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Abstract

The main purpose of this paper is to study and investigate certain results concerning
the (σ, τ)-generalized derivationD associated with the (σ, τ)-derivation d of semiprime and
prime rings R, where σ and τ act as two automorphism mappings of R. We focus on the
composition of (σ, τ)-generalized derivations of the Leibniz’s formula, where we introduce
the general formula to compute the composition of the (σ, τ)-generalized derivation D of
R.
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1 Introduction and Preliminaries

Ring hypothesis is a masterpiece of scientific unification, bringing together a several branches
of the subject and offering a capable mechanism with which to consider issues of impressive
verifiable and numerical significance. Rings with derivations are not the kind of subject that
experiences colossal transformations or great leaps in methodology. Be that as it may, this
subject has been subject to the scrutiny of numerous creators in the last 70 years, in particular
in terms of the connections between derivations and the structures of rings. The hypothesis
of derivations and automorphisms of affiliated rings are a particular milestone in the advance-
ment of classical Galois Hypothesis (cf. Suzuki [31] and L.Taelman [31]) and the hypothesis of
invariants.
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Commutative ring theory is significant insofar as it is one of the foundations of algebraic
geometry and complex analytic geometry. The study of generalized derivations of partially
ordered set has its roots in the study of the Krull dimension of rings and modules, where the
concept of Krull dimension of commutative rings was originally developed by E. Noether and
W. Krull in the 1920s.

Following [27], the fundamental relations between the operations of derivation and those of
the addition and multiplication of functions had been recognized for some considerable time
because of the perception of the derivative. These relations were used when it was a construct
that the operation of differentiation of mappings on the smooth diversity with considerations to
a given tangent field not just has the regular properties of differentiation save also conversely,
the operation can define the tangent field as fully characterized. Subsequently, the tangent
bundle in terms of sheaves of functions could also be reliably defined. It is extremely active
the perception of the ring with derivation and has a highly significant role in the integration of
analysis, algebraic geometry and algebra. From the rule of common experience, the idea of a
Picard-Vessiot approach to the Galois concept of linear regular differential equations (see van
der Placed and Singer [28] for information). Moreover, that the concept covered derivation in
its inventory of tools. The classical operation of differentiation of monotony on sorts gave us
the perception of differentiation of singular chains on types which is a fundamental notion of
the topological and algebraic principle of homology. Differential algebra, which represented a
new branch of algebra, was first introduced in the 1950s through the work of Ritt [44] and,
in 1973, Kharchenko [30], who wrote the classical texts on differential algebra. The search
for derivations in rings actually began many decades ago, but it was only after Posner [31],
who in 1957 established two very striking results relating to derivations of prime rings, that
this field of study gained a particular impetus. A common question is that of why should
derivations should be studied. Initially, we used derivations of rings to help us gain a better
understanding of rings, and in particular a description of the structure of rings. For instance,
a ring is commutative if, and only if, the only inner derivation of the ring is zero. Also,
derivations can be helpful in relating a ring to the set of matrices with entries in the ring
(see [23]). Additionally, derivations can play a significant role in determining whether a ring is
commutative or otherwise (see [5, 11,13–15,18] and [45]).

Derivations can be useful in other fields. For example, they play a significant role in the
calculation of matrix eigenvalues (see [17]), which is important in mathematics and other sci-
ences, business, engineering and quantum physics (see [19]). Derivations can be added and
subtracted and still produce a derivation, but when we compose a derivation with itself we do
not necessarily get a derivation.

Let R be an associative ring. A map d : R → R is a derivation of R if d is additive and
satisfies the Leibnitz’ rule: d(ab) = d(a)b+ad(b) for all a, b ∈ R. A simple example is, of course,
the usual derivative of various algebras consisting of differentiable functions. Basic examples
in noncommutative rings are, however, quite different.

Note that [a, xy] = [a, x]y+x[a, y] for all a, x, y ∈ R. For a fixed a ∈ R, we define d: R→ R
by d(x) = [x, a] for all x ∈ R. Function d is additive and d(xy) = [xy, a] = x[y, a] + [x, a]y =
xd(y) + d(x)y for all x, y ∈ R. Thus, d is referred to as an inner derivation of R associated
with a, and is generally denoted Ia. It is obvious that every inner derivation on a ring is a
derivation; however, one can find plenty of examples of derivations which are not inner.

Throughout the current paper, R will denote an associative ring with a center Z(R). Any
x, y ∈ R the bracket symbol, [x, y], represents the commutator xy − yx and for a non-empty
subset S of R, whilst the set of all commutators of elements of S will be written [S, S]; a
similar convention is adopted for xoy = xy + yx. We will always use the commutator formulae
[x, yz] = y[a, z] + [x, y]z and [xy, z] = x[y, z] + [x, z]b for x, y, z ∈ R. Also, let σ, τ be any
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two endomorphisms of R. For any x, y ∈ R, we set [x, y]σ,τ = xσ(y) − τ(y)x and (xoy)σ,τ =
xσ(y) + τ(y)x for all x, y ∈ R.

Recall that the ring R is prime if xRy = 0 implies x = 0 or y = 0, and semiprime if xRx = 0
implies x = 0. In fact, a prime ring is semiprime, but the converse is not true in general. Given
an integer n > 1, the ring R is said to be (n-torsion free) if for x ∈ R nx = 0, which implies
x = 0. An additive mapping d: R → R is called a derivation if d(xy) = d(x)y + xd(y) for
all x, y ∈ R. Let σ and τ be two automorphisms of R. An additive mapping d: R → R is
called a (σ, τ)-derivation if d(xy) = d(x)σ(y) + τ(x)d(y) holds for all x, y ∈ R. Of course,
a (1, 1)-derivation where 1 is the identity map of R is a derivation. An additive mapping
D : R → R is called a generalized derivation if there exists a derivation d : R → R such that
D(xy) = D(x)y + xd(y) holds for all x, y ∈ R. Obviously, every derivation is a generalized
derivation of R, but the converse is not true in general. A significant example is a map of
the form D(x) = ax + xb, where for some a, b ∈ R such generalized derivations are called
inner. Generalized derivations have been primarily studied in operator algebras; therefore, any
investigation from an algebraic point of view might be interesting in itself (see for example [45]
and [35]). In this way, generalized derivation covers both the concepts of derivation and the
left multiplier of R.

Inspired by the definition of (σ, τ)-derivation, the notion of generalized derivation was ex-
tended as follows: let σ, τ be two automorphisms of R. An additive mapping D : R → R is
called a generalized (σ, τ)-derivation of R if there exists a (σ, τ)-derivation d : R→ R such that
D(xy) = D(x)σ(y) + τ(x)d(y) for all x, y ∈ R. Of course, a generalized (1,1)-derivation is a
generalized derivation on R, where 1 is the identity mapping on R. A mapping d : R→ R is said
to be centralizing if [d(x), x] ∈ Z(R) holds for all x ∈ R. In the special case when [d(x), x] = 0,
the mapping d is said to be commuting on R. Furthermore, a mapping d: R → R is said to
be (σ, τ)-centralizing (resp. (σ, τ)-commuting) if [d(x), x]σ,τ ∈ Z(R) (resp.[d(x), x]σ,τ = 0) holds
for all x ∈ R. Of course, a (1, 1)-centralizing (resp. (1, 1)-commuting) mapping is a centralizing
(resp. commuting) on R.

In fact, there are some applications of (σ, τ)-derivations which can help to develop an
approach to deformations of Lie algebras, and which have various applications in modelling
quantum phenomena and in the analysis of complex systems. The map has been extensively
investigated in pure algebra. Recently, it has been treated for Banach algebra theory.

There are several results in the existing literature that deal with centralizing and commuting
mappings in rings. The study of centralizing mappings was first introduced by E. C. Posner [24],
who stated that the existence of a nonzero centralizing derivation on a prime ring forces the
ring to be commutative (referred to as Posner’s Second Theorem). In an attempt to generalize
the above result, J. Vukman [25] confirmed that if R is a 2-torsion free prime ring and d:
R→ R is a non-zero derivation such that the map x [d(x), x] is commuting on R, then R is
commutative.

M. J. Atteya [16] gave the proof that if R is a 2-torsion free semiprime ring and d : R→ R
is a derivation of R such that dn(x ◦ y) ± (x ◦ y) ∈ Z(R) for all x, y ∈ R, then there exists C
and an additive mapping ξ: R→ C such that d(x) = λx+ ξ(x) for all x ∈ R, where n is a fixed
positive integer. Ö. Gölbaşı and E. Koç [21] proved that (f, d) is a generalized (σ, τ)-derivation
of a prime ring R with char(R) 6= 2. If af(x) = 0 for all x ∈ R, then a = 0 or d = 0. M.
Ashraf, A. Khan and C. Haetinger [12] showed that under certain conditions for the prime ring
R, every Jordan (σ, τ)-higher derivation of R is a (σ, τ)-higher derivation of R. B. Dhara and
A. Pattanayak [20] proved that if R is a semiprime ring, I a nonzero ideal of R, and σ and τ
are two epimorphisms of R, an additive mapping F : R → R is a generalized (σ, τ)-derivation
of R if there exists a (σ, τ)-derivation d : R→ R such that F (xy) = F (x)σ(y) + τ(x)d(y) holds
for all x, y ∈ R. If τ(I)d(I) 6= 0, then R contains a nonzero central ideal of R if the condition
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F [x, y] = ±(xoy)σ,τ holds.
Moreover, the results determined by Ajda Fošner in [33] concentrated on the assumption that

I was a separated set of an M -bimodule contained in the algebra generated by all idempotents
in A, and let α, β be endomorphisms of A such that α(I) = I, β(I) = I. Then, every local
generalized (α, β)-derivation (local (α, β)-derivation, resp.) from an algebra A into an A-
bimodule M is a generalized (α, β)-derivation ((α, β)-derivation, resp.), while in [34] the Hyers-
Ulam-Rassias stability of (m,n)(α,β)-derivations on normed algebras, where m and n are non-
negative integers, were studied.

Conversely, Marubayashi et al. [36] stated numerous results connecting derivations,(σ, τ)-
derivations and generalized derivations to the generalized (σ, τ)-derivation of R. More pre-
cisely, the authors studied the commutativity of a prime ring R admitting a generalized (σ, τ)-
derivation F , satisfying certain conditions such as [F (x), x]σ,τ = 0 for all x in an appropriate
subset of R, where σ, τ are automorphisms of R.
Recently, Ajda Fošner and M. J. Atteya in [47] introduced the concept of semigeneralized
semiderivations of semiprime rings. alongside some of the associated results.

Throughout the present paper, we shall use, without explicitly mentioning, the following
basic identities:

[xy, z]σ,τ =x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy,

[x, yz]σ,τ =σ(y)[x, z]σ,τ + [x, y]σ,τσ(z),

(xo(yz))σ,τ =(xoy)σ,τσ(z)− τ(y)(xoz)σ,τ = τ(y)(xoz)σ,τ + (xoy)σ,τσ(z).

In the present paper, we establish a number of results concerning the (σ, τ) -generalized
derivation D associated with the derivation d of the semiprime ring and prime ring R, in
addition to presenting the general formula for the composition of a (σ, τ)-generalized derivation
D, and some example applications of such.

2 The Basic Facts

We begin with the following known results, on which our derivation subsequently depends:

Lemma 2.1. [46,Lemma 3] Let R be a semiprime ring and let d : R → R be an additive
mapping. If either d(x)x = 0 or xd(x) = 0 holds for all x ∈ R, then d = 0.

Lemma 2.2. [3,Problem 14, p. 9] A seminear-ring R has no non-zero nilpotent elements if,
and only if, x2 = 0 implies x = 0 for all x ∈ R.

Lemma 2.3. [6,Lemma 3.1] Let R be a semiprime ring and let a ∈ R. If a[x, y] = 0 for all
x, y ∈ R, then there exists an ideal I of R such that a ∈ I ⊂ Z(R).

Lemma 2.4. [4, Lemma 2.4] Let R be a semiprime ring and let a ∈ R. Then [a, [a, x]] = 0
holds for all x ∈ R if, and only if, a2, 2a ∈ Z(R).

Lemma 2.5. [1,Lemma 2] Let R be a prime ring. If a, b, c ∈ R are such that axb = cxa for all
x ∈ R, then either a = 0 or c = b.

Lemma 2.6. [2, Lemma 1.1.8] Let R be a semiprime ring and let a ∈ R. If [a, [x, y]] ∈ Z(R)
for all x, y ∈ R, then a ∈ Z(R).
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3 The Main Results

Theorem 3.1. Let R be a 3-torsion free semiprime ring and let σ, τ be automorphism mappings
of R. If D is a generalized (σ, τ)-derivation such that D2(R) = 0, then d = 0.

Proof. For any x ∈ R, we have D2(x) = 0. Replacing x with xy, we get

D(D(xy)) =D(D(x)σ(y) + τ(x)d(y)) = 0, x, y ∈ R,
D(D(xy)) =D(D(x)σ(y)) +D(τ(x)d(y)) = 0, x, y ∈ R,

and
D2(x)σ(y) + τ(D(x))d(σ(y)) +D(τ(x))σ(d(y)) + τ(x)d2(y) = 0.

In view of the mappings, σ and τ act as automorphism mappings of R and we obtain

D2(x)y + 2D(x)d(y) + xd2(y) = 0. (1)

According to the relationD2(R) = 0, the first item of equation (1) becomes zero, which produces

2D(x)d(y) + xd2(y) = 0. (2)

In relation (2), we reconstitute y by ty, t ∈ R, we gain

2D(x)(d(t)σ(y) + τ(t)d(y)) + xd(d(t)σ(y) + τ(t)d(y)) = 0.

Then, after simple calculation, from the left side of the above relation we get the following

2D(x)d(t)σ(y) + 2D(x)τ(t)d(y)) + xd2(t)σ2(y) (3)

+ xτ(d(t))d(y) + xd(τ(t))σ(d(y)) + xτ 2(t)d2(y) = 0.

In agreement with the relation (2), the first item of relation (3) becomes −xd2(t)y, which is
cancelled with the item xd2(t)σ2(y) where, based on the fact that the mappings σ and τ act as
automorphism mappings of R, relation (3) becomes

2D(x)τ(t)d(y)) + xτ(d(t))d(y) + xd(τ(t))σ(d(y)) + xτ 2(t)d2(y) = 0. (4)

Conforming the fact that σ and τ acts as automorphism mappings of R, the relation (4) produces

2D(x)td(y)) + 2xd(t)d(y) + xtd2(y) = 0. (5)

Again, relation (2) modifies relation (5) to

2D(x)td(y)) + 2xd(t)d(y)− 2xD(t)d(y) = 0. (6)

Restitution of x by D(x) and application of the relation of hypothesis D2(R) = 0 reduces
relation (6) to

2D(x)d(t)d(y)− 2D(x)D(t)d(y) = 0. (7)

We rewrite relation (7) in agreement with relation (2) as

−xd2(t)d(y) +D(x)td2(y) = 0.

The above relation replacing x with D(x) is dependent on the fact that D2(R) = 0, from which
we achieve

D(x)d2(t)d(y) = 0. (8)
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Replacing y with ys, s ∈ R in relation (8) and applying the result, we proposeD(x)d2(t)yd(s) =
0. Replacing y with yD(x) and s with d(t) for the reason that R is a semiprime ring, we have

D(x)d2(t) = 0. (9)

(10)

Again, in relation (2) we set y = d(y), and we retain 2D(x)d2(y) + xd3(y) = 0. Obviously,
according to relation (9) with consideration for the semiprime nature of R, we can say d3(y) = 0.
In the above result replacing y by xy through application of the relation d3(y) = 0, we achieve
3d2(x)d(y) + 3d(x)d2(y) = 0, for all x, y ∈ R. Substitution of x with d(x) will depend on the
hypothesis that R is a 3-torsion free semiprime ring, in which the above relation reduces to
d2(x)d2(y) = 0. Right-multiplying the above relation by rd2(x), r ∈ R and left-multiplying by
d2(x)r, r ∈ R, with applying Lemma 2.2, we obtain d2(x) = 0.

Using the same argument as in the last part of the proof, we receive the required result.

Theorem 3.2. Let R be a 2-torsion free semiprime ring and σ and τ be two automorphism map-
pings of R. Suppose that there exists a (σ, τ)-generalized derivation D such that [D(x), x]σ,τ = 0
for all x ∈ R, then

(i) if the generalized derivation D is the commuting mapping of R then d is commuting
mapping of R;

(ii) if the derivation d is the commuting mapping of R then D is the 2-commuting mapping
of R.

Proof. (i) Let us introduce the mapping γ : R× R→ R for all x, y ∈ R by the relation

γ(x, y) = [D(x), y]σ,τ + [D(y), x]σ,τ .

We have the fact that γ is symmetric, which means γ(x, y) = γ(y, x) for all x, y ∈ R is
additive in both the arguments. Notice that for all x, y, z ∈ R,

γ(xy, z) = [D(xy), z]σ,τ + [D(z), xy]σ,τ .

Previously, we have

γ(xy, z) = [D(x)σ(y) + τ(x)d(y), z]σ,τ + [D(z), xy]σ,τ .

After that, from the right-hand side of the above relation we gain the following equation

γ(xy, z) =D(x)[σ(y), z]σ,τ + [D(x), z]σ,τσ(y) (11)

+ τ(x)[d(y), z]σ,τ + [τ(x), z]σ,τd(y) + x[D(z), y]σ,τ + [D(z), x]σ,τy.

On account of σ and τ acting as an automorphism mappings of R, then

γ(xy, z) =D(x)[y, z]σ,τ + [D(x), z]σ,τy + x[d(y), z]σ,τ + [x, z]σ,τd(y)

+ x[D(z), y]σ,τ + [D(z), x]σ,τy.

Again we suggest an additive mapping κ from R onto itself by κ(x) = γ(x, x). Then, we gain
κ(x) = 2[D(x), x]σ,τ . In fact, the mapping κ satisfies the following relation

κ(x+ y) =2[D(x+ y), x+ y]σ,τ

=2([D(x), x]σ,τ + [D(x), y]σ,τ + [D(y), x]σ,τ + [D(y), y]σ,τ ). (12)
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By reason of κ(x) = 2[D(x), x]σ,τ , the relation (12) yields that

κ(x+ y) = κ(x) + κ(y) + 2γ(x, y). (13)

According to the fact that κ is an additive mapping, the relation (13) becomes 2γ(x, y) = 0.
In view of R being a 2-torsion free semiprime ring, we gain γ(x, y) = 0. Now, in the relation
γ(x, y) = 0, replacing y with xy, we get

γ(x, xy) = [D(x), xy]σ,τ + [D(xy), x]σ,τ = 0.

Then
[D(x), xy]σ,τ + [D(x)σ(y) + τ(x)d(y), x]σ,τ = 0.

Consequently, from the left-hand side of the above relation, we obtain the following equation

x[D(x), y]σ,τ + [D(x), x]σ,τy +D(x)[σ(y), x]σ,τ (14)

+ [D(x), x]σ,τσ(y) + τ(x)[d(y), x]σ,τ + [τ(x), x]σ,τd(y) = 0.

Subsequently, the mappings σ and τ act as automorphism of R, and the relation (14) becomes

x([D(x), y]σ,τ + [d(y), x]σ,τ ) +D(x)[y, x]σ,τ + κ(x)σ(y) = 0,

where the additive mapping D acts as a commuting of R, i.e., κ(x) = 0, and replacing y with
x so the above relation is changed to

x[d(x), x]σ,τ = 0. (15)

Now we left-multiply the relation (15) by [d(x), x]σ,τ and right-multiply by x to gain ([d(x), x]σ,τx)2 =
0. for all x ∈ R. By applying Lemma 2.1 to the above relation and subtracting the result from
relation (15), we achieve [[d(x), x]σ,τ , x]σ,τ = 0. and we get the required result. This completes
the proof.

(ii) When d acts as commuting of R. In relation (11) in part (i), we reconstitute z and y
with x by applying the fact that the mappings σand τ act as automorphisms and d acts as
commuting of R, we achieve

2[D(x), x]x = −x[D(x), x], (16)

where we suppose the mapping κ = 2[D(x), x], with which relation (16) becomes κ(x)x =
−x[D(x), x] for all x ∈ R. In above relation, by linearizing x by x+ y, we gain

κ(x)x+ κ(y)x+ κ(x)y + κ(y)y

=− x([D(x), x] + [D(x), y] + [D(y), x] + [D(y), y])− y([D(x), x] + [D(x), y]

+ [D(y), x] + [D(y), y]), x, y ∈ R.

According to the relation κ(x)x = −x[D(x), x], the relation should be

− x[D(x), x] + κ(y)x+ κ(x)y − y[D(y), y]

=− x([D(x), x] + [D(x), y] + [D(y), x] + [D(y), y])− y([D(x), x] + [D(x), y]

+ [D(y), x] + [D(y), y]), x, y ∈ R.

Again, we depend on the fact that κ(x)x = −x[D(x), x], and by replacing y with x,we obtain
−2x[D(x), x]σ,τ = −6x[D(x), x]σ,τ . In consideration of the fact that R is a 2-torsion free
semiprime ring, we get x[D(x), x]σ,τ = 0 for all x ∈ R. Then

xD(x)x = x2D(x). (17)
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Substituting the result x[D(x), x]σ,τ = 0 into relation (16), we gain

xD(x)x = D(x)x2. (18)

Obviously, the subtraction of equations (18) and (17) gives [D(x), x2]σ,τ = 0 for all x ∈ R.
Depending on the this relation, we complete the proof.

Proposition 3.3. Let R be a ring and σ and τ be two automorphism mappings of R. Suppose
that there exists a (σ, τ)-generalized derivation D such that D(x)[x, y]σ,τ = 0. Then

(i) if R acts as semiprime ring then (σ, τ)-generalized derivation D is commuting of R;

(ii) if R acts as prime ring then either (σ, τ)-generalized derivation D = 0 of R or R is
commutative ring.

Proof. (i) In the main relation D(x)[x, y]σ,τ = 0 for all x, y ∈ R. Replacing y by yt, t ∈ R, we
gain

D(x)y[x, t]σ,τ +D(x)[x, t]σ,τ t = 0. (19)

Obviously, the second term of the relation (19) depends on the main relation becoming zero,
which leads toD(x)y[x, t]σ,τ = 0 for all x, y, t ∈ R. According to the hypothesis, R is a semiprime
ring, so in the above relation we replace y with xR and t by D(x) to get

D(x)xR[x,D(x)]σ,τ = 0. (20)

Again, in the previous relation, we substitute y by R and left-multiply by x, after which we
subtract the result to produce relation (20), and we obtain [D(x), x]σ,τ = 0 for all x ∈ R.
Straightforwardly, we gain the fact that D is commuting (σ, τ)-generalized derivation of R.

(ii) When R acts as prime ring, we again depend on the following relation

D(x)y[x, t]σ,τ = 0, x, y, t ∈ R.

Restitution of y with R in the above relation produces D(x)R[x, t]σ,τ = 0. In agreement with
R acting as a prime ring, we gain the following results: either D(x) = 0 or [x, t]σ,τ = 0. Now
we discuss the above options. Let [x, t]σ,τ is not equal to zero. Obviously, we get D = 0 for R.
Otherwise, if D is non-zero, then [x, t]σ,τ = 0 for all x, t ∈ R. Conforming to σ and τ being two
automorphism mappings of R, we get the result that R is commutative.

Theorem 3.4. Let R be a 2-torsion free semiprime ring and σ and τ be two automorphism
mappings of R. Suppose that there exists a (σ, τ)-generalized derivation D such that D(xy) =
D(yx) for all x, y ∈ R, then the derivation d is the commuting mapping of R.

Proof. Suppose c ∈ R is a constant, i.e., an element such that D(c) = 0, and let c be an
arbitrary element of R. According to the hypothesis, we have D(xy) = D(yx) for all x, y ∈ R.
We replace x with c and y with z, through which we get D(cz) = D(zc) for all z ∈ R. Then

D(c)σ(z) + τ(c)d(z) = D(z)σ(c) + τ(z)d(c). (21)

Applying the fact that D(c) = 0 to the relation (21), we then have

τ(c)d(z) = τ(z)d(c). (22)
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Now, for all x, y ∈ R, the commutator [x, y]σ,τ is a constant and hence from relation(22) we
obtain

τ([x, y]σ,τ )d(z) = τ(z)d([x, y]σ,τ ), for all x, y, z ∈ R.

As stated in the hypothesis, let τ be a automorphism mapping of R and the above equation
becomes

[x, y]σ,τd(z) = zd([x, y]σ,τ ). (23)

In equation (23), replacing z by zr, we get

[x, y]σ,τd(z)σ(r) + [x, y]σ,ττ(z)d(r) = zrd([x, y]σ,τ ),

for all x, y, z, r ∈ R. In agreement with relation (23) the above equation can be modified to
zd([x, y])σ(r) + [x, y]σ,ττ(z)d(r) = zrd([x, y]σ,τ ). Then

z[d([x, y]σ,τ ), r] = −[x, y]σ,τzd(r). (24)

Substituting r for d([x, y]σ,τ ), we obtain that [x, y]σ,τzd
2([x, y]σ,τ ) = 0 for all x, y, z ∈ R. Left-

multiplying by d2([x, y]σ,τ ) and right-multiplying by [x, y]σ,τ , we gain

d2([x, y])[x, y]σ,τRd2([x, y]σ,τ )[x, y]σ,τ = 0.

According to the hypothesis that R is a semiprime ring, we achieve

d2([x, y]σ,τ )[x, y]σ,τ = 0.

We establish that a = d2([x, y]σ,τ ) in the above relation, and by applying Lemma 2.3, we achieve
a ∈ Z(R), i.e., d2([x, y]σ,τ ) ∈ Z(R). In the relation (23), we substitute z with d([x, y]σ,τ ), and
use the relationship d2([x, y]σ,τ )[x, y]σ,τ = 0, where d2([x, y]σ,τ ) ∈ Z(R), and we thus have
d([x, y]σ,τ )

2 = 0 for all x, y ∈ R, i.e., we obtain d([x, y]σ,τ )
2 ∈ Z(R) for all x, y ∈ R. In

agreement with Lemma 2.4, we obtain 2[d([x, y]σ,τ ), r]σ,τ = 0 for all x, y, r ∈ R. Since R is a
2-torsion free semiprime ring in the above relation, we modify this to [d([x, y]σ,τ ), r]σ,τ = 0 for
all x, y, r ∈ R. Moreover, we gain d([x, y]σ,τ ) ∈ Z(R) for all x, y ∈ R. Now, in relation (24)
the above fact produces [x, y]σ,τzd(r) = 0 for all x, y, r, z ∈ R. Left-multiplying by d(r) and
right-multiplying by the commutator [x, y]σ,τ , and depending on R being a semiprime ring, we
get d(r)[x, y]σ,τ = 0 for all x, y, r ∈ R. In agreement with Lemma 2.3 the above relation gives
d(r) ∈ Z(R), which implies that [d(r), r]σ,τ = 0 for all r ∈ R, which is the desired result.

Obviously, depending on Lemma 2.3 which used in the proof of Theorem 3.4, this implies
the following result.

Corollary 3.5. Let R be a 2-torsion free semiprime ring, U be an ideal and σ and τ be two
automorphism mappings of R. Suppose that there exists a (σ, τ)-generalized derivation D such
that D(xy) = D(yx) for all x, y ∈ R, then R contains a non-zero central ideal.

Theorem 3.6. Let R be a 2-torsion free prime ring, and σ and τ be two automorphism map-
pings of R. Suppose that there exists a (σ, τ)-generalized derivation D such that [D(x), D(y)]σ,τ =
0 for all x, y ∈ R and that d and D commute, then either D (σ, τ)-commute of R or d2(R) ◦
d(R) = 0.
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Proof. In the main relation [D(x), D(y)]σ,τ = 0 for all x, y ∈ R. Replacing y with xy, we obtain
[D(x), D(x)σ(y) + τ(x)d(y))]σ,τ = 0 for all x, y ∈ R. Moreover, we obtain

D(x)[D(x), σ(y)]σ,τ + τ(y)[D(x), d(y)]σ,τ + [D(x), τ(x)]σ,τd(y) = 0. (25)

In relation (25), we substitute y with D(z), z ∈ R, and since σ and τ act as automorphisms of
R as depending on the main relation [D(x), D(y)]σ,τ = 0, we achieve

x[D(x), d(D(z))]σ,τ = −[D(x), x]d(D(z)),

for all x, z ∈ R. Putting b = [D(x), d(D(z))]σ,τ and a = −[D(x), x]d(D(z)), then we have
xb = −a. Left-multiplying by a and right-multiplying by xa, we again have ax(bxa) = −a2xa.
In consonance with Lemma 2.5, we have: either a = [D(x), x]σ,τd(D(z)) = 0 for all x, z ∈ R
or (bxa) = −a2, which is guaranteed to be equal to zero where the value of a is zero in the
first case. However, we focus on the item [D(x), x]σ,τd(D(z)) = 0. According to the fact of
the hypothesis that d and D commute with each other, we have [D(x), x]σ,τD(d(z)) = 0 for all
x, z ∈ R. Moreover, after replacing z by zy, we obtain

[D(x), x]σ,τD(d(z)y) + [D(x), x]σ,τD(zd(y)) = 0,

[D(x), x]σ,τD(d(z))σ(y) + [D(x), x]σ,ττ(d(z))d(y) + [D(x), x]σ,τD(z)σ(d(y))

+ [D(x), x]σ,ττ(z)d2(y) = 0.

Again, in agreement with the fact that [D(x), x]σ,τd(D(z)) = 0 with restitution of z with
d(z), we have [D(x), x]σ,τd

2(z)d(y)+[D(x), x]σ,τd(z)d2(y) = 0. Left-multiplying by (d2(z)d(y)+
d(z)d2(y))r and right multiplying by r[D(x), x]σ,τ and applying Lemma 2.2, where r ∈ R, we
have [D(x), x]σ,τr(d

2(z)d(y) + d(z)d2(y)) = 0. Conforming to the primness of R, we get: either
D is (σ, τ)-commuting of R or d2(R) ◦ d(R) = 0.

Remark 1. In previous results, we cannot exclude the condition that the mappings σ and τ
should be automorphism mappings of R, as shown below.

Example 1. Let R=M2(F) be a ring of 2× 2 matrices over a field F, that is: R =M2(F) ={(
a b
0 0

)∣∣∣∣ a, b ∈ F
}

. Let d be the inner derivation of R given by

d(x) = x

(
0 1
0 0

)
−
(

0 1
0 0

)
x,

and the additive mapping D be defined as D(x) =

(
0 a
0 0

)
for all x ∈ R. Now, let a, b, g, h ∈

F . We suppose that x =

(
a b
0 0

)
and y =

(
g h
0 0

)
. Then D(xy) = d(x)σ(y) + τ(x)d(y)

holds for all x, y ∈ R, where

D

((
a b
0 0

)(
g h
0 0

))
=D

((
a b
0 0

))
σ

((
g h
0 0

))
+ τ

((
a b
0 0

))
d

((
g h
0 0

))
.

Since σ and τ act as automorphism mappings implies the both sides of the above equation to

give us

(
0 ag
0 0

)
.
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In 1984, J. Krempa and J. Matczuk [8] showed that for any associative ring R and a
derivation d such that d0 = id even d = 0. Leibniz’s formula is dr(xy) =

∑r
i=0

(
r
i

)
di(x)dr−i(y)

for all x, y ∈ R, where r and i are positive integers.
The effort of the authors continue to study this idea until to 2007, where M. Samman and

N. Alyamani [9] introduced the idea of reverse derivation on a ring R. More precisely, they
provided the reverse derivation version of Leibniz rule for higher derivations have the formula:
if n is odd, dn(xy) =

∑n
i=0

(
n
i

)
dn−i(y)di(x); if n is even, dn(xy) =

∑n
i=0

(
n
i

)
dn−i(x)di(y) for all

x, y ∈ R where n and i are positive integers.
Nurcan Argac and Hulya G. Inceboz [10] provided that if we let R be a prime ring, I be a

nonzero ideal of R, d a derivation of R and n a fixed positive integer, if (d(x)y+xd(y)+d(y)x)n =
xy + yx for all x, y ∈ I, then R is commutative.

In [37] Hvala initiated the algebraic study of generalized derivations; in particular, the
generalized derivations whose products are again generalized derivations were characterized.

Results concerning generalized derivations can also be found in [38–40] and [41]. More-
over the results in [42] and [43] evidence the relationship between the behavior of generalized
derivations in a prime (or semiprime) ring and the structure of the ring.

In this paper we supply the composition of (σ, τ)-generalized derivations of the Leibniz’s
formula as follows.

Definition 3.1. Let D be an additive mapping which acts as a (σ, τ)-generalized derivation
on a ring R, and σ and τ be automorphism mappings of R such that the mappings σ and
τ commute with D and d. Then, the composition of D on R can be defined as Dn(xy) =∑n

r=0

(
n
r

)
Dn−r(σn−r(x))dr(τ r(y)) for all x, y ∈ R, where n and r are positive integers, with

important note that the D0(x) = id = x and d0(y) = id = y.

For motivation and a close view of the composition of (σ, τ)-generalized derivations, we
provide the following example.

Example 2. Let R be a ring and D be a (σ, τ)-generalized derivation of R, and σ and τ are
automorphism mappings of R such that the mappings σ and τ commute with D and d. Then,
for all x, y ∈ R the composition of D satisfies the relation

Dn(xy) =
n∑
r=0

(
n

r

)
Dn−r(σn−r(x))dr(τ r(y)),

for all x, y ∈ R, where n and r are positive integers.
Take n = 2, then we have

D2(xy) =
2∑
r=0

(
2

r

)
D2−r(σ2−r(x))dr(τ r(y))

=

(
2

0

)
D2−0(σ2−0(x))d0(τ 0(y)) +

(
2

1

)
D2−1(σ2−1(x))d1(τ 1(y))

+

(
2

2

)
D0(σ0(x))d2(τ 2(y)),

for all x, y ∈ R. We depend on the fact that D0(x) = id = x and d0(y) = id = y when
computing the binomials, and from the above relation we obtain

D2(xy) = D2(σ2(x))y + 2D(σ(x))d(τ(y)) + xd2(τ 2(y)).
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According to the hypothesis that the mappings σ and τ commute with D and d, we have

D2(xy) = σ2(D2(x)y) + 2D(σ(x))d(τ(y)) + xτ 2(d2(y)).

Apply that the mappings σ and τ act as automorphisms of R, we get

D2(xy) = D2(x)σ2(y) + 2D(σ(x))d(τ(y)) + τ 2(x)d2(y).

On the other hand, we compute the left side

D2(xy) =D(D(x)σ(y) + τ(x)d(y))

=D(D(x)σ(y)) +D(τ(x)d(y))

=D2(x)σ2(y) + τ(D(x))d(σ(y)) +D(τ(x))σ(d(y)) + τ 2(x)d2(y)).

Furthermore, where the mappings σ and τ commute with D and d, we get

D2(xy) = D2(x)σ2(y) + 2D(σ(x))d(τ(y)) + τ 2(x)d2(y).

Remark 2. When the values of σ = 1 and τ = 1 in Definition 3.1 modify the formula of
the composition of (σ, τ)-generalized derivations into: Dn(xy) =

∑n
r=0

(
n
r

)
Dn−r(x)dr(y) for all

x, y ∈ R, where n and r are positive integers, with the important note that D0(x) = id = x and
d0(y) = id = y.

We need the following lemma

Lemma 3.7. [6, Lemma 1.1, 2.1 (ii)]

(i) Let R be a semiprime ring. If a, b ∈ R are such that axb = 0 for all x ∈ R, then
ab = ba = 0.

(ii) Let R be a semiprime ring, d a derivation of R and a ∈ R some fixed element, then
ax− xa ∈ Z(R), for all x ∈ R, implies a ∈ Z(R).

We begin this section with the following main result.

Theorem 3.8. Let n and r be a fixed positive integers. Let R be a 2-torsion free semiprime
ring, σ and τ two automorphism mappings of R such that the mappings σ and τ commute
with D and d, D a (σ, τ)-generalized derivation with an associated derivation d of R such that
[Dn(x), xn]σ,τ = 0, then

n∑
r=1

(
n

r

)
[Dn−r(x)dr(x), x2n] = −[Dn(x), x2n]x ∈ Z(R),

for all x ∈ R.

Proof. Initially we have the relation [Dn(x), xn]σ,τ = 0 for all x ∈ R. Replacing x with yx, we
obtain [Dn(xy), (xy)n]σ,τ = 0 for all x, y ∈ R. Now we apply the formula of Definition 3.1 to
above relation, and we get[

n∑
r=0

(
n

r

)
Dn−r(σn−r(x))dr(τ r(y)), (xy)n

]
σ,τ

= 0,
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for all x, y ∈ R, where n and r are positive integers. Then[(
n

0

)
Dn(σn(x))d0(τ 0(y)) +

(
n

1

)
Dn−1(σn−1(x))d(τ(y))

+

(
n

2

)
Dn−2(σn−2(x))d2(τ 2(y)) + · · ·+

(
n

n

)
Dn−n(σn−n(x))dn(τn(y)), (xy)n

]
σ,τ

= 0.

Moreover, after simple calculations, with the important note that the D0(x) = id = x and
d0(y) = id = y, from the above relation we get

[Dn(σn(x))y + nDn−1(σn−1(x))d(τ(y)) +
n(n− 1)!

2
Dn−2(σn−2(x))d2(τ 2(y))

+ · · ·+ xdn(τn(x)), (xy)n]σ,τ = 0.

Then, we divide the above relation into[
nDn−1(σn−1(x))d(τ(y)) +

n(n− 1)!

2
Dn−2(σn−2(x))d2(τ 2(y))

+ · · ·+ xdn(τn(x)), (xy)n]σ,τ + [Dn(σn(x))y, (xy)n
]
σ,τ

= 0.

We rewrite the relation above as

n∑
r=1

(
n

r

)
[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ + [Dn(σn(x))y, (xy)n]σ,τ = 0. (26)

At same time, we left-multiply and right-multiply the relation(26) by t, where t ∈ R, we
retain

n∑
r=1

(
n

r

)
t[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ t+ t[Dn(σn(x))y, (xy)n]σ,τ t = 0.

We set
∑n

r=1

(
n
r

)
t[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ = a and

[Dn(σn(x))y, (xy)n]σ,τ t = b.

The above relation reduces to

at+ tb = 0. (27)

Left-multiplying relation (27) by s, where s ∈ R, and we get

sat+ stb = 0. (28)

In relation (27), we replace t with st, and we obtain ast+ stb = 0 for all s, t ∈ R. Subtracting
this result from relation (28), we achieve

[s, a]σ,τ t = 0, (29)

where we assume that a =
∑n

r=1

(
n
r

)
t[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ and after that we re-

place t by st. Therefore, a =
∑n

r=1

(
n
r

)
st[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ , so from the relation

(29), we obtain

n∑
r=1

(
n

r

)
[s, st[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ , (xy)n]σ,τ ]σ,τ t = 0.
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We displace s by t and set h =
∑n

r=1

(
n
r

)
[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ , thus, the above rela-

tion becomes t2[t, h]σ,τ t = 0. Left-multiplying by t[t, h]σ,τ , we gain (t[t, h]σ,τ t)
2 = 0. Obviously,

we gain (t[t, h]σ,τ t)
2 ∈ Z(R), which implies, with the application of Lemma 2.4, 2(t[t, h]σ,τ t) = 0.

Conforming to the fact that R is a 2-torsion free semiprime ring, and right-multiplying by
[t, h]σ,τ , we achieve (t[t, h]σ,τ )

2 = 0. Repeating the previous same technique, we have

t[t, h]σ,τ = 0. (30)

Left-multiplying the relation (30) by [s, r]σ,τ , we gain [s, r]σ,τ t[t, h]σ,τ = 0 for all s, r ∈ R.
Additionally, using Lemma 3.7(i) with replacing s by t and r by h, we have [t, h]2σ,τ = 0 for all
t ∈ R. Again, as dependent on Lemma 2.4 and R being a 2-torsion free semiprime ring,we get
[t, h]σ,τ = 0 for all t ∈ R. Clearly, we obtain h ∈ Z(R), which means

n∑
r=1

(
n

r

)
[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ ∈ Z(R). (31)

Now we depend on relation (31), and from relation (27), we obtain∑n
r=1

(
n
r

)
[Dn−r(σn−r(x))dr(τ r(y)), (xy)n]σ,τ = −[Dn(σn(x))y, (xy)n]σ,τ ∈ Z(R).

In consideration of the fact that σ and τ act as two automorphism mappings of R when replacing
y with x, we get the required result. This completes the proof.

Corollary 3.9. Let n and r be a fixed positive integers. Let R be a 2-torsion free semiprime
ring, σ and τ be two automorphism mappings of R such that the mappings σ and τ commute
with D and d, D is a (σ, τ)-generalized derivation with an associated derivation d of R such
that Dn(x) ∈ Z(R) for all x ∈ R, then

n∑
r=1

(
n

r

)
[Dn−r(x)dr(x), x2n] = −[Dn(x), x2n]x ∈ Z(R),

for all x ∈ R.

In view of Theorem 3.8 and Lemma 2.4 with Lemma 2.2, we immediately get the following
corollary.

Corollary 3.10. Let n and r be a fixed positive integers. Let R be a 2-torsion free semiprime
ring, σ and τ be two automorphism mappings of R such that the mappings σ and τ commute
with D and d, D is a (σ, τ)-generalized derivation with an associated derivation d of R such
that [Dn(x), xn]σ,τ = 0, then [Dn(σn(x)), x2n]σ,τ , x]σ,τ , x]σ,τ = 0 for all x ∈ R.

Proof. By the same manner as in the previous theorem, we have the relation
[Dn(σn(x))y, (xy)n]σ,τ ∈ Z(R) for all x, y ∈ R. Furthermore, we obtain

[[Dn(σn(x))y, (xy)n]σ,τ , r]σ,τ = 0, x, y, r ∈ R.

Replacing y and r by x, we receive [[Dn(σn(x)), x2n]σ,τ , x]σ,τx = 0. Now, we left-multiply by x
and right-multiply by [[Dn(σn(x)), x2n]σ,τ , x]σ,τ and apply Lemma 2.2 and subtract the result
from the above to complete the proof.

Theorem 3.11. Let n and r be fixed positive integers. Let R be a 2-torsion free semiprime ring,
and σ and τ be two automorphism mappings of R such that the mappings σ and τ commute
with D and d, D a (σ, τ)-generalized derivation with an associated derivation d of R such that
[Dn+1(x), xn+1]σ,τ = 0, then

n+1∑
r=1

(
n+ 1

r

)
[D(n+1)−r(x)dr(x), x2n+2] = −[Dn+1(x), x2n+2]x ∈ Z(R), x ∈ R.
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Proof. As stated in the hypothesis we have the relation [Dn+1(xy), (xy)n+1]σ,τ = 0 for all x ∈ R,
after we replace x with xy in the main relation [Dn+1(x), xn+1]σ,τ = 0 for all x ∈ R. Now, we
apply the formula of Definition 3.1 to the above relation, and afterwards rewrite it to become
a suitable power of D, we obtain

n+1∑
r=0

(
n+ 1

r

)
[Dn−r+1(σn−r+1(x))dr(τ r(y)), (xy)n+1]σ,τ = 0, x, y ∈ R,

where n and r are positive integers, though with the important note that D0(x) = id = x and
d0(y) = id = y. Additionally, we get[(

n+ 1

0

)
Dn+1(σn+1(x))y +

(
n+ 1

1

)
Dn(σn(x))d(τ(y))

+

(
n+ 1

2

)
Dn−1(σn−1(x))d2(τ 2(y)) + · · ·+

(
n+ 1

n+ 1

)
xdn+1(τn+1(y)), (xy)n+1

]
σ,τ

= 0.

After a simple calculation, from above relation we get[
(n+ 1)!

n!
Dn(σn(x))d(τ(y)) +

(n+ 1)!

2!(n− 1)!
Dn−1(σn−1(x))d2(τ 2(y))

+
(n+ 1)!

3!(n− 2)!
Dn−2(σn−2(x))d3(τ 3(y)) + · · ·+ xdn+1(τn+1(y)), (xy)n+1

]
σ,τ

+ [Dn+1(σn+1(x))y, (xy)n+1]σ,τ = 0.

We rewrite the above relation as the composition of generalized derivations of Leibniz’s formula,
and we get

n+1∑
r=1

(
n+ 1

r

)
[D(n+1)−r(σ(n+1)−r(x))dr(τ r(y)), (xy)n+1]σ,τ

+ [Dn+1(σn+1(x))y, (xy)n+1]σ,τ = 0, x, y ∈ R.

Using a similar approach as above in Theorem 3.8, we can complete the proof.
Analogously, we can prove the following (though we omit the proof for the brevity) where

we depend on Lemma 2.4 and Lemma 2.2.

Corollary 3.12. Let n and r be a fixed positive integers. Let R be a 2-torsion free semiprime
ring, σ and τ be two automorphism mappings of R such that the mappings σ and τ commute
with D and d, D a (σ, τ)-generalized derivation with an associated derivation d of R such that
[Dn+1(x), xn+1]σ,τ = 0, then

[[Dn+1(σn+1(x)), x2n+2]σ,τ , x]σ,τ , x]σ,τ = 0, x ∈ R.

Theorem 3.13. Let R be a 2-torsion free prime ring, σ and τ be two automorphism mappings
of R such that the mappings σ and τ commute with D and d. Suppose that there exists a (σ, τ)-
generalized derivation D such that Dn(x) ∈ Z(R) for all x ∈ R, then either Dn(σn(R)) = 0 or
R is commutative, where n is a fixed positive integer.

Proof. From the hypothesis, we obtain [Dn(x), r] = 0 for all x, r ∈ R. After some calculations
that depend on the same technique as given in Theorem 3.8, from the relation (31), we have
the further relation

n∑
r=1

(
n

r

)
[Dn−r(σn−r(x))dr(τ r(y)), r]σ,τ ∈ Z(R).
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Again, by the same manner as in Theorem 3.8, from relation (26) we achieve

[Dn(σn(x))y, r]σ,τ ∈ Z(R).

Moreover, applying the relationDn(σn(x)) ∈ Z(R) to the above commutator, we haveDn(σn(x))[y, r]σ,τ
∈ Z(R). Then [Dn(σn(x))[y, r]σ,τ , s]σ,τ = 0 for all x, y, r, s ∈ R. Again, in agreement with the
fact that Dn(σn(x)) ∈ Z(R), the above relation becomes Dn(σn(x))[[y, r]σ,τ , s]σ,τ = 0 for all
x, y, r, s ∈ R. Replacing s with st, t ∈ R, with apply the primeness of R and receive: either
Dn(σn(R)) = 0 or [R,R] ∈ Z(R), which implies that R is commutative.

The following results are inspired by the work of Motoshi Hongan [7]. We put VR(S) =
{x ∈ R : [x, s] = 0} for all x ∈ S, where S is a subset of R and R represents a ring.

Corollary 3.14. Let R be a semiprime ring, U be a non-zero ideal of R, σ and τ be two auto-
morphism mappings of R such that the mappings σ and τ commute with D and d. Suppose that
there exists a (σ, τ)-generalized derivation D such that Dn([x, y]σ,τ )∓Dq([x, y]σ,τ )∓ [x, y]σ,τ ∈
Z(R) for all x, y ∈ U, if Dn(U)∓Dq(U) ⊆ VR(U) then U is commutative and U ⊆ Z(R), where
n and q are fixed positive integers.

Proof. Suppose that a ∈ U; in agreement with the hypothesis that Dn([x, y]σ,τ )∓Dq([x, y]σ,τ )∓
[x, y]σ,τ ∈ Z(R) for all x, y ∈ U, we obtain [Dn([U,U]σ,τ )∓Dq([U,U]σ,τ )∓ [x, y]σ,τ , a]σ,τ = 0 for
all x, y ∈ U. Hence,

[Dn([U,U]σ,τ )∓Dq([U,U]σ,τ ), a]σ,τ ∓ [[x, y], a]σ,τ = 0.

In consideration of the hypothesis (Dn(U)∓Dq(U)) ⊆ VR(U), i.e., [a,Dn(U)∓Dq(U)]σ,τ = 0.
Thus, the above relation reduces to [[x, y], a]σ,τ = 0 for all x, y ∈ U. In agreement with Lemma
2.6, we have a ∈ U ⊆ Z(R).

In a similar manner, as dependent on Lemma 2.6, we can prove the following corollary.

Corollary 3.15. Let R be a semiprime ring, U be a non-zero ideal of R, and σ and τ be two
automorphism mappings of R. Suppose that there exists some (σ, τ)-generalized derivation D
such that Dn([x, y]σ,τ )∓ [x, y]σ,τ ∈ Z(R) for all x, y ∈ U, and such that the mappings σ and τ
commute with D and d. If Dn(U) ⊆ VR(U), then U is commutative and U ⊆ Z(R), where n is
a fixed positive integer.

In the following theorem, we exclude the conditions Dn(U) ∓ Dq(U) ⊆ VR(U) and U as
non-zero ideals of R, as per the hypothesis used in previous corollaries.

Theorem 3.16. Let R be a 2-torsion free semiprime ring, and σ and τ be two automorphism
mappings of R. Suppose that there exists a (σ, τ)-generalized derivation D, and the mappings
σ and τ commute with D and d such that Dq([x, y]σ,τ )∓Dn([x, y]σ,τ )∓ [x, y]σ,τ ∈ Z(R) for all
x, y ∈ R. If

(i) D 6= 0, then Dq−1(σq−1(R))∓Dn−1(σn−1(R)) ∈ Z(R);

(ii) D = 0, then [x, y]σ,τ ∈ Z(R),

where n and q are fixed positive integers.
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Proof. (i) Firstly, we suppose that D 6= 0, putting y = [y, z]σ,τ , for all x, y, z ∈ R, we have
Dq([x, y]σ,τ ) ∓ Dn([x, y]σ,τ ) ∓ [x, y]σ,τ ∈ Z(R). Clearly, after substituting the value of y the
above relation becomes

Dq([x, [y, z]σ,τ ]σ,τ )∓Dn([x, [y, z]σ,τ ]σ,τ )∓ [x, [y, z]σ,τ ]σ,τ ∈ Z(R). (32)

Now, we simplify the items of the relation(32), and we get

Dq([x, [y, z]σ,τ ]σ,τ ) = Dq−1(D(xσ([y, z]σ,τ ))−Dq−1(D(τ([y, z]σ,τ )x)))

and
Dn([x, [y, z]σ,τ ]σ,τ ) = Dn−1(D(xσ([y, z]σ,τ ))−Dn−1(D(τ([y, z]σ,τ )x))).

Applying Definition 3.1 on the right-hand side, we get

Dq([x, [y, z]σ,τ ]σ,τ ) =

q−1∑
r=1

(
q − 1

r

)
(Dq−r−1(σq−r−1(x)))dr(τ r([y, z]σ,τ ))

− (Dq−r−1(σq−r−1([y, z]σ,τ )))d
r(τ r(x)).

In a similar manner for Dn([x, [y, z]σ,τ ]σ,τ ), we get

Dn([x, [y, z]σ,τ ]σ,τ ) =
n−1∑
r=1

(
n− 1

r

)
(Dn−r−1(σn−r−1(x)))dr(τ r([y, z]σ,τ ))

− (Dn−r−1(σn−r−1([y, z]σ,τ )))d
r(τ r(x)).

Furthermore, when we substitute the previous values in relation (32), we obtain

Dn([x, [y, z]σ,τ ]σ,τ )

=

(
q − 1

0

)
(Dq−1(σq−1(x)))[y, z]σ,τ − (Dq−1(σq−1([y, z]σ,τ )))(x))

+ · · ·+
(
q − 1

q − 1

)
xdq−1(τ q−1([y, z]σ,τ )− [y, z]σ,τd

q−1(τ q−1(x))

∓
(
n− 1

0

)
(Dn−1(σn−1(x)))[y, z]σ,τ − (Dn−1(σn−1([y, z]σ,τ )))(x))

+ · · ·+
(
n− 1

n− 1

)
xdn−1(τn−1([y, z]σ,τ )− [y, z]σ,τd

n−1(τn−1(x))

∓ [x, [y, z]σ,τ ]σ,τ ∈ Z(R).

Additionally, we have

[(Dq−1(σq−1(x)))[y, z]σ,τ − (Dq−1(σq−1([y, z]σ,τ )))(x))

+ · · ·+ (xdq−1(τ q−1([y, z]σ,τ )− [y, z]σ,τd
q−1(τ q−1(x)), r]σ,τ ∓ [Dn−1(σn−1(x)))[y, z]σ,τ

−Dn−1(σn−1([y, z]σ,τ )))(x) + · · ·+ xdn−1(τn−1([y, z]σ,τ )− [y, z]σ,τd
n−1(τn−1(x)), r]σ,τ

∓ [[x, [y, z]σ,τ ]σ,τ , r] = 0, x, y, z, r ∈ R.

We rewrite the above relation as per below

[(Dq−1(σq−1(x)))[y, z]σ,τ − (Dq−1(σq−1([y, z]σ,τ )))(x)), r]σ,τ + [(Dq−2(σq−2(x)))[y, z]σ,τ

− (Dq−2(σq−2([y, z]σ,τ )))(x)) + · · ·+ (xdq−1(τ q−1([y, z]σ,τ )− [y, z]σ,τd
q−1(τ q−1(x))

∓ ([Dn−1(σn−1(x)))[y, z]σ,τ −Dn−1(σn−1([y, z]σ,τ )))(x) + · · ·+ xdn−1(τn−1([y, z]σ,τ )

− [y, z]σ,τd
n−1(τn−1(x))∓ [x, [y, z]σ,τ ]σ,τ , r]σ,τ = 0, x, y, z, r ∈ R.
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In the same manner as Theorem 3.8, we find that

[(Dq−1(σq−1(x)))[y, z]σ,τ − (Dq−1(σq−1([y, z]σ,τ )))x), r]σ,τ ∈ Z(R),

for all x, y, z, r ∈ R. Obviously, according to Lemma 3.7(ii), we obtain

Dq−1(σq−1(x)))[y, z]σ,τ − (Dq−1(σq−1([y, z]σ,τ )))x ∈ Z(R),

for all x, y, z ∈ R. Then

[Dq−1(σq−1(x)))[y, z]σ,τ , r]σ,τ − [Dq−1(σq−1([y, z]σ,τ ))x, r]σ,τ = 0,

for all x, y, z, r ∈ R. Again, as dependent on the same technique as used in Theorem 3.8, we
get

[Dq−1(σq−1([y, z]σ,τ ))x, r]σ,τ ∈ Z(R),

which implies to [Dq−1(σq−1(x))[y, z]σ,τ , r]σ,τ ∈ Z(R). In agreement with Lemma 3.7(ii) on
the second relation above, we achieve Dq−1(σq−1(x))[y, z]σ,τ ∈ Z(R). Apparently, we get
[Dq−1(σq−1(x))[y, z]σ,τ , r]σ,τ = 0, for all x, y, z, r ∈ R. Possibly, we can rewrite the above relation
as

Dq−1(σq−1(x))[[y, z]σ,τ , r]σ,τ + [Dq−1(σq−1(x)), r]σ,τ [y, z]σ,τ = 0.

We put a = [Dq−1(σq−1(x)), r]σ,τ [y, z]σ,τ and b = Dq−1(σq−1(x))[[y, z]σ,τ , r]σ,τ , and by applying
the same method as in Theorem 3.8 to above relation, we obtain

[Dq−1(σq−1(x)), r]σ,τ [y, z]σ,τ ∈ Z(R).

Replacing r with z and y withDq−1(σq−1(x)), as dependent on Lemma 2.4, we gain 2[Dq−1(σq−1(x)), z]σ,τ
= 0 for all x, z ∈ R. Conforming to the fact that R is a 2-torsion free semiprime ring throug the
use of Lemma 3.7(ii), we have that Dq−1(σq−1(x)) ∈ Z(R), for all x ∈ R. In other words, we
achieve Dq−1(σq−1(R)) ∈ Z(R). Also, in a similar way we gain Dn−1(σn−1(R)) ∈ Z(R), which
completes the proof of branch (i) of the theorem.

The proof of branch (ii) is straightforward in manner.

Proposition 3.17. Let R be a 2-torsion free semiprime ring, and σ and τ be two automorphism
mappings of R. Suppose that there exists a (σ, τ)-generalized derivation D, and the mappings
σ and τ commute with D and d such that Dq([x, y]σ,τ )∓Dn([x, y]σ,τ )∓ (xoy)σ,τ ∈ Z(R) for all
x, y ∈ R, and the square of each element of R lies in Z(R), where n and q are fixed positive
integers.

Proof. Conforming to the hypothesis, we have that Dq([x, y]σ,τ )∓Dn([x, y]σ,τ )∓(xoy)σ,τ ∈ Z(R)
for all x, y ∈ R. When we replace y by x with depend on the fact that R be a 2-torsion free
semiprime ring, and σ and τ act as automorphism mappings of R, and we obtain x2 ∈ Z(R)
for all x ∈ R, the result we desire.

Using a similar approach as above, we can prove the following.

Proposition 3.18. Let R be a 2-torsion free semiprime ring, and σ and τ be two automorphism
mappings of R. Suppose that there exists a (σ, τ)-generalized derivation D, and the mappings
σ and τ commute with D and d such that Dq(xoy)σ,τ ∓ Dn(xoy)σ,τ ∓ [x, y]σ,τ ∈ Z(R) for all
x, y ∈ R, then Dq(x2)∓Dn(x2) ∈ Z(R), where n and q are fixed positive integers.

We close the paper with the following theorem.
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Theorem 3.19. Let R be a semiprime ring, and σ and τ be two automorphism mappings of R.
Suppose that there exists a (σ, τ)-generalized derivation D, and the mappings σ and τ commute
with D and d such that D2(R) = 0, then

∏n+1
i=0 d

i(R) = 0, where n is a fixed non-negative
integer.

Proof. As per the situation in the hypothesis, we have D2(R) = 0. Then, for all x, y ∈ R, we
have D(D(x)σ(y) + τ(x)d(y)) = 0. After that,

D(x)2σ2(y) + τ(D(x))d(σ(y)) +D(τ(x))σ(d(y)) + τ 2(x)d2(y) = 0.

According to the main relation D2(R) = 0, the above relation reduces to

τ(D(x))d(σ(y)) +D(τ(x))σ(d(y)) + τ 2(x)d2(y) = 0. (33)

Since we suppose that the mappings σ and τ commute with D and d, relation (33) becomes
D(τ(x))d(σ(y)) +D(τ(x))d(σ(y)) + τ 2(x)d2(y) = 0. Obviously, we gain

2D(τ(x))d(σ(y)) + τ 2(x)d2(y) = 0. (34)

By replacing x by D(x) with depend on the facts that D2(R) = 0 and the mappings σ and
τ acts as automorphism of R. From relation (34), we get D(x)d2(y) = 0. Replacing x by
xr, r ∈ R, using the fact that the mappings σ and τ act as automorphism of R in the above
relation, we get that D(x)rd2(y) + xd(r)d2(y) = 0. Replacing r with d2(y), as dependent on
the result D(x)d2(y) = 0, we obtain xd(d2(y))d2(y) = 0. Right-multiplying by d(y)y and left-
multiplying by (dn+1(y)dn(y)dn−1(y) · · · ) and applying the fact that R is a semiprime ring, we
get

∏n+1
i=0 d

i(R) = 0. This is the result which is required.

Remark 3. In previous results, we can not exclude the condition “n-torsion free”, as below.

Example 3. Let R=M2(F) be a ring of 2 × 2 matrices over a field F, that is R = M2(F) ={(
a b
0 0

)∣∣∣∣ a, b ∈ F
}

, with char R = n. For all x ∈ R, let the additive map D(x) =

(
a 0
0 0

)
and d(x) = [x, a] = x

(
0 0
0 1

)
−
(

0 0
0 1

)
x =

(
0 b
0 0

)
. Also, we define the mappings σ and

τ as follows σ(x) =

(
a b
0 0

)
, τ(x) =

(
a 0
0 0

)
. Take x, y ∈ R such that x =

(
a b
0 0

)
and

y =

(
g h
0 0

)
, where we know that the additive mapping D is a (σ, τ)-generalized derivation

which has the formula D(xy) = D(x)σ(y) + τ(x)d(y) for all x, y ∈ R. The left side produces

D(xy) = D

(
ag ah
0 0

)
=

(
ag 0
0 0

)
. Moreover, the right side gives

D(x)σ(y) + τ(x)d(y) =

(
a 0
0 0

)(
g h
0 0

)
+

(
a 0
0 0

)(
0 h
0 0

)
=

(
ag 2ah
0 0

)
.

By reason of R having char R = n, then the above matrix can be modified to =

(
ag 0
0 0

)
.

Obviously, the sides are equal to each other, i.e., the above formula is satisfied.

Acknowledgement. The authors are greatly indebted to the referee for her/his careful
reading of the paper.

19



References
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[21] Ö. Gölbaşı and E. Koç, Some commutativity theorems of prime rings with gener-
alized (σ, τ)-derivation, Commun. Korean Math. Soc. 26(3) (2011), 445-454, DOI:
0.4134/CKMS.2011.26.3.445.

[22] I.N. Herstein, A note on derivations, Canad. Math. Bul. 21(1978), 369-370.

[23] H. Pajoohesh, Positive derivations on lattice ordered rings of matrices, Quaestiones Math-
ematicae 30(2007), 275-284.

[24] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(1957), 1093-1100.

[25] J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc.
109(1990), 47-52.

[26] J. Vukman, Derivations on semiprime rings, Bul. Austral. Math. Soc. 53(1995), 353-359.

[27] A. Nowise, Integral derivations, Journal of Algebra 110 (1) (1987) 262-276.

[28] M.Van der Put, and M.F.Singer, Galois theory of difference equations, Lecture Notes in
Math. 1666, Springer (1997).

[29] M.A. Quadri, Khan. M.S. and N. Rehman,Generalized derivations and commutativity of
prime rings, Indian J. Pure and Appl. Math. 34 (9) (2003),1393-1396.

[30] V.K. Kharchenko, Differential identities of prime rings, Algebra i Logika 17 (2) (1978),
220-238.

[31] S.Suzuki, Some types of derivations and their applications to field theory, J. Math. Kyoto
Univ.21(2)(1981),375-382.

[32] L. Taelman, Dieudonne determinats for skew polynomial rings, eprint arXiv.
RA/0304478v129(2003),1-4.
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[39] A. Fošner and J. Vukman, Identities with generalized derivations in prime rings, Mediter-
ranean J. Math.9(2012), 847863.

[40] J. Vukman,Identities related to derivations and centralizers on standard operator algebras,
Taiwanese J. Math. 11 (2007), 255265.

[41] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11
(2007), 367370.

[42] V. De Filippis, Generalized derivations as Jordan homomorphisms on lie ideals and right
ideals, Acta Math. Sinica (Engl. Ser.)25 (2009) 19651974.

[43] J. Ma, X. W. Xu and F. W. Niu, Strong commutativity-preserving generalized derivations
on semiprime rings, Acta Math. Sinica (Engl. Ser.) 24 (2008), 18351842.

[44] J.F.Ritt, Differential Algebra, Amer. Math. Soc. Colloq. Publ., Vol33, New York, 1950.

[45] I.N. Herstein, A note on derivations, Canad. Math. Bul.21(1978), 369-370.

[46] J. Vukman,Identities with derivations and automorphisms on semiprime rings, Int. J.
Math. Math. Sci. 7 (2005), 1031-1038.
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