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Abstract – Malicious URL is the URL created for harmful 
purposes which contains spam, phishing, misleading 
applications like fake antiviruses or fake codecs. The use of this 
kind of URLs might lead to monetary loss, theft of sensitive 
information such as personal details or corporate data, 
disruption of operations, unauthorized access to system 
resources etc. Often these websites are built to look like a 
genuine website to deceive the users in installing malicious 
content in their systems. As per NetCraft January 2018 web 
server survey, there are 1.8 billion sites across 213 million 
unique domain names. According to Symantec Internet Security 
Threat Report 2018, 1 in 13 web requests lead to malware which 
is up 3% from 2016. Sudden rise of cyber-attacks in recent years 
makes this problem indispensable for both private and public 
organizations.  
 
The primary objective of the paper is to provide a near 
exhaustive set of meaningful features that can help professionals 
and practitioners to facilitate their own research and practical 
applications on malicious URL filtering. These features are 
systematically classified and described in keyword-based 
features, lexical features, content-based features (HTML and 
JavaScript), IP Address Properties based features, web-rank 
and score-based features.  This paper also briefly discusses on 
how URL filtering techniques have evolved in the past. The 
paper talks about traditional techniques like blacklisting URLs, 
heuristic approaches while also highlighting the shortcomings of 
these approaches. We then touch upon newer machine learning 
based techniques like cosine similarity-based URL 
classification, Support Vector Machines and Neural Network 
based models.  
Keywords - Cyber Security, URL filtering, machine learning, 
feature engineering, algorithms, cosine similarity, support 
vector machines, neural network 

I. INTRODUCTION 
Earlier internet was mostly used for searching information 

but today it has touched and impacted variety of domains like 
online banking, ecommerce, social networking. The 
globalization of the Internet has occurred faster than anyone 
could have imagined.  It was not until March 2016 that the 1 
billion websites mark was broken. Today the number has 
reached 1.8 billion sites across 213 million unique domain 
names [1].  

With the increasing importance of internet usage, the 
events of cyber-attacks, phishing, spamming has also 
increased tremendously. According to Symantec Internet 
security threat report 2018 [2], one in thirteen web requests 
lead to malware which is up 3% from 2016. With Internet of 
things and other distributed applications, a single threat or 
attack could lead to a chain reaction of system failures, data 
loss or monetary loss. 

Some of the most common types of attacks seen today 
include a) Malware: It’s a harmful software such as viruses 
and ransomwares. Once it gets foothold in one’s machine it 
can take form of executable code, script or active content 
which can create all sorts of havoc from taking control of the 
attacked machine to monitoring its action and keystrokes. It 
can also send confidential data from attacked machine or 
network to attacker’s home base, b) Phishing: It’s a creative 
tactic used by cyber attackers to compel the user to download 
and install malicious content on their machine. An attacker 
may send this content using a legitimate looking email or a 
website. Since phishing attacks leverage human curiosity and 
impulses, these are hard to prevent, c) SQL Injection Attack: 
Many of the servers store critical data for websites and 
services and use SQL to manage the data in their databases. 
SQL Injection Attack works by exploiting any one of the 
known SQL vulnerabilities that allow SQL code to run 
malicious code. For example, an attacker knowing the 
vulnerability, may inject a SQL code in website’s search box 
that would force the site's SQL server to dump all of its stored 
usernames and passwords for the site, d) Denial-of-Service: 
During denial-of-service (DoS) attack, a website is flooded 
with more traffic than it was built to handle which overloads 
the website's server. It almost becomes impossible for website 
to serve its content to unexpected high number of visitors 
trying to access it. These DoS attacks are in many instances 
performed by multiple computers at the same time. This 
scenario of attack is known as a Distributed Denial-of-Service 
Attack (DDoS). Identifying source of DDoS attack is even 
more difficult as many different IP addresses around the world 
simultaneously attack the network, e) Session Hijacking and 
Man-in-the-Middle Attacks: While a user is browsing on 
internet or when user is logged into a website with username 
and password, a unique session id is created which should stay 
private between the two parties. In Session Hijacking an 
attacker hijacks the session by capturing the session ID and 
posing as the computer making a request, allowing them to log 
in as an unsuspecting user and gain access to unauthorized 
information on the web server. An attacker can also opt to 
hijack the session to insert themselves between the requesting 
computer and the remote server, pretending to be the other 
party in the session. This allows them to intercept information 
in both directions and is commonly called a man-in-the-
middle attack. 

Few prominent cyber-attacks in the past a) WannaCry: It 
was a ransomware attack that spread rapidly in May of 2017. 
It took over the infected machines and encrypted all the 
contents of their hard drives, then demanded a payment in 
Bitcoin in order to decrypt them [3], b) Equifax: The massive 
credit rating agency announced in July of 2017 that "criminals 
exploited a U.S. website application vulnerability to gain 
access to certain files," getting personal information for 



almost 150 million people[4]. c) Yahoo: Yahoo's email system 
hack actually happened way back in 2013 — but the severity 
of it, with all 3 billion Yahoo email addresses affected, only 
became clear in October 2017. Stolen information included 
passwords and backup email addresses, encrypted using 
outdated, easy-to-crack techniques, which is the sort of 
information attackers can use to breach other accounts[5]. d) 
GitHub: On February 28, 2018, the version control hosting 
service GitHub was hit with a massive denial of service attack, 
with 1.35 TB per second of traffic hitting the popular site[6]. 
e) Target: Hackers stole data from up to 40 million credit and 
debit cards of shoppers who visited its stores during the first 
three weeks of the holiday season in the second-largest such 
breach reported by a U.S. retailer[7][8]. 

With ever increasing use of internet, supported devices, 
IOT and its combined users it has become crucial to have a 
robust system in place to prevent cyber-attacks. One crucial 
aspect of preventing cyber-attacks is to have an efficient and 
accurate URL Filtering system in place for both public and 
private organizations as well as personal users. Users spend 
increasing time on the web on various activities like surfing 
favorite sites, clicking on email links or utilizing web-based 
SaaS applications for both personal and business use. This 
kind of non-monitored web activity exposes organizations as 
well as individuals to a range of security and business risks, 
such as propagation of threats including malwares and 
ransomwares, data loss and potential lack of compliance. 
Web-filtering systems are either client or server based. A 
client-based system performs web content filtering solely on 
the computer where it is installed, without consulting remote 
servers about the nature of the web content that a user tries to 
access. A server-based system provides filtering to computers 
on the local area network where it is installed. It screens 
outgoing Web requests, analyzes incoming Web pages to 
determine their content type, and blocks inappropriate 
material from reaching the client’s Web browser [9]. Many 
URL Filtering systems are commercially available in the 
market. However, the techniques used by these systems are 
not accurate enough and do not adapt well to ever changing 
web attacks. Hence, there is a constant need and opportunity 
to build a better URL-Filtering system. 

 

In this paper we throw light on how URL filtering 
techniques have evolved from traditional techniques like 
blacklisting URLs, heuristic approaches to newer machine 
learning based techniques like cosine similarity-based URL 
classification, Support Vector Machines and Neural Network 
based models. The primary focus of this paper is to provide a 
near exhaustive set of informative features that can help 
professionals and practitioners to facilitate their own research 
and practical applications on URL filtering.  

 

II. MACHINE LEARNING FEATURES 
The data that a machine learning expert use and the way it 

is used, will likely define the success of predictive modeling 
problem. Data and the framing of a machine learning problem 
is point of biggest leverage on one’s problem. The term data 
in machine learning context has two dimensions to it, first the 
depth that is the number of observations you have. One should 
perform sensitivity analysis to identify how much (or little) 
data is needed. Second is spread, that is the measurable 

property or characteristic of different patterns and phenomena 
being observed across observations. These numeric and 
sometimes string coded information are called Features. One 
should find relevant information to create variety of features 
and test each of them. Without testing these features in a 
model one won’t know what variables will be helpful in your 
predictive modeling problem. Based on extraction process, 
features could be further classified as static and dynamic. 
Static features are those which can be obtained directly from 
the URL information like lexical and host-based features, 
whereas to get the dynamic features, one has to crawl and 
process the web content. 

A. Blacklist Features 
Blacklist process is easy to use and implement, though it 

is difficult to maintain an exhaustive list of blacklists which 
results to significant number of false positive cases. Anyway, 
if used in collaboration with other features, blacklist features 
can lead to significant improvement in result of URL filtering 
[14]. 

• Blacklist sources- Phishtank, operated by OpenDNS 
is a blacklist of phishing URLs [15] which is free to 
use. Other sources could be the list provided by 
Google, Cisco, Yahoo, Alexa 

• To avoid detection via blacklisting, many attackers 
modify the original URL a little bit. The problem can 
be avoided by extending the blacklist. This can be 
achieved by deriving new URLs based on the 
following five heuristics [16]: 

o Replacing top-level domains 

o IP address equivalence 

o Directory structure similarity 

o Query string substitution 

o Brand name equivalence 

B. Lexical Features 
These features can be extracted from the URL string itself. 

URL is Uniform Resource Locator which is the global address 
of the documents and other resources in the world wide web. 
There are two main segments of a URL: (a) the protocol: 
indicates which protocol to use, http:// or https://, (b) the 
resource name: specifies the IP address or the domain name 
where the resource is located.  

• Length of the URL 

• Length of each of the components of the URL- It 
considers taking the length of hostname, top-level 
domain name, primary domain name etc. separately.  

• Number of special characters present in the URL 

• Bag of words model- Based on all possible words, 
could be present in an URL string, a dictionary can 
be created, and each word can be regarded as feature. 
If the word is present in the URL then the value of 
the feature can be 1, else 0.  

• Distinction of tokens- This approach talks about the 
same bag of words model but separate dictionary for 
hostname, path, top-level-domain, primary domain. 
The distinction would allow for preserving some of 



the order in which the words occurred. For example, 
it allows us to distinguish between the presence of 
word “com” in the top-level domain compared to the 
other parts of the URL. 

• Bi-gram features- The presence of set of two words 
along with the single words in the URL is considered 
to be a feature [17]. 

• N-gram features- It is a feature selection scheme 
based on relative entropy to reduce dimensionality 
where n > 2 [18]. 

• Analyze character level strings to obtain features- 
Hackers can generate new URLs algorithmically, 
detection of which becomes difficult using only bag 
of words. The idea is algorithmically generated 
URLs and human generated URLs have different 
alpha-numeric distribution [19]. The number of 
features, thus obtained, are small as the number of 
characters is small. A few methods like KL-
divergence, Jaccard coefficient and edit-distance 
using unigram and bigram distribution of characters. 

• Directory related features- length of directory, 
number of subdirectory tokens can be considered as 
features for this category [20]. 

• File name features- length of the filenames, number 
of delimiters [20]. 

• Argument features- length of the argument, number 
of variables [20]. 

C. Web Content Based Features 
Instead of using bag of words for each document, web 

content and structure analysis suggests representing each web 
page by a limited number of content and link features, which 
reduces the dimensionality of the classifier. The relevance and 
quality of a webpage can be reflected in the following aspects 
[21]: 1) the content of the page itself, 2) the content of the 
neighboring documents of the page, 3) link information of the 
page. 

1) Page content- All the terms extracted from the title and 
the body of a webpage, say p. These terms will be compared 
with the domain lexicon [22].   Hence two feature scores can 
be determined from here: 

• Title(p): number of the terms present in the title of the 
webpage p, found in the domain lexicon 

• TFIDF(p): sum of TFIDF scores of the terms in the 
webpage p, found in the domain lexicon 

2) Page content of the neighbors- Three types of neighbors 
for a webpage p, are considered- (a) incoming: Suppose a, b 
are two webpages which have hyperlink pointing to p. Then, 
a and b are called incoming (parent) neighbors for p, (b) 
outgoing: Suppose, e, f are the webpages mentioned in p as 
hyperlinks. Then, e and f are outgoing neighbors for p, (c) 
siblings: Sibling pages are those pages that are pointed by any 
of the incoming neighbors of p. Suppose, webpage a points to 
webpage p and h as hyperlinks. Then p and h are known to be 
siblings. Two scores of the neighboring documents are 
calculated similar to those created in the previous aspect: 

• InTitle(p): average of number of terms in the title of 
webpage a found in domain lexicon, for all a which 
are incoming neighbors of p 

• InTFIDF(p): average of the sum of TFIDF of the 
terms in webpage a found in domain lexicon, for all 
incoming a of p 

• OutTitle(p): average of number of terms in the title 
of webpage e found in domain lexicon, for all e. 
which are outgoing neighbors of p 

• OutTFIDF(p): average of the sum of TFIDF of the 
terms in webpage e found in domain lexicon, for all 
outgoing neighbors e of p 

• SiblingTitle(p): average of the number of terms in 
webpage h found in domain lexicon, for all h which 
are siblings of p 

• SiblingTFIDF(p): average of the sum of TFIDF of 
the terms in the webpage h found in domain lexicon, 
for all h which are siblings of p 

3) Link Analysis- Web link structure is useful to 
understand the quality of a webpage. The webpage a has a link 
pointing to another webpage b means, the author of a believes 
b is a kind of webpage similar to a. Usually, the higher the 
number of in-links, the better a page is considered to be. 
Several methods have been developed in order to determine 
the relevance and importance of the page. Pagerank and HITS 
algorithms are the two most widely used. 

Pagerank algorithm [23] is used by google search to rank 
the websites in their search engine results, which is a 
recursively defined result with the underlying assumption that, 
a page becomes important if other important pages are linked 
with it. Suppose, a random surfer on the web, is following 
links from page to page. The probability that the random surfer 
will land on a particular page is the pagerank of that page. The 
behavior of the random surfer is an example of Markov 
process, which depends only on the current state of a system 
and not on its history. Pagerank of a page p can be determined 
as, 

𝑃𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑝) = (1 − 𝑑)

+ 𝑑 0 1
𝑃𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑞)

𝑐(𝑞) 4
566	8	69:;9:<	=>	?

 

 

Where d: the damping factor between 0 and 1. The idea is 
at any moment, the random surfer can stop searching and, 
c(q): number of outgoing links in q. 

The pagerank score of each webpage has to be calculated 
iteratively which makes it computationally complex. 

HITS (Hyperlink-Induced Topic Search) algorithm was 
proposed by Jon M. Kleinberg [24] is another link analysis 
algorithm which rates webpages. According to this algorithm, 
there are high quality pages related to any topic which are 
known as authority pages and there are a few pages which are 
not as rich in information as the authority pages are, but they 
point to other authority pages. These are called hub pages. A 
page is represented as a good authority page if it is pointed by 
many different hubs and a good representation of a hub page 
is that points to other authority pages. 



On this idea, hub score and authority score for each 
webpage can be formulated as below: 

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒(𝑝) = 	 0 (𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒(𝑞))
566	8	69:;9:<	=>	?

 

 

𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒(𝑝) = 	 0 (𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒(𝑟))
566	J	69:;9:<	=>	?

 

To incorporate the above ideas in the link analysis, a few 
scores for a webpage say, p, could be thought of which are as 
follows: 

• Pagerank(p): pagerank score of p 

• Hub(p): Hub score of p calculated by the HITS 
algorithm 

• Authority(p): Authority score of p calculated by the 
HITS algorithm 

• Inlinks(p): Number of incoming links pointing to p 

• Outlinks(p): Number of outgoing links from p 

• Anchor(p): Number of terms in the anchor texts in a 
page p found in the domain lexicon 

D. HTML Content Features 
HTML Content based features are extracted from the 

HTML object the URL is pointing. These features could be 
very useful in determining presence of malicious contents but 
could be little difficult to generate these features on real time. 
Following table summarizes the different HTML content-
based features that could be generated from the HTML 
content. 

TABLE I: HTML Content Based Features 

S.No Feature Description 

1 Length Of the document 

2 Average Length of the words 

3 Word Count 

4 Distinct Word Count 

5 Word Count in a line 

6 Number of null characters 

7 Usage of string concatenation 

8 Unsymmetrical HTML tags 

9 Link to remote source of scripts and invisible objects 

10 Number of hyperlinks 

11 Number of elements with a small area 

12 Number of elements with suspicious content 

13 Number of out of place elements 

14 Presence of double documents 

 

• Length of the document- Given an URL and the page 
pointed by the url, this feature calculates the length of 
the document for the page. Malicious web pages may 
have very different distribution of document lengths as 
compared to benign web pages. 

• Length of words- Given the content of the web page, 
summary statistics of word length could be computed. 
Average word length, median word length and 3rd 
quartile value of word length could serve as important 
features. Certain obfuscation techniques that are used 
in malicious pages results in unusually large and 

concatenated words, thus median or mean word length 
in a malicious vs. a non-malicious page could be 
significantly different. 

• Word count in a line- Average number of words per 
line in the web page and distinct word count in a web 
page could also reflect if the page is benign or 
malicious. These features are easier to calculate and 
widely used and should be considered as baseline 
features for any such model aiming to perform 
malicious webpage filtering. 

• Number of NULL characters- Researches have 
observed the distribution of NULL space in a benign 
webpage could be very different from that of malicious 
web page. Average number of NULL spaces per line, 
total number of NULL space in a page could serve as 
content based features in this context. 

• Usage of string concatenation- Paper [25] proposes 
creation of features to measure extent of string 
concatenation in web pages. The paper also 
demonstrates examples of encryption methods where 
hackers store certain malicious code within some 
string variable and when they need to execute those 
encrypted parts unescape()  function is invoked within. 
Such encryption methods often result in large 
concatenated strings; thus extent of string 
concatenation could serve as an important feature 
while distinguishing between malicious Vs. non-
malicious web pages 

• Number of elements with small area- In [26], the 
researchers explained when the attackers aim at 
launching a drive -by-download infections they try to 
hide most of the elements on purpose. In this kind of 
attacks, visibility attributes are not used to hide the 
elements rather they set width and height of elements 
used to deliver the attack to very small values. In this 
paper [26] the researchers propose a feature that counts 
the number of elements of type div, iframe or object 
whose dimension is less than a certain threshold, in 
their study they experimented with – 30 square pixels 
for the area or 2 pixels for each side. 

• Number of elements containing suspicious content- In 
[26] the researchers tried to come up with a measure of 
suspiciousness. The presence of shellcodes between 
the start tag and end tag is considered as suspicious if 
it is no longer than a certain threshold (128 characters) 
and contains less than 5% of whitespace characters. 
Count of such suspicious elements in a web page could 
serve as an important feature here. 

• Number of out of place elements- In the paper [26] 
researchers have talked about another interesting 
feature which could be created based on the distorted 
positioning of certain objects. This feature counts the 
number of elements that reside out of their natural 
positioning in the HTML document. This feature is 
useful to detect web pages that have become malicious 
as the result of a stored XSS or SQL injection attack. 
In these cases, it is common to see scripts or iframes 
included in strange positions, such as between title tags 
or after the end of the document (outside the body or 
html elements). iframe, frame, form, script, object 
embed element positions are checked according to the 



allowed positioning, as defined by the HTML DTD 
specifications. 

• Number of included URLs- This feature proposed in 
[26] counts the number of elements which, being not 
inline, are included specifying their source location. 
Elements such as script, iframe, frame, embed, form, 
object are considered in computing this feature, 
because they can be used to include external content in 
a web page. The img elements and other elements are 
not considered, as they cannot be used to include any 
executable code 

• Presence of double documents- This feature [26] 
indicates whether a web page contains two or more 
html, head, title, or body elements. This is not allowed 
by the HTML specification but can be seen in certain 
malicious web pages as a side-effect of the com- 
promise of a web site. 

 

E. JavaScript Content Features 
JavaScript [27] is a dynamic client-side scripting language 

used to create content for the Web along with HTML and CSS. 
It is used by the most of the Websites and supported by all the 
modern Web browsers. It is widely used to develop the 
interactive Web pages. However, in recent years JavaScript 
has become the most common and successful attack 
construction language. The malicious JavaScript can be 
inserted in a Web page and will run when the page is loaded 
in any browser. It will evade security tools such as a firewall 
and antivirus software. Cyber criminals regularly manipulate 
the code on countless websites to make it perform malicious 
functions. JavaScript is such a dynamic programming 
language that its improper implementations can create 
backdoors for attackers. When users visiting a website, 
JavaScript files are downloaded automatically. Due to the 
users’ strong habits of online browsing, cyber criminals easily 
target such users for exploitation. 

A malicious JavaScript consists of suspicious functions 
and patterns which tend to certain attacks like drive-by-
downloads, XSS and malware distribution. Table II has 
features used by different researchers for the detection and 
analysis of benign and malicious Java Scripts 
[28][29][30][31]. 

TABLE II: JavaScript Features 

S.No JavaScript Function Description 

1 eval() The number of eval() functions 

2 setTimeout() The number of setTimeout() functions 

3 Iframe The number of strings containing “iframe” 

4 unescape() The number of unescape() functions 

5 escape() The number of escape() functions 

6 Classid The number of classid 

7 parseInt() The number of parseInt() functions 

8 fromCharCode() The number of fromCharCode() functions 

9 ActiveXObject() The number of ActiveXObject() functions 

10 No. of string direct assignments The number of string direct assignments 

11 concat() The number of concat() functions 

12 indexOf() The number of indexOf()functions 

13 substring() The number of substring() functions 

14 replace() The number of replace() functions 

15 document.addEventListener() The number of 
document.addEventListener() functions 

16 attachEvent() The number of attachEvent() functions 

S.No JavaScript Function Description 

17 createElement() The number of createElement() functions 

18 getElementById() The number of getElementById() functions 

19 document.write() The number of document.write() functions 

20 JavaScript word count The number of words in JavaScript 

21 JavaScript Keywords The number of JavaScript keywords 

22 No. of characters in JavaScript The number of characters in JavaScript 

23 The ratio between keywords and words The ratio between keywords and words 

24 Entropy of JavaScript The entropy of the script as a whole 

25 Length of Longest JavaScript Word The length of the longest JavaScript word 

26 The No. of Long Strings >200 The number of long strings(>200) 
characters 

27 Length of shortest JavaScript Word The length of the shortest JavaScript word 

28 Entropy of the Longest JavaScript 
Word The entropy of the longest JavaScript word 

29 No. of Blank Spaces The number of blank spaces in the 
JavaScript 

30 Average Length of Words Average length of words in the JavaScript 

31 No. Hex Values The number of hex values used in the 
JavaScript 

32 Share of space characters The share of the space characters in the JS 

 

Number Malicious JavaScript’s are mostly in the 
obfuscated form. Attacker uses obfuscation techniques to hide 
the real identity of JavaScript from the user and browser. 
Obfuscated malicious JavaScript mainly uses combination of 
digits (0-9), hex values and special characters like % , (, ), ;, 
#, |, [, ], {, }, ., etc. Also, such scripts uses suspicious 
JavaScript functions like split(), setAttribute(), charAt(), 
charCodeAt(), decode(), toString() etc. To explore such 
scripts, researchers [26] have identified a set of new features 
given below in Table III, 

TABLE III: JavaScript Based Advanced Features 

S.No JavaScript Function Description 

1 search() The number of search() functions 

2 split() The number of split() functions 

3 onbeforeunload The number of onbeforeunload events 

4 onload The number of onload events 

5 onerror() The number of onerror() functions 

6 onunload The number of onunload events 

7 onbeforeload The number of onbeforeload events 

8 onmouseover The number of onmouseover events 

9 dispatchEvent The number of dispatchEvent events 

10 fireEvent The number of fireEvent events 

11 setAttribute() The number of setAttribute() functions 

12 window.location() The number of window.location() functions 

13 charAt() The number of charAt() functions 

14 console.log() The number of console.log() functions 

15 .js The number of external JavaScript files 

16 .php The number of .php files 

17 var The number of var keywords used in the JavaScript 

18 function The number of function keywords used in the 
JavaScript 

19 Math.random() The number of Math.random() functions 

20 charCodeAt() The number of charCodeAt() functions 

21 WScript The number of WScript used in the JavaScript 

22 decode() The number of decode() functions 

23 toString() The number of toString() functions 

24 No. of Digits The number of digits used in the JavaScript 

25 No. of Encoded Characters The number of encoded characters used in the 
JavaScript 

26 No. of backslash 
Characters 

The number of backslash characters used in the 
JavaScript 

27 No. of Pipe Characters The number of pipe(|) characters used in the JavaScript 

28 No. of % Characters The number of % characters used in the JavaScript 

29 No. of ‘(‘ Characters The number of ‘(‘ characters used in the JavaScript 

30 No. of ‘)’ Characters The number of ‘)’ characters used in the JavaScript 

31 No. of ‘,’ Characters The number of ‘,’ characters used in the JavaScript 



S.No JavaScript Function Description 

32 No. of ‘#’ Characters The number of ‘#’ characters used in the JavaScript 

33 No. of ‘+’ Characters The number of ‘+’ characters used in the JavaScript 

34 No. of ‘.’ Characters The number of ‘.’ characters used in the JavaScript 

35 No. of ‘ Characters The number of ‘ characters used in the JavaScript 

36 No. of ‘[‘ Characters The number of ‘[‘ characters used in the JavaScript 

37 No. of ‘]’ Characters The number of ‘]’ characters used in the JavaScript 

38 No. of ‘{‘ Characters The number of ‘{‘ characters used in the JavaScript 

39 No. of ‘}’ Characters The number of ‘}’ characters used in the JavaScript 

40 Share of Encoded 
characters Share of encoded characters in the JavaScript 

41 Share of Digits characters Share of digits in the JavaScript 

42 Share of Hex/Octal 
characters Share of hex/octal characters in the JavaScript 

43 Share of Backslash 
characters Share of backslash (\) characters in the JavaScript 

44 Share of Pipe (|) characters Share of pipe (|) characters in the JavaScript 

45 Share of % characters Share of % characters in the JavaScript 

 

F. Host Based Features 
These features describe properties of the Web site host as 

identified by the hostname portion of the URL. They allow us 
to approximate “where” malicious sites are hosted, “who” 
own them, and “how” they are managed. We examine the 
following sets of properties to construct host-based features: 

• WHOIS information- This includes domain name 
registration dates, registrars, and registrants. So, if a 
set of malicious domains are registered by the same 
individual, we would like to treat such ownership as 
a malicious feature. 

• Location - This refers to the host’s geography, IP 
address prefix and autonomous system (AS) 
number. So, if malicious URLs tend to be hosted in 
a specific IP prefix of an Internet service provider 
(ISP), then we want to account for that disreputable 
ISP when classifying URLs. 

• Connection speed - If some malicious sites tend to 
reside on compromised residential machines 
(connected via cable or DSL), then we want to 
record the host connection speed. 

• Membership in blacklists - Over our experiments, 
55% of malicious URLs were present in blacklists. 
Thus, although this feature is useful, it is still not 
comprehensive. 

• Other DNS-related properties - These include time-
to-live (TTL), spam-related domain name heuristics 
(Rudd, 2007), and whether the DNS records share 
the same ISP. 

 

 

III. TRADITIONAL APPROACHES  
Various web filtering approaches have been taken to 

prevent the malicious attacks in the past like blacklisting 
techniques, keyword blocking etc. Blacklisting method 
requires to have an exhaustive list of suspicious webpages 
which is costly to maintain. Keyword blocking also, is prone 
to give dubious results. These methods are commonly used by 
most of the antivirus systems as they are easy to implement, 
simple and efficient in most of the cases. 

A. Blacklist and Whitelist Approach 
This approach maintains a database with the list of URLs 

which are identified as malicious or benign respectively. The 
moment a user requests a URL, a lookup task is triggered to 
check that URL within the blacklist database. A previously 
identified malicious URL will thus get blocked[10]. As many 
new URLs and webpages are being created every day, the 
database needs to be updated periodically to identify every 
other malicious URLs accurately. 

B. Keyword Blocking 
This approach uses a list of keywords identified in the 

known malicious URLs. If a URL contains certain number of 
such keywords, it will be considered as malicious[11]. The 
problem with this method is the meanings of the words depend 
on the context. For example, few words like breast, penis can 
be used in medical as well as pornographic context. Also, this 
approach can be easily bypassed by misspelling certain words 
which might be present in the list. 

C. Heuristics Approach 
This approach is an extension of blacklisting techniques 

and study also shows that heuristics-based techniques 
outperform blacklisting based techniques used by most web 
browsers [12].  Instead of creating a list of blacklisted URLs, 
this approach creates a signature of these URLs. These 
signatures could be identified in new URLs as well and hence, 
this technique is more generalized than traditional blacklisting 
techniques. But such methods can only be designed for a 
limited number of attacks and cannot generalize to all types of 
(novel) attacks. 

 

IV. MACHINE LEARNING BASED APPROACHES  
Since heuristics-based approaches have their 

shortcomings, machine learning based approaches described 
below are gaining more importance nowadays in order to 
come up with a robust system of URL filtering in place. These 
kinds of approaches require a good set of features, extracted 
from either the URL string itself or from crawling the 
webpage and web content. Formulation of the URL filtering 
problem, as discussed in this paper, is a two-class 
classification problem, a webpage is either classified as 
‘malicious’ or ‘benign’. For training such a classifier, a 
training data consisting of both known malicious and benign 
URLs are needed. 

A. Cosine Similarity Based Approach 
This approach uses cosine similarity algorithm for text 

classification which is eventually used to classify the URLs as 
malicious or benign. We use samples of known malicious 
URLs to characterize the class of webpages that must be 
blocked as our training set. A new URL that is “close” or 
“similar” to members of this class, is blocked and those that 
are “dissimilar” will be allowed. Each document in the 
training set is represented by a vector of frequency of the most 
frequent words. The similarity between two documents is 
calculated by the cosine of the angle of the corresponding 
vectors. If these two vectors are similar to each other, the angle 
between them would be smaller, which indicates the larger 
cosine value [13]. 



Let us assume, Á : set of known malicious URLs. This set 
needs to be updated at a regular interval. For a document T Î 
Á, vT : vector of relative frequencies is calculated after 
removing the stop words, low frequency words, words equal 
or shorter than two letter like ‘to’, ‘of’ etc.  

An appropriate threshold cosine value needs to be 
calculated to classify the test pages. In order to do this, we 
consider another set Á¢, consists of samples both inside and 
outside of the forbidden or malicious class. After measuring 
the similarity t between each element of Á¢ to Á, we calculate 
the percentage of documents that are correctly classified in Á¢. 
We choose the threshold for which we have the highest 
percentage of correctly classified document.  

For a test webpage W, we will calculate the cosine 
similarity with each member of  Á by cos(vO, vQ	), X  Î Á. 
S, the set of n% highest similarity values are found. Now the 
class coefficient sW is obtained by calculating the average of 
the n% similarity values. If  sW ≥ t, the threshold, then the 
page will be classified as malicious.  

If the page comes out to be a benign webpage, then the 
same exercise can be conducted on the randomly selected 
hyperlinks present in that webpage. If majority of the class 
coefficients are coming out to be malicious, then the webpage 
will be decided to be blocked. 

 

 
Fig. 1: Cosine Similarity Process Flow 

 

B. Support Vector Machines 
Support Vector Machines are widely used supervised 

learning algorithms. In case of two class classification 
problems, the algorithm tries to find a linear hyper-plane that 
separates the examples of different classes and maximizes the 
distance of the hyper-plane and the closest examples from 
different classes. When the data is not linearly separable in the 
given feature space, SVMs use a kernel function to map the 
data into a higher dimensional space and separate the data on 
the mapped dimension where it is possible to achieve a 

hyperplane separating the two classes. Given the non-linearity 
involved in the data, one can test out the different available 
kernel functions ( radial basis function, polynomial, gaussian 
etc) and choose the one which exploits the non-linearity in the 
data in the best possible way. 

For the case of malicious URL classification, as we will 
see in section no IV, the set of features are computed from 
various sources – the HTML content based features, lexical 
content based features etc. and in most cases the decision 
boundary that separates the malicious web pages from that of 
the non-malicious pages are non-linear in terms of the feature 
space. Thus SVMs could produce considerably good accuracy 
on this kind of problems. However, it has been observed for 
large datasets SVMs would require very long training hours 
and the memory requirement to store the kernel matrix is 
proportional to the number of training examples. So, these 
algorithms aren't feasible for large data sets. In the URL 
filtering problem, the feature set could be huge which requires  
considerable amount of training examples, which in turn 
would require long training hours and large amount of 
memory. 

C. Artificial Neural Network 
Artificial neural networks (ANNs) can learn and adapt 

according to training cases fed to them. Unlike many other 
prediction techniques, ANN does not impose any restrictions 
on the input variables. As every URL can be characterized 
using many variables including content based, rank variables, 
java/html code etc., ANN models prove effective in learning, 
modeling and generalizing non-linear and complex 
relationships among high dimensional input space with given 
output variables. ANNs can thus achieve high classification 
accuracy, however ANN training should involve a sufficiently 
large number of training examples, including both positive 
and negative cases. To train a robust ANN classifier one must 
help the network decide on the number of neurons in each 
layer, the network topology, the initial weights and the hyper 
parameters. 

 

 

V. POTENTIAL FRAMEWORK 
URL filtering problem is formulated as a two-class  

classification task for predicting “malicious” versus “benign” 
URLs. Specifically, given a data set with N URLs 
{(u1,y1),...,(uN ,yN )}, where ui for i = 1,...,N represents a URL 
from the training data, and yi ∈ {0, 1} is the corresponding 
label where yi = 1 represents a malicious URL and yi = 0 
represents a benign URL.  

The two major components for this system are, extracting     
the appropriate feature representation: ui→ xi where xi ∈ Rd 
is a d- dimensional feature vector representing the URL; and 
learning a classifier f : Rd →  R which predicts the class 
assignment for any test URL. 



 
Fig. 2: Architecture of the URL filtering system 

 

A. Data Preparation 
Static features like lexical and host-based features can be 

directly computed just using URL information. However, 
dynamic features require executing the URL and crawling the 
page content. The crawled raw data needs to be processed with 
methods like one-hot encoding, TFIDF, bag-of-words, bi-
gram or n-gram techniques etc. The end objective of the data 
preparation stage is to generate a feature vector coded 
numerically, representing all the characteristics of each URL. 

 

B. Model Building 
The goal of the machine learning model is to maximize the 

predictive accuracy. Accuracy should be defined as per the use 
case of an organization. For example, a highly data sensitive 
organization like commerce or banking would like the URL 
filtering system to decrease the false negative cases as much 
as possible.  

Another important metric of URL filtering system is the 
total run time required to make a prediction using machine 
learning model. This metric changes depending on where the 
system is installed, client-side or server-side. Machine 
learning experts need to take both predictive accuracy and run-
time into consideration while choosing a classifier for the 
system. 

C. Level of Complexity in the Feature Set 
Similar to classifier selection, feature selection will also 

play a role in determining the prediction accuracy and run 
time of the system. All the features discussed in section IV 
has the potential to improve classification accuracy but many 
of them need to be excluded for various reasons. Classifying 
a URL with a trained model built on static features is 
computationally less expensive compared to a model built on 
both static and dynamic features as for the latter case, the 
page content needs to be crawled and processed for running 
the classifier. Also, downloading page content could make 
the user’s machine vulnerable to threats. In Table IV, we are 
discussing the collection difficulty and time complexity for 
different feature types. 

 
Table IV. 

 
Features Collection Difficulty Collection Time 

Blacklist Moderate Moderate 
Lexical Easy Low 
Web-Content Based Features High High 
HTML Content Features Easy High 
Java Script Based Features Easy High 
Host Based Features Easy High 
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