sufficiently often continuously differentiable trajectories
and a velocity continuum is constituted. The whole of the velocities create a velocity
vector field having rot(~v) 6= 0 generally.1 Though rot(~v) has dimension [1/sec], it
does not refer to a rotation of laminar flow.

2.1. The orthogonality of rot(~v) and ~v is a
consequence of the fluid continuum

A fluid continuum is characterized by

1. continuously differentiable velocities

2. parallel velocities in an ε− surrounding of a space point ~x

Considering without loss of generality a fluid movement of velocity ~v(~x0) = (vx, 0, 0)
in a space point ~x0 in cartesian coordinates, the velocity is described in an ε-
neighborhood and parallel to the x-coordinate as follows:

~v(~x) =

 vx(~x)
vy(~x)
vz(~x)

 =


vx(~x0)+

∂vx
∂x

∣∣∣
~x0

·∆x+ ∂vx
∂y

∣∣∣
~x0

·∆y + ∂vx
∂z

∣∣∣
~x0

·∆z + ...

∂vy
∂x

∣∣∣
~x0

·∆x+ ∂vy
∂y

∣∣∣
~x0

·∆y + ∂vy
∂z

∣∣∣
~x0

·∆z + ...

∂vz
∂x

∣∣∣
~x0

·∆x+ ∂vz
∂y

∣∣∣
~x0

·∆y + ∂vz
∂z

∣∣∣
~x0

·∆z + ...


The velocity components vy(~x) und vz(~x) osculate at the velocity ~v(~x0) = (vx, 0, 0)
spatially approaching (constant time t0),

vy(x0, y, z0) −→ vy(x0, y0, z0) = 0

vz(x0, y0, z) −→ vz(x0, y0, z0) = 0
.

1in english literature curl(~v) 6= 0 is used but in turbulence the name rot is more adapted as will
be seen
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2. A fluid can allways be represented by a continuum

That means especially, that all the partial derivations by y- or z-coordinate of 1. order
of vy(~x) and vz(~x) disappear in the point (x0, y0, z0).

lim
z→z0

∆vy
∆z

∣∣∣
~x0

= lim
y→y0

∆vz
∆y

∣∣∣
~x0

= 0

~x0 = (x0, y0, z0)

. (2.2)

Applying the differential quotients in the ~∇× -operator expresssed in cartesian coor-
dinates gives for the fluid velocity

( ~∇× ~v)|~x0 =

 0
∂vx
∂z
− ∂vz

∂x
∂vy
∂x
− ∂vx

∂y


|~x0

, ~v(~x0) = (vx, 0, 0) (2.3)

The orthogonality of ~∇× ~v⊥~v is a fundamental quality 23 and a necessary condition
for continuous fluid flow.

In this orthogonality velocity vector fields differ from deformation vector fields.

2this relation can not be found in literature.
3This is one reason why the known millenium prize question does not lead to a solution of the
turbulence problem. However the validity problem of the Navier-Stokes-equations is more fatal.
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3. Definition of a turbulent fluid

Trying to identify the state of movement of a fluid element in turbulent fluids by a
velocity ~vtε it should be recognized, that the state of movement is not yet determined,
as the path in every space point (except in turning points) is uniquely adapted by
an infinitesimal circle segment. In the infinitesimal neighborhood of a path point
the velocity is identified by an instantaneous axis of rotation ~ωtε and a radius vector
~rtε .1

~vtε = ~ωtε ×~rtε (3.1)

In a turbulent moved fluid the fluid elements move on curved trajectories in some
space time points having turning points with ~ωtε = 0 and ~btε = 0. The considered
vectorial motion quantities ~ωtε und ~rtε are determined by tε-measurement processes,
which are calculated later on by a limes process lim tε → 0. A fluid element originating
from the point ~x0 crossing ~x1 after the time tε reaches ~x2 after a further time tε.

~x0
tε−→ ~x1

tε−→ ~x2

By these 3 points a circle segment is uniquely drawn crossing point ~x1 with radius
vector ~rtε and speed of rotation ~ωtε . The local state of motion can not be described
by velocity only, neither statistically nor deterministically. 2

Thus the fluid element in the space-time-point (~x, t) is identified principally by the
contents of the matter of its neighborhood and state of movement expressed by ~ωtε
and ~rtε . In that way defined fluid elements move on sufficiently often continuously
differentiable trajectories. They lead considering a continuum of fluctuating fluid ele-
ments to multiply continuously differentiable vector fields of motion. The continuum
of moved fluid elements represent the turbulently collectiv movement of a discontin-
uously spaced Matter.
The field of turbulence is described by the two vector fields ~ωtε and ~btε ,

~btε = ~rtε/r
2
tε -curvature vector field. (3.2)

In addition, the results show that

~ωtε =
1

2
rot(~vtε). (3.3)

1That is why turbulence can not be uniquely identified by experiments of local velocity statistics.
2This statement contadicts that of [11]
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3. Definition of a turbulent fluid

rot(~v) has the meaning of a local rotation in the frame of turbulence. An infinitesimal
disturbance of stationary pipe flow leads to an change of the significance of rot(~v),
where rot(~v) does not correspond to a rotation initially. Whether starting motions
of turbulence are suppressed, depends on an existent viscosity. These decelerations
are generally weak. The beginning of turbulent movements avoid Newtonian friction
as well as pressure gradients by means of hereto orthogonal motions.

Figure 3.1.: Turbulences understood by Leonardo da Vinci

Vortex fields in turbulence (local rotation fields will be identified with vortex fields)
and radius fields may have turning points (~x, t) along the paths of the fluid elements,
which means ~ω = 0 und ~r = ∞. 3 In this case the velocities are to be calculated
by interpolation or extrapolation of the neighborhood, for example. In the theory
a further method will be shown. The fluid elements are accompanied by a moving
frame of ~ω,~b and ~v along their paths.
In the following it is outlined, how locally Lagrangian and Eulerian formulations
of fluid dynamics are reassembled in the turbulence theory. So deterministic
considerations are found via stochastic descriptions, which could be designated as
Lagrangian. Nevertheless, Lagrangian paths are calculated only after the determin-
istic turbulence field is determined. These relations will become clear in later chapters.

3The temporal and spatial neighborhood of a turning point does not have such singular properties.
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4. Why Navier-Stokes equations
cannot describe turbulence

This problem is best shown by the numerical time integration of the respectively used
momentum equation (Navier-Stokes equations or simplified versions). The situation
is characterized as follows:
for a single time step i one has calculated ∂~v

∂t
|i and tries the time integration by the

discrete difference sceme

~v(~x, ti+1) =
∂~v(~x, ti)

∂t
|∆ti + ~v(~x, ti). (4.1)

for every used space point. Usually numerical time-integrations via ∆~v = ∂~v
∂t
· ∆t

lead in relation to turbulence calculations to errors not be compensated by which ever
refined time steps are used. But in reality the velocity is composed by the two vector
fields vorticity ~ω and curvature vector field ~b with

~v(~x, t) = ~ω(~x, t)×
~b(~x, t)

b2
, radius vector ~r =

~b(~x, t)

b2
. (4.2)

This relation is a decisive reason for weather forcast problems of meteorology, too,
which cannot be solved by computer systems, regardless of their efficency. This
difficulty does not exist regarding laminar fluid dynamics. The explanation is as
follows:
The partial diffetrentiation ∂~v

∂t
is written

∂~v

∂t
=
∂~ω

∂t
×~r + ~ω× ∂~r

∂t
.

The numerical time evolution of ~vi =⇒ ~vi+1 arises calculating ~vi = ~ωi×~ri by means
of

~ωi+1 =
∂~ω

∂t
|i ·∆ti + ~ωi + ...

15



4. Why Navier-Stokes equations cannot describe turbulence

and
~ri+1 =

∂~r

∂t
|i ·∆ti +~ri + ...

to
~vi+1 =

(
∂~ω

∂t
|i ·∆ti + ~ωi

)
×
(
∂~r

∂t
|i ·∆ti +~ri

)
+ ...

i.e.

~vi+1 =

(
~ωi×~ri

)
+

(
∂~ω

∂t
|i ·∆ti×~ri+~ωi×

∂~r

∂t
|i ·∆ti

)
+

(
∂~ω

∂t
|i ·∆ti×

∂~r

∂t
|i ·∆ti

)
+ ...

respectively

~vi+1 = ~vi +
∂~v

∂t
|i ·∆ti +

(
∂~ω

∂t
|i×

∂~r

∂t
|i
)
· (∆ti)2+... (4.3)

∂~r
∂t

is derived as follows:
~b = ~r · (~b · ~b) (4.4)

=⇒
∂~b

∂t
= b2∂~r

∂t
+ 2~r

(
∂~b

∂t
· ~b
)

=⇒
∂~r

∂t
=

[
∂~b

∂t
− 2

~b

b2

(
∂~b

∂t
· ~b
)]
/b2.

In particular space-time points (~x, t) fluid elements may be in the proximity or
direct in a turning point, in which ~ω(~x, t) = 0 as well as ~b(~x, t) = 0 and such
~r(~x, t) = ~b/b2 = ∞ holds. This situation corresponds to an amendable singularity
and the velocity has to be calculated by interpolation or extrapolation of the near
space-time surrounding. So the temporal evolution term of 2nd order is vital
for turbulence calculations not becoming available with the known fluiddynamic
equation system. The with (4.1) mentioned velocity integration is not expedient.
Considering a complete turbulence equation system including the curvature vector
field ~b(~x, t) the temporal velocity integration results in the desired order. An
according complete equation system is derived in the following Part II.
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Part II.

Solution of the Turbulence
Problem
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5. Deterministic turbulent
mass-transport and its
stochastic formulation

ftε(t, ~x, ~ω,~r) =

∫
~ω′

∫
~r′

Wtε(t, ~x, ~ω,~r, ~ω
′, ~r′) · ftε(~x−∆~x, t− tε, ~ω′, ~r′)d ~ω′d~r′

m
∂

∂t
~ω− ~∇× ~a−1

2
~∇× ~q = 0

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0

5.1. Introduction

A stochastical ensemble-consideration of deterministic fields is understood as the ex-
amination of an unlimited number of comparable, parallelly existent systems. In
this case turbulently moved one phase fluids are examined considering statistical de-
liberations and its deterministic counterparts. That a linking of deterministic and
stochastic theory may be available and further more that out of this connection addi-
tionally important (sometimes otherwise not known) relations arise for deterministic
formulations, is shown in the following. This is discussed for a turbulent mass trans-
port.

5.2. The transition: stochastic theory ←→
deterministic theory

Every space-time-point (~x, t) a continuously differentiable fluid element distribution
over the motion quantities ~ωtε and ~rtε is assigned according to

18



5. Deterministic turbulent mass-transport and its stochastic formulation

ftε = ftε(~x, t, ~ω,~r). (5.1)

Indexing functions with tε it is automatically assumed that the included motion
quantities (~ω,~r) are assigned to a tε-measurement accuracy. The indexing of the
motion quantities may be omitted in the functions if the functions are accordingly
indexed.

After an execution of a lim tε → 0 process, such as

lim
tε→0

ftε(~x, t, ~ω, ~r) = f(~x, t, ~ω, ~r) (5.2)

f and (~ω,~r) are understood as results of an exact measuring process.

The change of motion quantities in point (~x, t)

(
~ω′tε(~x−∆~x, t− tε), ~r

′
tε(~x−∆~x, t− tε)

)
−→

(
~ωtε(~x, t), ~rtε(~x, t)

)
is controlled by the transition probability density Wtε = Wtε(~x, t, ~ω, ~r, ~ω

′, ~r′). 1

with

lim
tε→0

Wtε =δ(~ω,~r; ~ω′,~r′)

ftε(~x, t, ~ω,~r) =

∫
~r

∫
~ω

Wtε(~x, t, ~ω,~r, ~ω
′,~r′) · ftε(~x−∆~x, t− tε, ~ω′,~r′)d~ω′d~r′

∆~x =tε · ~ω′ ×~r′

. (5.3)

These equations characterize stochastic turbulence of the continuum in the frame of
an ensemble theory and represent a Markov Process with natural causality.

ftε is developed in (5.3) until the 1st order around (~x,t) =⇒

ftε(~x−4~x, t− tε, ~ω
′,~r′) = ftε(~x, t, ~ω

′,~r′)−
∂f ′tε
∂t
· tε−4~x · ~∇ftε(~x, t, ~ω

′,~r′) +O(tε
2)

(5.4)

1The otherwise in distribution theory used test functions in this connection have an immediate
physical meaning with the formulation of the transition probability density.
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5. Deterministic turbulent mass-transport and its stochastic formulation

with f ′tε = ftε(~x, t, ~ω
′,~r′) and one obtains

∫
~r

∫
~ω

Wtε [
∂f ′tε
∂t

+ ~ω′ ×~r′ · ~∇f ′tε ]d~ω
′d~r′ +O(tε

2) =

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′− ftε
tε

. (5.5)

lim tε → 0 applied to (5.5) leads to

∂f

∂t
+ ~ω ×~r · ~∇f = lim

tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′− ftε
tε

. (5.6)

The right side must contain the characteristics of the turbulent fluid.

lim
tε→0

∫
~r

∫
~ω
Wtεf

′
tεd~ω

′d~r′− ftε
tε

= F (5.7)

F has to be chosen such, that the deterministic vortex equations result under the
influence of the assumed acceleration field. Further on the ansatz

F =
1

2

[
~ω

ω2
· ~∇× ~q

]
f (5.8)

is shown precisely fulfilling this condition. Thus one obtains

∂f

∂t
+ ~ω ×~r · ~∇f =

1

2

[
~ω

ω2
· ~∇× ~q

]
f. (5.9)

Limiting ourselves to one system of the ensemble the distribution function f degener-
ates to a δ-function.

f → δ(~ω(~x,t),~r(~x,t); ~ω,~r) (5.10)

The indexing of quantities like ~ω(~x,t) by (~x, t) means the vector ~ω in the space-time
point (~x, t) 2 whereas ~ω(~x, t) represents the spatiotemporal field ~ω in dependence on
(~x, t).

It results in the key equation for the transition stochastic-deterministic

∂

∂t
δ + ~ω(~x,t) ×~r(~x,t) · ~∇δ =

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ . (5.11)

2That is the situation considering stochastically.
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5. Deterministic turbulent mass-transport and its stochastic formulation

Definition of the operator Ξ[...]:
From the vector ~A(~x,t) respectively the scalar function value f (~x,t) existing in the
space-time-point (~x, t) of the system a vector function respectively a scalar function
arises by the operator Ξ

Ξ

[
~A(~x,t)

]
= ~A(~x, t) (5.12)

respectively

Ξ

[
f (~x,t)

]
= f(~x, t) (5.13)

an appropriate field existing around the point (~x, t). The Operator Ξ[...] evokes this
functionality to “life“.
Accordingly the following relationships are noted:

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)d~ωd~r

]
= 1

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~ωd~ωd~r

]
= Ξ

[
~ω(~x,t)

]
= ~ω(~x, t)

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)~rd~ωd~r

]
= Ξ

[
~r(~x,t)

]
= ~r(~x, t)

(5.14)

or

Ξ

[∫
~r

∫
~ω

δ(~ω(~x,t),~r(~x,t); ~ω,~r)ω2~rd~ωd~r

]
= Ξ

[
ω2

(~x,t)~r(~x,t)

]
= ω2(~x, t)~r(~x, t). (5.15)

5.3. The deterministic equations of turbulence

From the general momentum equation

∂~v

∂t
+ (~v · ~∇)~v = ~q (5.16)

the vortex equation may be developed using the ~∇×-operator

∂

∂t
~ω− ~∇× (~v × ~ω)− 1

2
~∇× ~q = 0. (5.17)

The relations of deterministic and stochastic description are established the same
vortex equation opening up from the above key equation. In the following the method
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5. Deterministic turbulent mass-transport and its stochastic formulation

is presented designing the dual pair of deterministic vector equations from the key
equation

∂

∂t
δ + ~ω(~x,t) ×~r(~x,t) · ~∇δ =

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ. (5.18)

In this situation the vectors of the motion quantities may be pushed before and after
the differential operators. The Term

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ (5.19)

guarantees the finding of equation (5.17) and its dual one. It is

~v ⊥ ~ω ⊥ ~r. (5.20)

and setting
~a = ~v × ~ω (5.21)

this results in
~r ‖ ~a. (5.22)

Such ~a and ~r are linked as follows3

~r =
~a

ω2
. (5.23)

=⇒
with δ = δ(~ω(~x,t),~r(~x,t); ~ω,~r)

~ω(~x,t) ×~r(~x,t) · ~∇δ = −~r(~x,t) × ~ω(~x,t) · ~∇δ
= −~ω(~x,t) · ~∇×~r(~x,t)δ

= −
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~a(~x,t)δ.

3Symbols as ω, r, a, v etc. always mean amounts of the corresponding vectors.
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5. Deterministic turbulent mass-transport and its stochastic formulation

Inserting in (5.18) gives

∂

∂t
(
~ω(~x,t) · ~ω(~x,t)

ω2
(~x,t)

δ)−
~ω(~x,t)

ω2
(~x,t)

· ~∇× (~a(~x,t)δ)−
1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ = 0

=⇒
~ω(~x,t)

ω2
(~x,t)

·
[
∂

∂t
(~ω(~x,t)δ)− ~∇× (~a(~x,t)δ)−

1

2

[
· ~∇× ~q(~x,t)

]
δ

]
= 0

=⇒ ∂

∂t
(~ω(~x,t)δ)− ~∇× (~a(~x,t)δ)−

1

2

[
· ~∇× ~q(~x,t)

]
δ = 0

(5.24)

One obtains

Ξ

[∫
~r

∫
~ω

[
∂

∂t
(~ω(~x,t)δ)− ~∇× (~a(~x,t)δ)−

1

2

[
~∇× ~q(~x,t)

]
δ = 0

]
d~ωd~r

]
(5.25)

because integration and differentiation beeing exchangeable follows

[
∂

∂t
Ξ

[
~ω(~x,t)

]
− ~∇×Ξ

[
~a(~x,t)

]
− 1

2
~∇×Ξ

[
~q(~x,t)

]
= 0 (5.26)

and we have the first of the dual turbulence equations

∂

∂t
~ω− ~∇× ~a− 1

2
~∇× ~q = 0 (5.27)

accordingly
∂

∂t
~ω− ~∇× (~v × ~ω)− 1

2
~∇× ~q = 0.

Hereby the connection of stochastics and deterministics is achieved. From the key-
equation above a second equation, the dual one, may be derived.

Back to the initial equation (5.18)

∂

∂t
δ + ~ω(~x,t) ×~r(~x,t) · ~∇δ =

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ

Simple conversions give
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5. Deterministic turbulent mass-transport and its stochastic formulation

∂

∂t

(
~r(~x,t) ·

~r(~x,t)
r2(~x,t)

δ

)
+~r(~x,t) · ~∇× (~ω(~x,t)δ)−

~r(~x,t) ·~r(~x,t)
r2(~x,t)

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ = 0

−→ ~r(~x,t)

[
∂

∂t

~r(~x,t)
r2(~x,t)

δ + ~∇× (~ω(~x,t)δ)−
~r(~x,t)
r2(~x,t)

1

2

[
~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)

]
δ

]
= 0

(5.28)

Using the curvature vector field of the fluid trajectories ~b = ~r
r2

the equation is
written

∂

∂t
(~b(~x,t)δ) + ~∇× (~ω(~x,t)δ)−

1

2
~b(~x,t)

~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)δ = 0 (5.29)

and applying the operators Ξ arises

Ξ

[∫
~r

∫
~ω

[
∂

∂t
(~b(~x,t)δ) + ~∇× (~ω(~x,t)δ)−

1

2
~b(~x,t)

~ω(~x,t)

ω2
(~x,t)

· ~∇× ~q(~x,t)δ = 0

]
d~ωd~r

]
(5.30)

respectively

∂

∂t
Ξ[~b(~x,t)] + ~∇×Ξ[~ω(~x,t)]−

1

2
Ξ

[(
~b
~ω

ω2
· ~∇× ~q

)
(~x,t)

]
= 0. (5.31)

Such the second of the dual turbulence equations is approached

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0. (5.32)

Closing this dual equation system

∂

∂t
~ω− ~∇× ~a− 1

2
~∇× ~q = 0

∂

∂t
~b + ~∇× ~ω− 1

2
~b

[
~ω

ω2
· ~∇× ~q

]
= 0

~v = ~ω ×
~b

b2
, ~a = ~v × ~ω

(5.33)
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5. Deterministic turbulent mass-transport and its stochastic formulation

further equations are necessary besides the momentum equations. In the case of the
Navier-Stokes-equations

∂~v

∂t
+ (~v · ~∇)~v = −1

ρ
~∇p +~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

i.e.
~q = −1

ρ
~∇p +~g + ν∆~v + (ζ +

ν

3
) ~∇ ( ~∇ · ~v)

this could happen by simultaneously using the known continuity, energy as well as
state equation. But this proves not to be expedient. In chapter 7 the complete
equation system is presented and it is shown that the usual Navier-Stokes-equations
are not warranting the correct momentum balancing in turbulence.
The term

−1

2
~b

[
~ω

ω2
· ~∇× ~q

]
may lead to removable singularities in space-time-points (~x, t) when turning points
occur in the fluid element trajectories ~ω = 0 and ~b = 0 arising simultaneously. In
this case the whole term is calculated from its surroundings. The same shall apply
for the calculation of the velocity ~v. In such cases there is an alternative way shown
in chapter 7, too.
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6. Stochastic and deterministic
general vector fields

ftε(~x, t, ~E, ~B) =

∫
~B

∫
~E

Wtε(~x, t, ~E,~B, ~E
′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

m
∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

6.1. Introduction

Subsequently continuum fluctuations of general 3 dimensional vector fields ~A(~x, t)

with ~∇ × ~A 6= 0 are analysed. They have to be sufficiently often continuously
differentiable. Defining the vector fields ~E and ~B by

~E =∂ ~A/∂t 6= 0

~B = ~∇× ~A 6= 0
(6.1)

and owing to the exchangeability of the operators ∂/∂t und ~∇×

∂~B

∂t
= ~∇× ~E (6.2)

follows. This is a necessary consequence of the condition of the continuous differen-
tiability of ~A(~x, t). This relation is known according to the Maxwell Equations. The
for this purpose dual equation is subsequently beeing looked for. In an analogous
approach derivating the turbulence equations a stochastic continuum process in the
frame of an ensemble theory is formulated such that according to a deterministic
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6. Stochastic and deterministic general vector fields

theory the already known as well as the related dual equation arise with fluctuating
quantities ~E und ~B.

6.2. The Transition: stochastic theory ←→
deterministic theory

This transition takes place in the same way as the derivation of the dual turbulence
equation pair. Every space-time-point(~x, t) a continuously differentiable distribution
density ftε is assigned to the motion quantities ~Etε = ∂ ~Atε/∂t and ~Btε = ~∇ × ~Atε

with

ftε = ftε(~x, t, ~E, ~B). (6.3)

In the with tε or ε indexed functions ftε it is automatically assumed that the
included motion quantities (~E, ~B) are assigned to a tε-measurement accuracy. The
indexing of the motion quantities may be omitted in functions appropriately indexed
themselves.

After the execution of a lim tε → 0-process

lim
tε→0

ftε(~x, t, ~E, ~B) = f(~x, t, ~E, ~B) (6.4)

f and (~E, ~B) are understood in the sense of an exact measurement process.

The stochastic transport of the fluctuation quantities

(
~E
′
tε(~x−∆~x, t− tε), ~B

′
tε(~x−∆~x, t− tε)

)
−→

(
~Etε(~x, t), ~Btε(~x, t)

)
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6. Stochastic and deterministic general vector fields

happens by the transition probability density Wtε = Wtε(~x, t, ~E, ~B, ~E
′
, ~B
′
) with

lim
tε→0

Wtε =δ(~E, ~B; ~E
′
, ~B
′
)

ftε(~x, t, ~E, ~B) =

∫
~B′

∫
~E
′

Wtε(~x, t, ~E, ~B, ~E
′
, ~B
′
) · ftε(~x−∆~x, t− tε, ~E

′
, ~B
′
)d~E

′
d~B
′

∆~x =tε · ~E
′
×

~B
′

B′2
and ~E

′
×

~B′

B′2
= velocity of propagation.

(6.5)

These equations define stochastic continuum fluctuations of the quantities ~E und ~B in
the sense of an ensemble-theory and represent a Markov Process of natural causality.
The test-functions of distribution theory obtain by this formulation of a transition
probability density Wtε an immediate physical meaning.

ftε is developed until the 1st order about (~x,t) =⇒

ftε(t− tε, ~x−4~x, ~E
′
, ~B
′
) = f ′tε −

∂f ′tε
∂t
· tε−4~x · ~∇f ′tε +O(tε

2)

f ′tε = ftε(~x, t, ~E
′
, ~B
′
)

(6.6)

und one gets

∫
~E

∫
~B

Wtε

[
∂f ′tε
∂t

+ ~E′×
~B′

B′2
· ~∇f ′tε

]
d ~E′d ~B′+O(tε

2) =

∫
~B

∫
~E
Wtεf

′
tεd

~E′d~B
′
− ftε

tε
. (6.7)

By the process tε → 0 Wtε degenerates to a δ-function:

lim
tε→0

Wtε = δ(~E, ~B; ~E′, ~B′) (6.8)

lim tε → 0 applied leads to

∂f

∂t
+ ~E×

~B

B2
· ~∇f = lim

tε→0

∫
~E

∫
~B
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
. (6.9)

Recovering equation (6.2) after the transition to deterministic consideration the ex-
change term has to vanish, in this case.
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6. Stochastic and deterministic general vector fields

lim
tε→0

∫
~B

∫
~E
Wtεf

′
tεd
~E
′
d~B
′
− ftε

tε
= 0. (6.10)

This link is an integral part of the considered stochastic process.

Limiting ourselves to one system of the ensemble the function f(~x, t, ~E, ~B) in the
space-time-point (~x, t) degenerates to a δ−function

f(~x, t, ~E, ~B) −→ δ(~E(~x,t), ~B(~x,t); ~E, ~B)-function. (6.11)

From equation (6.9) arises the key-equation

∂

∂t
δ + ~E(~x,t) ×

~B(~x,t)

B2
(~x,t)

· ~∇δ = 0 . (6.12)

Respectively section 5.2 the Ξ[...]-operator is inserted as follows

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~B, ~E)~Bd~Bd~E

]
= Ξ[~B(~x,t)] = ~B(~x, t)

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~B, ~E)~Ed~Bd~E

]
= Ξ

[
~E(~x,t)

]
= ~E(~x, t)

(6.13)

or

Ξ

[∫
~E

∫
~B

δ(~B(~x,t), ~E(~x,t); ~b, ~E)

(
B2

E2
·~E
)
d~Bd~E

]
= Ξ

[
B2

(~x,t)

E2
(~x,t)

·~E(~x,t)

]
=
B2(~x, t)

E2(~x, t)
·~E(~x, t),

(6.14)

developing the deterministic equations from the key equation.

6.3. The deterministic fluctuation-equations

The key-equation (6.12) represents the interface for the transition of stochastic to de-
terministic consideration. From the perspective of statistics over the states of move-
ment of the parallelly assumed deterministic processes in the respective point (~x, t)

one is confined to a single system and such to a single state of motion (~E(~x,t), ~B(~x,t)).
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6. Stochastic and deterministic general vector fields

In this situation the vectors of the motion quantities may be pushed before and behind
the differential operators

~E(~x,t) ×
~B(~x,t)

B2
(~x,t)

· ~∇δ = −
~B(~x,t)

B2
(~x,t)

× ~E(~x,t) · ~∇δ

= −
~B(~x,t)

B2
(~x,t)

· ~∇× ~E(~x,t)δ

Further more there is

∂

∂t
(
~B(~x,t) · ~B(~x,t)

B2
(~x,t)

δ)−
~B(~x,t)

B2
(~x,t)

· ~∇× (~E(~x,t)δ) = 0

=⇒
~B(~x,t)

B2
(~x,t)

· [ ∂
∂t

(~B(~x,t)δ)− ~∇× (~E(~x,t)δ)] = 0

=⇒ ∂

∂t
(~B(~x,t)δ)− ~∇× (~E(~x,t)δ) = 0.

(6.15)

Now the vector fields of the motion quantities (~E(~x,t), ~B(~x,t)) of the one determinstic
system are created about the point (~x, t) and such the transition to the deterministic
equations of the one system has succeeded.

One obtains

Ξ

[∫
~B

∫
~E

[
∂

∂t
(~B(~x,t)δ)− ~∇× (~E(~x,t)δ) = 0

]
d~Ed~B

]
. (6.16)

As integration and differentiation are exchangeable =⇒

∂

∂t
Ξ[~B(~x,t)]− ~∇×Ξ[~E(~x,t)] = 0 (6.17)

and it results in the 1.st of the dual fluctuation equations

∂

∂t
~B− ~∇× ~E = 0. (6.18)

Hereby the stochastic-deterministic connection is established.

Back to the key-equation (6.12)

∂

∂t
δ + ~E(~x,t) ×

~B(~x,t)

B2
(~x,t)

· ~∇δ = 0
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6. Stochastic and deterministic general vector fields

one obtains by simple conversion

∂

∂t

(
~E(~x,t) ·

~E(~x,t)

E2
(~x,t)

δ

)
+ ~E(~x,t) · ~∇×

( ~B(~x,t)

B2
(~x,t)

δ

)
= 0

∂

∂t

(
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)δ

)
+ ~∇× (~B(~x,t)δ) = 0

(6.19)

and

Ξ

[∫
~B

∫
~E

[
∂

∂t

(
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)δ

)
+ ~∇× (~B(~x,t)δ) = 0

]
d~Ed~B

]
(6.20)

respectively

∂

∂t
Ξ

[
B2

(~x,t)

E2
(~x,t)

· ~E(~x,t)

]
+ ~∇×Ξ[~B(~x,t)] = 0. (6.21)

So we have the second of the two dual equations

∂

∂t
(
B2

E2
· ~E) + ~∇× (~B) = 0. (6.22)

The result is recapitulated by the following equation system:

∂

∂t
~B− ~∇× ~E = 0

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0

~E×
~B

B2
= propagation speed

(6.23)

with |~E × ~B
B2 | ≤ |~E| · |

~B
B2 |. I.e. E2

B2 is not the quadratic propagation speed. Inter-
estingly, this only becomes clear after the involvement of the stochastic ensemble
theory.

The equation system (6.23) is in such general terms that the physical significance
depends on the interpretation of the starting field ~A, the boundary conditions as well
as on the initial conditions. Hereunder, a deformation vector field, the velocity vector
field of turbulence motions or the fluctuations of any other continuously differentiable
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6. Stochastic and deterministic general vector fields

vector field may be understood. These equations possess with boundary- and suitable
initial conditions exactly one solution after the theorem of Cauchy-Kowalewskaja
[2]. This statement is at first restricted to the calculation of the fields ~E and ~B.
Calculating the field ~A with the mere knowledge of

∂ ~A

∂t
= ~E (6.24)

is not possible in all cases. A negative example is the calculation of ~v with the
knowledge of ∂~v

∂t
related to turbulent velocity fluctuations as shown in chapter 7.

However, in this case these relations are applied completing the turbulence equations.
The particular definition of turbulence fluctuation elements (chapter 2) makes this
problem almost vividly comprehensible.
Considering turbulent motions this can be done from a different perspective. With
the equation system (6.23) the motion quantities

~E =
∂

∂t
~v and ~B = ~∇× ~v

are transported with the propagation speed

~v = ~E×
~B

B2
.

The equation system (5.33) describes the mass transport by the velocity ~v. In
consideration of ~b = ~a

~v2 (5.33) may be formulated omitting the viscosity and
assuming ~∇× ~q = 0 as follows:

∂

∂t
~ω− ~∇× ~a = 0

∂

∂t

(
~a

v2

)
+ ~∇× ~ω = 0

~v = ~ω ×
~b

b2
, ~a = ~v × ~ω, ~v = propagation speed

(6.25)

In doing so ~v ⊥ ~ω ⊥ ~a holds. The equations (6.23) and (6.25) do not formally differ
apart from orthogonality conditions. But it is not expected, that the fluctuations
generated by a conservative accelleration field ( ~∇ × ~q = 0) may describe hydrody-
namic turbulences. This is discussed in chapter 7.
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6. Stochastic and deterministic general vector fields

6.3.1. The vacuum Maxwell Equations

The propagation speed having the constant amount of light velocity one obtains
the known equations of vacuum-electrodynamics in the coordinate system of the ob-
server:

∂

∂t
~B− ~∇× ~E = 0

1

c2
∂

∂t
~E + ~∇× ~B = 0 mit ~E ⊥ ~B

~E×
~B

B2
= ~c = propagation speed of light.

(6.26)

Hereby a formal analogy is established between electrodynamics and turbulent fluid
dynamics. It is only based on the analogy of the propagation of the motion quantities
(~E, ~B) and ( ∂

∂t
~v, ~∇ × ~v). But a turbulent mass transport with the local velocity ~v

cannot be sufficiently described in this way as stated in chapter 7.

So the electrodynamic equations of vacuum are generally derived, too. Usually, they
are seen in the above equations with −~E. It is more than pure supposition, that
they describe properties of space-time without a unification of General Relativity
and electromagnetic field in vacuum having succeeded, though many physicists not
least Einstein [3], Jordan [5] and many others having endeavoured.

There is still the explanation of the associated initial field ~A it generally hap-
pening in the frame of vector potential considerations, without recognizing ~A as
definite physical object. Only by a direct comprehension of the vector potential the
electromagnetic field may be explained without means of mechanical quantities.1

1Electrodynamics is introduced in physics via mechanical effects.
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7. The complete equation system
of Turbulence

~E +
1

2
~∇~v2 − 2~v × ~ω = ~q

———————————————–
∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F = −2 ~∇× ~ω mit ~F =

4ω2

E2
· ~E

7.1. Introduction

For a fluctuating continuum field

d

dt
~v(~x, t) =

∂~v

∂t
+ (~v · ~∇)~v = ~q(~x, t) (7.1)

may be formally comprehended as a momentum equation. As soon as hydrodynamics
is involved where a local thermodynamic balance is assumed, the Eulerian equations

~q
?
= −1

ρ
~∇p (7.2)

are noted with the indication of the 2nd Newtonian law. They are only justified under
restrictive rules like incompressibility of fluids or 1

ρ
~∇p = ~∇h (h=spec. enthalpy)

and or negligible rubbing viscosity. So only limiting cases of fluid dynamics are
characterized.

But generally, ~∇×~q 6= 0 is to be presumed. ~q is in contrast to Newtonian mechanics
a non-conservative acceleration field. ~q has transversal and longitudinal parts

~q = ~q⊥ + ~q‖. (7.3)
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7. The complete equation system of Turbulence

The same applies for the velocity field ~v

~v = ~v⊥ + ~v‖ = ~ω × ~R. (7.4)

The disassembly of the velocity field is adequately taken into account by the devel-
opment of the dual turbulence equation system. In the momentum equation (7.1) 12
unknowns are “hiddenly“ contained and with the turbulence equation only 9 coupled
equations are available. For the field ρ~q a disassembly in longitudinal und transversal
part has to be considered, too.

ρ
d

dt
~v(~x, t) = ρ~q = (ρ~q)⊥ + (ρ~q)‖ (7.5)

Using the Navier-Stokes-equations this leads to

ρ~q = (ρ~q)⊥ + (ρ~q)‖
?
= − ~∇p + ρ ·~g + η∆~v + (ξ +

η

3
) ~∇ ( ~∇ · ~v)

=⇒ 1

(ρ~q)⊥
?
= −η ~∇× ~∇× ~v (7.6)

and

(ρ~q)‖
?
=− ~∇p + ρ · ~g + (ξ + η

4

3
) ~∇ ( ~∇ · ~v).

~g =earth acceleration
(7.7)

As turbulent motions of sufficiently high reynolds number create negligible
viscosity effects and on the other hand ~q⊥ represents the decisive propulsion of the
vortex motions turbulences are not correctly calculated by the usual equation system
consisting of Navier-Stokes-equations, equation of continuity and energy equation.
Equation (7.6) can not be correct. ~q‖ contributes nothing to the propulsion of the
vortex motions. The turbulent dissipation can not be attributed to viscosity but
to the matter exchange of the fluid elements and involved thermodynamic changes
of state, if a local thermodynamic state is possible. Then the turbulent dissipation
decisively decomposes the kinetic energy. =⇒

ρ~q = (ρ~q)⊥ + (ρ~q)‖ 6= − ~∇p + ρ ·~g + η∆~v + (ξ +
η

3
) ~∇ ( ~∇ · ~v) (7.8)

1∆~v = ~∇ ( ~∇ · ~v)− ~∇× ~∇× ~v
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7. The complete equation system of Turbulence

The equations, often called conservation laws [1]( Navier-Stokes-equations, equation
of continuity and energy equation), do not meet these requirements for turbulence
with the exception of the equation of continuity.

7.2. The composition of the complete equation
system

In the turbulence equations (5.33) the viscous terms according to high reynolds num-
bers may be omitted whereas for sufficienly small reynolds numbers (laminar motions)
they obtain significance.

The equation system

∂~v

∂t
+

1

2
~∇~v2 − 2~v × ~ω = ~q (7.9)

∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q (7.10)

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
(7.11)

with

~v = ~ω ×
~b

b2 , ~a = ~v × ~ω, ~∇× ~v ⊥ ~v (7.12)

is not complete and as the Navier-Stokes-equations as momentum balance are refuted,
the usual energy equation, derived from Navier-Stokes-equations and equation of
continuity, is rejected, too. So the customarily for completion used energy equation,
equation of continuity and state equation can not fill this gap.

There is the possibility observing the evolution of the velocity field not only by mass
transport via the equations (7.9), (7.10) and (7.11) but via the progress of their
fluctuation quantities ∂~v

∂t
and ~∇× ~v, too. Assuming the equation system (6.25)

∂

∂t
~B− ~∇× ~E = 0 (7.13)

∂

∂t

(
B2

E2
· ~E
)

+ ~∇× ~B = 0 (7.14)

~E×
~B

B2
= propagationspeed (7.15)

with

|~E×
~B

B2
| ≤ |~E| · |

~B

B2
|
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7. The complete equation system of Turbulence

and
~E =

∂~v

∂t
and ~B = ~∇× ~v, as well as~F =

B2

E2
· ~E,

one obtains the further equation

∂

∂t
~F + 2 ~∇× ~ω = 0 . (7.16)

Equation 7.13 with ~B = ~∇× ~v = 2~ω results in

∂

∂t
2~ω− ~∇× ∂~v

∂t
= 0.

It corresponds to (7.10) on account of

~∇× ∂~v

∂t
= 2 ·

(
~∇× ~a +

1

2
~∇× ~q

)
= 2 · ∂

~ω

∂t

with

~v = ~ω ×
~b

b2
,

~a = ~v × ~ω,

~v ⊥ ~∇× ~v

~E =
∂~v

∂t
~E = 4ω2~F

−1
.

The invers vector respectively the scalar product means ~F
−1

= ~F/~F
2

=⇒ ~F
−1
·~F = 1.

This corresponds to the relation of a curvature vector ~b and its associated radius
vector ~r of a continuously differentiable trajectory in one point (~x, t) with ~b ·~r = 1.

The motion of a turbulence field is characterised by a vortex field ~ω(~x, t) and a
curvature vector field2 ~b(~x, t).

2Generally, one meets in physics curvature tensor fields at least of 2nd degree as in deformation
theory or General Relativity.
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7. The complete equation system of Turbulence

So one obtains the complete equation system

~E +
1

2
~∇~v2 − 2~v × ~ω = ~q

———————————————–
∂

∂t
~ω− ~∇× ~a =

1

2
~∇× ~q

∂

∂t
~b + ~∇× ~ω =

1

2
~b

[
~ω

ω2
· ~∇× ~q

]
∂

∂t
~F = −2 ~∇× ~ω with ~F =

4ω2

E2
· ~E

. (7.17)

At this a pairwise orthogonality of the vectors (~v, ~ω, ~b) i.e.: ~v ⊥ ~ω , ~v ⊥ ~b , ~b ⊥ ~ω
exists. Pursueing the trajectory of a fluid element beeing possible only after the
calculation of the deterministic turbulence field the trajectory is accompanied by
a frame of ~v, ~ω and ~b except in points where ~ω = 0 and ~b = 0 (turning points).
Nevertheless, in this case ~v 6= 0 has to be otherwise the turbulence has come to an
end.

7.3. Comments on the application of the complete
equation system

On account of the theorem of Cauchy-Kowalewskaja [2] a unique solution is existing.
The equation system may be numerically solved for the fields ~ω, ~b, ~q and ~E = ∂~v

∂t

(this is treated as an independent field as well as ~ω,b und ~q) simultaneously obtaining
the fields ~a and ~v. The special approach of [10] enables 2 times continuously differen-
tiable solutions not meaning analytical results. The order of differentiability may be
principally driven forward. This particularly goes at the expense of the calculation
effort.
Numerically solving this equation system [10] inflexible difference schemes are for-
bidden as beeing usual according to DNS-calculations (Direct Numerical Simula-
tions related to Navier-Stokes-, continuum- and energy equation), as in the above
equation system from the field environment removable singularities of ~v = ~ω × ~b

b2 ,
1
2
~b

[
~ω
ω2 · ~∇ × ~q

]
and (2~ω)2~F

−1
= ∂~v

∂t
in different space-time-points (~x, t) are to be

recognized. This outcome is a result of possible turning points of the fluid element
trajectories leading to simultaneous values of ~ω = 0 and ~b = 0. Die fineness of the
time discretisations is determined by the vortex field ~ω.
The in some turbulence models mentioned space- and time-scaling in this theory is
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7. The complete equation system of Turbulence

led back to the fluctuations of curvature fields ~b and vortex fields ~ω. Quantitative
dependencies become accessible through numerical calculations.
Though friction losses according to heavy turbulent motions (high reynolds numbers)
may be omitted the kinetic energy density may significantly decrease. Thus a part
has to be converted into inner energy of thermodynamics if a local thermodynamic
balance is existent. It is recalled, that turbulent fluid motions are characterized the
surroundings of fluid elements continuously exchanging their matter and thus their
thermodynamic state quantities, too.
The equation system (7.17) stands out only consisting of motion quantities, i.e. ve-
locities and their temporal and spatial differentiations, a vector curvature field, its
assigned vortex field and an abstract accelleration field ~q. Mass distributions respec-
tively densities and thermodynamic quantities as pressure and inner energy do not
appear. This fact finds its application in the general-relativistic considerations, too.
The density distributions may be calculated by subsequent evaluation via the known
velocity fields and the equation of continuity

∂

∂t
ρ = −~∇ · (ρ~v). (7.18)

The complete turbulence equation system may be solved even if no local thermody-
namics is existent. Then the subsequent evaluation is limited to density calculations.
One obtains the thermodynamic pressure distribution if existent by the subsequently
calculated density field ρ and the accelleration field ~q assuming

(ρ~q)‖ = − ~∇p + ρ~g + (ξ + η
4

3
) ~∇ ( ~∇ · ~v). (7.19)

via Poisson-equation 3 :

∆p = −~∇ · (ρ~q) + ~∇ · ρ~g + ~∇ · (ξ + η
4

3
) ~∇ ( ~∇ · ~v). (7.20)

At high reynolds numbers

∆p = −~∇ · (ρ~q) + ~∇ · ρ~g (7.21)

is certainly sufficient. But it is not obvious, whether (ρ~q)‖ may be represented
this way. Upon positive comparison density- and pressure evolution are determined
without knowledge of a related state equation. Knowing the state equation all
desired thermodynamic state quantities of a single-phase system result. On the other
hand a physical process is to be found to create the used inital conditions.

3The transversal part (ρ~q)⊥ disappears with divergence formation
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7. The complete equation system of Turbulence

The Turbulence depends on an initially assumed motion field(
~ω(~x, t0), ~b(~x, t0),

∂~v

∂t
|t0
)

=⇒ ~q(~x, t0),
4 (7.22)

determining the further course, alone. Evaluating ~q(~x, t0) happens by summation
of the terms in the momentum equation. An interaction of geometrodynamics and
thermodynamics, maybe assumed in accordance with the Navier-Stokes-equations,
does not apply. The geometrodynamics coincidently determines turbulent motion
and thermodynamics (pressure, density etc.). But this turbulent geometrodynamics
is possible too , if no local thermodynamic equilibrium is existent.

4Inserting in equation (7.9)
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8. Conclusion

With the installation of the equation system (7.17) a geometrodynamics of turbulence
is expressed only obtaining motion quantities i.e. it only consists of velocities and
their time and space derivatives. A corresponding statement is made for their initial-
and boundary conditions. Special material properties of a fluid (that are the state
variables of thermodynamics) may only influence solutions via initial- and boundary
conditions. Initial- and boundary conditions determine uniquely the space- and
time-scaling of the turbulence field. Thus it may be important to formulate a suitable
process of the genesis of such initial conditions (for example the infinitesimal distur-
bances of the stationary fluid motion by infinitesimal thermodynamic fluctuations as
the beginning of turbulence).

The formulation of the geometrodynamics of turbulence does not need an ex-
istent local thermodynamic equilibrium.

In the case of fluid turbulence there is no requirement for establishing chaos
theories.
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