

Machine Learning Features for Malicious URL
Filtering – The Survey

Arunita Das
Global Data And Analytics Platform

Walmart Labs
Bengaluru, India

arunita.das@walmart.com

Eshan Jain
Global Data And Analytics Platform

Walmart Labs
Bengaluru, India

eshan.jain@walmart.com

Smaranya Dey
Global Data And Analytics Platform

Walmart Labs
Bengaluru, India

smaranya.dey@walmart.com

Abstract – Malicious URL is the URL created for harmful
purposes which contains spam, phishing, misleading
applications like fake antiviruses or fake codecs. The use of this
kind of URLs might lead to monetary loss, theft of sensitive
information such as personal details or corporate data,
disruption of operations, unauthorized access to system
resources etc. Often these websites are built to look like a
genuine website to deceive the users in installing malicious
content in their systems. As per NetCraft January 2018 web
server survey, there are 1.8 billion sites across 213 million
unique domain names. According to Symantec Internet Security
Threat Report 2018, 1 in 13 web requests lead to malware which
is up 3% from 2016. Sudden rise of cyber-attacks in recent years
makes this problem indispensable for both private and public
organizations.

The primary objective of the paper is to provide a near
exhaustive set of meaningful features that can help professionals
and practitioners to facilitate their own research and practical
applications on malicious URL filtering. These features are
systematically classified and described in keyword-based
features, lexical features, content-based features (HTML and
JavaScript), IP Address Properties based features, web-rank
and score-based features. This paper also briefly discusses on
how URL filtering techniques have evolved in the past. The
paper talks about traditional techniques like blacklisting URLs,
heuristic approaches while also highlighting the shortcomings of
these approaches. We then touch upon newer machine learning
based techniques like cosine similarity-based URL
classification, Support Vector Machines and Neural Network
based models.
Keywords - Cyber Security, URL filtering, machine learning,
feature engineering, algorithms, cosine similarity, support
vector machines, neural network

I. INTRODUCTION
Earlier internet was mostly used for searching information

but today it has touched and impacted variety of domains like
online banking, ecommerce, social networking. The
globalization of the Internet has occurred faster than anyone
could have imagined. It was not until March 2016 that the 1
billion websites mark was broken. Today the number has
reached 1.8 billion sites across 213 million unique domain
names [1].

With the increasing importance of internet usage, the
events of cyber-attacks, phishing, spamming has also
increased tremendously. According to Symantec Internet
security threat report 2018 [2], one in thirteen web requests
lead to malware which is up 3% from 2016. With Internet of
things and other distributed applications, a single threat or
attack could lead to a chain reaction of system failures, data
loss or monetary loss.

Some of the most common types of attacks seen today
include a) Malware: It’s a harmful software such as viruses
and ransomwares. Once it gets foothold in one’s machine it
can take form of executable code, script or active content
which can create all sorts of havoc from taking control of the
attacked machine to monitoring its action and keystrokes. It
can also send confidential data from attacked machine or
network to attacker’s home base, b) Phishing: It’s a creative
tactic used by cyber attackers to compel the user to download
and install malicious content on their machine. An attacker
may send this content using a legitimate looking email or a
website. Since phishing attacks leverage human curiosity and
impulses, these are hard to prevent, c) SQL Injection Attack:
Many of the servers store critical data for websites and
services and use SQL to manage the data in their databases.
SQL Injection Attack works by exploiting any one of the
known SQL vulnerabilities that allow SQL code to run
malicious code. For example, an attacker knowing the
vulnerability, may inject a SQL code in website’s search box
that would force the site's SQL server to dump all of its stored
usernames and passwords for the site, d) Denial-of-Service:
During denial-of-service (DoS) attack, a website is flooded
with more traffic than it was built to handle which overloads
the website's server. It almost becomes impossible for website
to serve its content to unexpected high number of visitors
trying to access it. These DoS attacks are in many instances
performed by multiple computers at the same time. This
scenario of attack is known as a Distributed Denial-of-Service
Attack (DDoS). Identifying source of DDoS attack is even
more difficult as many different IP addresses around the world
simultaneously attack the network, e) Session Hijacking and
Man-in-the-Middle Attacks: While a user is browsing on
internet or when user is logged into a website with username
and password, a unique session id is created which should stay
private between the two parties. In Session Hijacking an
attacker hijacks the session by capturing the session ID and
posing as the computer making a request, allowing them to log
in as an unsuspecting user and gain access to unauthorized
information on the web server. An attacker can also opt to
hijack the session to insert themselves between the requesting
computer and the remote server, pretending to be the other
party in the session. This allows them to intercept information
in both directions and is commonly called a man-in-the-
middle attack.

Few prominent cyber-attacks in the past a) WannaCry: It
was a ransomware attack that spread rapidly in May of 2017.
It took over the infected machines and encrypted all the
contents of their hard drives, then demanded a payment in
Bitcoin in order to decrypt them [3], b) Equifax: The massive
credit rating agency announced in July of 2017 that "criminals
exploited a U.S. website application vulnerability to gain
access to certain files," getting personal information for

almost 150 million people[4]. c) Yahoo: Yahoo's email system
hack actually happened way back in 2013 — but the severity
of it, with all 3 billion Yahoo email addresses affected, only
became clear in October 2017. Stolen information included
passwords and backup email addresses, encrypted using
outdated, easy-to-crack techniques, which is the sort of
information attackers can use to breach other accounts[5]. d)
GitHub: On February 28, 2018, the version control hosting
service GitHub was hit with a massive denial of service attack,
with 1.35 TB per second of traffic hitting the popular site[6].
e) Target: Hackers stole data from up to 40 million credit and
debit cards of shoppers who visited its stores during the first
three weeks of the holiday season in the second-largest such
breach reported by a U.S. retailer[7][8].

With ever increasing use of internet, supported devices,
IOT and its combined users it has become crucial to have a
robust system in place to prevent cyber-attacks. One crucial
aspect of preventing cyber-attacks is to have an efficient and
accurate URL Filtering system in place for both public and
private organizations as well as personal users. Users spend
increasing time on the web on various activities like surfing
favorite sites, clicking on email links or utilizing web-based
SaaS applications for both personal and business use. This
kind of non-monitored web activity exposes organizations as
well as individuals to a range of security and business risks,
such as propagation of threats including malwares and
ransomwares, data loss and potential lack of compliance.
Web-filtering systems are either client or server based. A
client-based system performs web content filtering solely on
the computer where it is installed, without consulting remote
servers about the nature of the web content that a user tries to
access. A server-based system provides filtering to computers
on the local area network where it is installed. It screens
outgoing Web requests, analyzes incoming Web pages to
determine their content type, and blocks inappropriate
material from reaching the client’s Web browser [9]. Many
URL Filtering systems are commercially available in the
market. However, the techniques used by these systems are
not accurate enough and do not adapt well to ever changing
web attacks. Hence, there is a constant need and opportunity
to build a better URL-Filtering system.

In this paper we throw light on how URL filtering
techniques have evolved from traditional techniques like
blacklisting URLs, heuristic approaches to newer machine
learning based techniques like cosine similarity-based URL
classification, Support Vector Machines and Neural Network
based models. The primary focus of this paper is to provide a
near exhaustive set of informative features that can help
professionals and practitioners to facilitate their own research
and practical applications on URL filtering.

II. MACHINE LEARNING FEATURES
The data that a machine learning expert use and the way it

is used, will likely define the success of predictive modeling
problem. Data and the framing of a machine learning problem
is point of biggest leverage on one’s problem. The term data
in machine learning context has two dimensions to it, first the
depth that is the number of observations you have. One should
perform sensitivity analysis to identify how much (or little)
data is needed. Second is spread, that is the measurable

property or characteristic of different patterns and phenomena
being observed across observations. These numeric and
sometimes string coded information are called Features. One
should find relevant information to create variety of features
and test each of them. Without testing these features in a
model one won’t know what variables will be helpful in your
predictive modeling problem. Based on extraction process,
features could be further classified as static and dynamic.
Static features are those which can be obtained directly from
the URL information like lexical and host-based features,
whereas to get the dynamic features, one has to crawl and
process the web content.

A. Blacklist Features
Blacklist process is easy to use and implement, though it

is difficult to maintain an exhaustive list of blacklists which
results to significant number of false positive cases. Anyway,
if used in collaboration with other features, blacklist features
can lead to significant improvement in result of URL filtering
[14].

• Blacklist sources- Phishtank, operated by OpenDNS
is a blacklist of phishing URLs [15] which is free to
use. Other sources could be the list provided by
Google, Cisco, Yahoo, Alexa

• To avoid detection via blacklisting, many attackers
modify the original URL a little bit. The problem can
be avoided by extending the blacklist. This can be
achieved by deriving new URLs based on the
following five heuristics [16]:

o Replacing top-level domains

o IP address equivalence

o Directory structure similarity

o Query string substitution

o Brand name equivalence

B. Lexical Features
These features can be extracted from the URL string itself.

URL is Uniform Resource Locator which is the global address
of the documents and other resources in the world wide web.
There are two main segments of a URL: (a) the protocol:
indicates which protocol to use, http:// or https://, (b) the
resource name: specifies the IP address or the domain name
where the resource is located.

• Length of the URL

• Length of each of the components of the URL- It
considers taking the length of hostname, top-level
domain name, primary domain name etc. separately.

• Number of special characters present in the URL

• Bag of words model- Based on all possible words,
could be present in an URL string, a dictionary can
be created, and each word can be regarded as feature.
If the word is present in the URL then the value of
the feature can be 1, else 0.

• Distinction of tokens- This approach talks about the
same bag of words model but separate dictionary for
hostname, path, top-level-domain, primary domain.
The distinction would allow for preserving some of

the order in which the words occurred. For example,
it allows us to distinguish between the presence of
word “com” in the top-level domain compared to the
other parts of the URL.

• Bi-gram features- The presence of set of two words
along with the single words in the URL is considered
to be a feature [17].

• N-gram features- It is a feature selection scheme
based on relative entropy to reduce dimensionality
where n > 2 [18].

• Analyze character level strings to obtain features-
Hackers can generate new URLs algorithmically,
detection of which becomes difficult using only bag
of words. The idea is algorithmically generated
URLs and human generated URLs have different
alpha-numeric distribution [19]. The number of
features, thus obtained, are small as the number of
characters is small. A few methods like KL-
divergence, Jaccard coefficient and edit-distance
using unigram and bigram distribution of characters.

• Directory related features- length of directory,
number of subdirectory tokens can be considered as
features for this category [20].

• File name features- length of the filenames, number
of delimiters [20].

• Argument features- length of the argument, number
of variables [20].

C. Web Content Based Features
Instead of using bag of words for each document, web

content and structure analysis suggests representing each web
page by a limited number of content and link features, which
reduces the dimensionality of the classifier. The relevance and
quality of a webpage can be reflected in the following aspects
[21]: 1) the content of the page itself, 2) the content of the
neighboring documents of the page, 3) link information of the
page.

1) Page content- All the terms extracted from the title and
the body of a webpage, say p. These terms will be compared
with the domain lexicon [22]. Hence two feature scores can
be determined from here:

• Title(p): number of the terms present in the title of the
webpage p, found in the domain lexicon

• TFIDF(p): sum of TFIDF scores of the terms in the
webpage p, found in the domain lexicon

2) Page content of the neighbors- Three types of neighbors
for a webpage p, are considered- (a) incoming: Suppose a, b
are two webpages which have hyperlink pointing to p. Then,
a and b are called incoming (parent) neighbors for p, (b)
outgoing: Suppose, e, f are the webpages mentioned in p as
hyperlinks. Then, e and f are outgoing neighbors for p, (c)
siblings: Sibling pages are those pages that are pointed by any
of the incoming neighbors of p. Suppose, webpage a points to
webpage p and h as hyperlinks. Then p and h are known to be
siblings. Two scores of the neighboring documents are
calculated similar to those created in the previous aspect:

• InTitle(p): average of number of terms in the title of
webpage a found in domain lexicon, for all a which
are incoming neighbors of p

• InTFIDF(p): average of the sum of TFIDF of the
terms in webpage a found in domain lexicon, for all
incoming a of p

• OutTitle(p): average of number of terms in the title
of webpage e found in domain lexicon, for all e.
which are outgoing neighbors of p

• OutTFIDF(p): average of the sum of TFIDF of the
terms in webpage e found in domain lexicon, for all
outgoing neighbors e of p

• SiblingTitle(p): average of the number of terms in
webpage h found in domain lexicon, for all h which
are siblings of p

• SiblingTFIDF(p): average of the sum of TFIDF of
the terms in the webpage h found in domain lexicon,
for all h which are siblings of p

3) Link Analysis- Web link structure is useful to
understand the quality of a webpage. The webpage a has a link
pointing to another webpage b means, the author of a believes
b is a kind of webpage similar to a. Usually, the higher the
number of in-links, the better a page is considered to be.
Several methods have been developed in order to determine
the relevance and importance of the page. Pagerank and HITS
algorithms are the two most widely used.

Pagerank algorithm [23] is used by google search to rank
the websites in their search engine results, which is a
recursively defined result with the underlying assumption that,
a page becomes important if other important pages are linked
with it. Suppose, a random surfer on the web, is following
links from page to page. The probability that the random surfer
will land on a particular page is the pagerank of that page. The
behavior of the random surfer is an example of Markov
process, which depends only on the current state of a system
and not on its history. Pagerank of a page p can be determined
as,

𝑃𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑝) = (1 − 𝑑)

+ 𝑑 0 1
𝑃𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑞)

𝑐(𝑞) 4
566	8	69:;9:<	=>	?

Where d: the damping factor between 0 and 1. The idea is
at any moment, the random surfer can stop searching and,
c(q): number of outgoing links in q.

The pagerank score of each webpage has to be calculated
iteratively which makes it computationally complex.

HITS (Hyperlink-Induced Topic Search) algorithm was
proposed by Jon M. Kleinberg [24] is another link analysis
algorithm which rates webpages. According to this algorithm,
there are high quality pages related to any topic which are
known as authority pages and there are a few pages which are
not as rich in information as the authority pages are, but they
point to other authority pages. These are called hub pages. A
page is represented as a good authority page if it is pointed by
many different hubs and a good representation of a hub page
is that points to other authority pages.

On this idea, hub score and authority score for each
webpage can be formulated as below:

𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒(𝑝) = 	 0 (𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒(𝑞))
566	8	69:;9:<	=>	?

𝐻𝑢𝑏𝑆𝑐𝑜𝑟𝑒(𝑝) = 	 0 (𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒(𝑟))
566	J	69:;9:<	=>	?

To incorporate the above ideas in the link analysis, a few
scores for a webpage say, p, could be thought of which are as
follows:

• Pagerank(p): pagerank score of p

• Hub(p): Hub score of p calculated by the HITS
algorithm

• Authority(p): Authority score of p calculated by the
HITS algorithm

• Inlinks(p): Number of incoming links pointing to p

• Outlinks(p): Number of outgoing links from p

• Anchor(p): Number of terms in the anchor texts in a
page p found in the domain lexicon

D. HTML Content Features
HTML Content based features are extracted from the

HTML object the URL is pointing. These features could be
very useful in determining presence of malicious contents but
could be little difficult to generate these features on real time.
Following table summarizes the different HTML content-
based features that could be generated from the HTML
content.

TABLE I: HTML Content Based Features

S.No Feature Description

1 Length Of the document

2 Average Length of the words

3 Word Count

4 Distinct Word Count

5 Word Count in a line

6 Number of null characters

7 Usage of string concatenation

8 Unsymmetrical HTML tags

9 Link to remote source of scripts and invisible objects

10 Number of hyperlinks

11 Number of elements with a small area

12 Number of elements with suspicious content

13 Number of out of place elements

14 Presence of double documents

• Length of the document- Given an URL and the page
pointed by the url, this feature calculates the length of
the document for the page. Malicious web pages may
have very different distribution of document lengths as
compared to benign web pages.

• Length of words- Given the content of the web page,
summary statistics of word length could be computed.
Average word length, median word length and 3rd
quartile value of word length could serve as important
features. Certain obfuscation techniques that are used
in malicious pages results in unusually large and

concatenated words, thus median or mean word length
in a malicious vs. a non-malicious page could be
significantly different.

• Word count in a line- Average number of words per
line in the web page and distinct word count in a web
page could also reflect if the page is benign or
malicious. These features are easier to calculate and
widely used and should be considered as baseline
features for any such model aiming to perform
malicious webpage filtering.

• Number of NULL characters- Researches have
observed the distribution of NULL space in a benign
webpage could be very different from that of malicious
web page. Average number of NULL spaces per line,
total number of NULL space in a page could serve as
content based features in this context.

• Usage of string concatenation- Paper [25] proposes
creation of features to measure extent of string
concatenation in web pages. The paper also
demonstrates examples of encryption methods where
hackers store certain malicious code within some
string variable and when they need to execute those
encrypted parts unescape() function is invoked within.
Such encryption methods often result in large
concatenated strings; thus extent of string
concatenation could serve as an important feature
while distinguishing between malicious Vs. non-
malicious web pages

• Number of elements with small area- In [26], the
researchers explained when the attackers aim at
launching a drive -by-download infections they try to
hide most of the elements on purpose. In this kind of
attacks, visibility attributes are not used to hide the
elements rather they set width and height of elements
used to deliver the attack to very small values. In this
paper [26] the researchers propose a feature that counts
the number of elements of type div, iframe or object
whose dimension is less than a certain threshold, in
their study they experimented with – 30 square pixels
for the area or 2 pixels for each side.

• Number of elements containing suspicious content- In
[26] the researchers tried to come up with a measure of
suspiciousness. The presence of shellcodes between
the start tag and end tag is considered as suspicious if
it is no longer than a certain threshold (128 characters)
and contains less than 5% of whitespace characters.
Count of such suspicious elements in a web page could
serve as an important feature here.

• Number of out of place elements- In the paper [26]
researchers have talked about another interesting
feature which could be created based on the distorted
positioning of certain objects. This feature counts the
number of elements that reside out of their natural
positioning in the HTML document. This feature is
useful to detect web pages that have become malicious
as the result of a stored XSS or SQL injection attack.
In these cases, it is common to see scripts or iframes
included in strange positions, such as between title tags
or after the end of the document (outside the body or
html elements). iframe, frame, form, script, object
embed element positions are checked according to the

allowed positioning, as defined by the HTML DTD
specifications.

• Number of included URLs- This feature proposed in
[26] counts the number of elements which, being not
inline, are included specifying their source location.
Elements such as script, iframe, frame, embed, form,
object are considered in computing this feature,
because they can be used to include external content in
a web page. The img elements and other elements are
not considered, as they cannot be used to include any
executable code

• Presence of double documents- This feature [26]
indicates whether a web page contains two or more
html, head, title, or body elements. This is not allowed
by the HTML specification but can be seen in certain
malicious web pages as a side-effect of the com-
promise of a web site.

E. JavaScript Content Features
JavaScript [27] is a dynamic client-side scripting language

used to create content for the Web along with HTML and CSS.
It is used by the most of the Websites and supported by all the
modern Web browsers. It is widely used to develop the
interactive Web pages. However, in recent years JavaScript
has become the most common and successful attack
construction language. The malicious JavaScript can be
inserted in a Web page and will run when the page is loaded
in any browser. It will evade security tools such as a firewall
and antivirus software. Cyber criminals regularly manipulate
the code on countless websites to make it perform malicious
functions. JavaScript is such a dynamic programming
language that its improper implementations can create
backdoors for attackers. When users visiting a website,
JavaScript files are downloaded automatically. Due to the
users’ strong habits of online browsing, cyber criminals easily
target such users for exploitation.

A malicious JavaScript consists of suspicious functions
and patterns which tend to certain attacks like drive-by-
downloads, XSS and malware distribution. Table II has
features used by different researchers for the detection and
analysis of benign and malicious Java Scripts
[28][29][30][31].

TABLE II: JavaScript Features

S.No JavaScript Function Description

1 eval() The number of eval() functions

2 setTimeout() The number of setTimeout() functions

3 Iframe The number of strings containing “iframe”

4 unescape() The number of unescape() functions

5 escape() The number of escape() functions

6 Classid The number of classid

7 parseInt() The number of parseInt() functions

8 fromCharCode() The number of fromCharCode() functions

9 ActiveXObject() The number of ActiveXObject() functions

10 No. of string direct assignments The number of string direct assignments

11 concat() The number of concat() functions

12 indexOf() The number of indexOf()functions

13 substring() The number of substring() functions

14 replace() The number of replace() functions

15 document.addEventListener() The number of
document.addEventListener() functions

16 attachEvent() The number of attachEvent() functions

S.No JavaScript Function Description

17 createElement() The number of createElement() functions

18 getElementById() The number of getElementById() functions

19 document.write() The number of document.write() functions

20 JavaScript word count The number of words in JavaScript

21 JavaScript Keywords The number of JavaScript keywords

22 No. of characters in JavaScript The number of characters in JavaScript

23 The ratio between keywords and words The ratio between keywords and words

24 Entropy of JavaScript The entropy of the script as a whole

25 Length of Longest JavaScript Word The length of the longest JavaScript word

26 The No. of Long Strings >200 The number of long strings(>200)
characters

27 Length of shortest JavaScript Word The length of the shortest JavaScript word

28 Entropy of the Longest JavaScript
Word The entropy of the longest JavaScript word

29 No. of Blank Spaces The number of blank spaces in the
JavaScript

30 Average Length of Words Average length of words in the JavaScript

31 No. Hex Values The number of hex values used in the
JavaScript

32 Share of space characters The share of the space characters in the JS

Number Malicious JavaScript’s are mostly in the
obfuscated form. Attacker uses obfuscation techniques to hide
the real identity of JavaScript from the user and browser.
Obfuscated malicious JavaScript mainly uses combination of
digits (0-9), hex values and special characters like % , (,), ;,
#, |, [,], {, }, ., etc. Also, such scripts uses suspicious
JavaScript functions like split(), setAttribute(), charAt(),
charCodeAt(), decode(), toString() etc. To explore such
scripts, researchers [26] have identified a set of new features
given below in Table III,

TABLE III: JavaScript Based Advanced Features

S.No JavaScript Function Description

1 search() The number of search() functions

2 split() The number of split() functions

3 onbeforeunload The number of onbeforeunload events

4 onload The number of onload events

5 onerror() The number of onerror() functions

6 onunload The number of onunload events

7 onbeforeload The number of onbeforeload events

8 onmouseover The number of onmouseover events

9 dispatchEvent The number of dispatchEvent events

10 fireEvent The number of fireEvent events

11 setAttribute() The number of setAttribute() functions

12 window.location() The number of window.location() functions

13 charAt() The number of charAt() functions

14 console.log() The number of console.log() functions

15 .js The number of external JavaScript files

16 .php The number of .php files

17 var The number of var keywords used in the JavaScript

18 function The number of function keywords used in the
JavaScript

19 Math.random() The number of Math.random() functions

20 charCodeAt() The number of charCodeAt() functions

21 WScript The number of WScript used in the JavaScript

22 decode() The number of decode() functions

23 toString() The number of toString() functions

24 No. of Digits The number of digits used in the JavaScript

25 No. of Encoded Characters The number of encoded characters used in the
JavaScript

26 No. of backslash
Characters

The number of backslash characters used in the
JavaScript

27 No. of Pipe Characters The number of pipe(|) characters used in the JavaScript

28 No. of % Characters The number of % characters used in the JavaScript

29 No. of ‘(‘ Characters The number of ‘(‘ characters used in the JavaScript

30 No. of ‘)’ Characters The number of ‘)’ characters used in the JavaScript

31 No. of ‘,’ Characters The number of ‘,’ characters used in the JavaScript

S.No JavaScript Function Description

32 No. of ‘#’ Characters The number of ‘#’ characters used in the JavaScript

33 No. of ‘+’ Characters The number of ‘+’ characters used in the JavaScript

34 No. of ‘.’ Characters The number of ‘.’ characters used in the JavaScript

35 No. of ‘ Characters The number of ‘ characters used in the JavaScript

36 No. of ‘[‘ Characters The number of ‘[‘ characters used in the JavaScript

37 No. of ‘]’ Characters The number of ‘]’ characters used in the JavaScript

38 No. of ‘{‘ Characters The number of ‘{‘ characters used in the JavaScript

39 No. of ‘}’ Characters The number of ‘}’ characters used in the JavaScript

40 Share of Encoded
characters Share of encoded characters in the JavaScript

41 Share of Digits characters Share of digits in the JavaScript

42 Share of Hex/Octal
characters Share of hex/octal characters in the JavaScript

43 Share of Backslash
characters Share of backslash (\) characters in the JavaScript

44 Share of Pipe (|) characters Share of pipe (|) characters in the JavaScript

45 Share of % characters Share of % characters in the JavaScript

F. Host Based Features
These features describe properties of the Web site host as

identified by the hostname portion of the URL. They allow us
to approximate “where” malicious sites are hosted, “who”
own them, and “how” they are managed. We examine the
following sets of properties to construct host-based features:

• WHOIS information- This includes domain name
registration dates, registrars, and registrants. So, if a
set of malicious domains are registered by the same
individual, we would like to treat such ownership as
a malicious feature.

• Location - This refers to the host’s geography, IP
address prefix and autonomous system (AS)
number. So, if malicious URLs tend to be hosted in
a specific IP prefix of an Internet service provider
(ISP), then we want to account for that disreputable
ISP when classifying URLs.

• Connection speed - If some malicious sites tend to
reside on compromised residential machines
(connected via cable or DSL), then we want to
record the host connection speed.

• Membership in blacklists - Over our experiments,
55% of malicious URLs were present in blacklists.
Thus, although this feature is useful, it is still not
comprehensive.

• Other DNS-related properties - These include time-
to-live (TTL), spam-related domain name heuristics
(Rudd, 2007), and whether the DNS records share
the same ISP.

III. TRADITIONAL APPROACHES
Various web filtering approaches have been taken to

prevent the malicious attacks in the past like blacklisting
techniques, keyword blocking etc. Blacklisting method
requires to have an exhaustive list of suspicious webpages
which is costly to maintain. Keyword blocking also, is prone
to give dubious results. These methods are commonly used by
most of the antivirus systems as they are easy to implement,
simple and efficient in most of the cases.

A. Blacklist and Whitelist Approach
This approach maintains a database with the list of URLs

which are identified as malicious or benign respectively. The
moment a user requests a URL, a lookup task is triggered to
check that URL within the blacklist database. A previously
identified malicious URL will thus get blocked[10]. As many
new URLs and webpages are being created every day, the
database needs to be updated periodically to identify every
other malicious URLs accurately.

B. Keyword Blocking
This approach uses a list of keywords identified in the

known malicious URLs. If a URL contains certain number of
such keywords, it will be considered as malicious[11]. The
problem with this method is the meanings of the words depend
on the context. For example, few words like breast, penis can
be used in medical as well as pornographic context. Also, this
approach can be easily bypassed by misspelling certain words
which might be present in the list.

C. Heuristics Approach
This approach is an extension of blacklisting techniques

and study also shows that heuristics-based techniques
outperform blacklisting based techniques used by most web
browsers [12]. Instead of creating a list of blacklisted URLs,
this approach creates a signature of these URLs. These
signatures could be identified in new URLs as well and hence,
this technique is more generalized than traditional blacklisting
techniques. But such methods can only be designed for a
limited number of attacks and cannot generalize to all types of
(novel) attacks.

IV. MACHINE LEARNING BASED APPROACHES
Since heuristics-based approaches have their

shortcomings, machine learning based approaches described
below are gaining more importance nowadays in order to
come up with a robust system of URL filtering in place. These
kinds of approaches require a good set of features, extracted
from either the URL string itself or from crawling the
webpage and web content. Formulation of the URL filtering
problem, as discussed in this paper, is a two-class
classification problem, a webpage is either classified as
‘malicious’ or ‘benign’. For training such a classifier, a
training data consisting of both known malicious and benign
URLs are needed.

A. Cosine Similarity Based Approach
This approach uses cosine similarity algorithm for text

classification which is eventually used to classify the URLs as
malicious or benign. We use samples of known malicious
URLs to characterize the class of webpages that must be
blocked as our training set. A new URL that is “close” or
“similar” to members of this class, is blocked and those that
are “dissimilar” will be allowed. Each document in the
training set is represented by a vector of frequency of the most
frequent words. The similarity between two documents is
calculated by the cosine of the angle of the corresponding
vectors. If these two vectors are similar to each other, the angle
between them would be smaller, which indicates the larger
cosine value [13].

Let us assume, Á : set of known malicious URLs. This set
needs to be updated at a regular interval. For a document T Î
Á, vT : vector of relative frequencies is calculated after
removing the stop words, low frequency words, words equal
or shorter than two letter like ‘to’, ‘of’ etc.

An appropriate threshold cosine value needs to be
calculated to classify the test pages. In order to do this, we
consider another set Á¢, consists of samples both inside and
outside of the forbidden or malicious class. After measuring
the similarity t between each element of Á¢ to Á, we calculate
the percentage of documents that are correctly classified in Á¢.
We choose the threshold for which we have the highest
percentage of correctly classified document.

For a test webpage W, we will calculate the cosine
similarity with each member of Á by cos(vO, vQ), X Î Á.
S, the set of n% highest similarity values are found. Now the
class coefficient sW is obtained by calculating the average of
the n% similarity values. If sW ≥ t, the threshold, then the
page will be classified as malicious.

If the page comes out to be a benign webpage, then the
same exercise can be conducted on the randomly selected
hyperlinks present in that webpage. If majority of the class
coefficients are coming out to be malicious, then the webpage
will be decided to be blocked.

Fig. 1: Cosine Similarity Process Flow

B. Support Vector Machines
Support Vector Machines are widely used supervised

learning algorithms. In case of two class classification
problems, the algorithm tries to find a linear hyper-plane that
separates the examples of different classes and maximizes the
distance of the hyper-plane and the closest examples from
different classes. When the data is not linearly separable in the
given feature space, SVMs use a kernel function to map the
data into a higher dimensional space and separate the data on
the mapped dimension where it is possible to achieve a

hyperplane separating the two classes. Given the non-linearity
involved in the data, one can test out the different available
kernel functions (radial basis function, polynomial, gaussian
etc) and choose the one which exploits the non-linearity in the
data in the best possible way.

For the case of malicious URL classification, as we will
see in section no IV, the set of features are computed from
various sources – the HTML content based features, lexical
content based features etc. and in most cases the decision
boundary that separates the malicious web pages from that of
the non-malicious pages are non-linear in terms of the feature
space. Thus SVMs could produce considerably good accuracy
on this kind of problems. However, it has been observed for
large datasets SVMs would require very long training hours
and the memory requirement to store the kernel matrix is
proportional to the number of training examples. So, these
algorithms aren't feasible for large data sets. In the URL
filtering problem, the feature set could be huge which requires
considerable amount of training examples, which in turn
would require long training hours and large amount of
memory.

C. Artificial Neural Network
Artificial neural networks (ANNs) can learn and adapt

according to training cases fed to them. Unlike many other
prediction techniques, ANN does not impose any restrictions
on the input variables. As every URL can be characterized
using many variables including content based, rank variables,
java/html code etc., ANN models prove effective in learning,
modeling and generalizing non-linear and complex
relationships among high dimensional input space with given
output variables. ANNs can thus achieve high classification
accuracy, however ANN training should involve a sufficiently
large number of training examples, including both positive
and negative cases. To train a robust ANN classifier one must
help the network decide on the number of neurons in each
layer, the network topology, the initial weights and the hyper
parameters.

V. POTENTIAL FRAMEWORK
URL filtering problem is formulated as a two-class

classification task for predicting “malicious” versus “benign”
URLs. Specifically, given a data set with N URLs
{(u1,y1),...,(uN ,yN)}, where ui for i = 1,...,N represents a URL
from the training data, and yi ∈ {0, 1} is the corresponding
label where yi = 1 represents a malicious URL and yi = 0
represents a benign URL.

The two major components for this system are, extracting
the appropriate feature representation: ui→ xi where xi ∈ Rd
is a d- dimensional feature vector representing the URL; and
learning a classifier f : Rd → R which predicts the class
assignment for any test URL.

Fig. 2: Architecture of the URL filtering system

A. Data Preparation
Static features like lexical and host-based features can be

directly computed just using URL information. However,
dynamic features require executing the URL and crawling the
page content. The crawled raw data needs to be processed with
methods like one-hot encoding, TFIDF, bag-of-words, bi-
gram or n-gram techniques etc. The end objective of the data
preparation stage is to generate a feature vector coded
numerically, representing all the characteristics of each URL.

B. Model Building
The goal of the machine learning model is to maximize the

predictive accuracy. Accuracy should be defined as per the use
case of an organization. For example, a highly data sensitive
organization like commerce or banking would like the URL
filtering system to decrease the false negative cases as much
as possible.

Another important metric of URL filtering system is the
total run time required to make a prediction using machine
learning model. This metric changes depending on where the
system is installed, client-side or server-side. Machine
learning experts need to take both predictive accuracy and run-
time into consideration while choosing a classifier for the
system.

C. Level of Complexity in the Feature Set
Similar to classifier selection, feature selection will also

play a role in determining the prediction accuracy and run
time of the system. All the features discussed in section IV
has the potential to improve classification accuracy but many
of them need to be excluded for various reasons. Classifying
a URL with a trained model built on static features is
computationally less expensive compared to a model built on
both static and dynamic features as for the latter case, the
page content needs to be crawled and processed for running
the classifier. Also, downloading page content could make
the user’s machine vulnerable to threats. In Table IV, we are
discussing the collection difficulty and time complexity for
different feature types.

Table IV.

Features Collection Difficulty Collection Time

Blacklist Moderate Moderate
Lexical Easy Low
Web-Content Based Features High High
HTML Content Features Easy High
Java Script Based Features Easy High
Host Based Features Easy High

REFERENCES

[1] Netcraft Web server Survey,
“https://news.netcraft.com/archives/2018/01/19/january-2018-web-
server-survey.html”, 19th Jnuary 2018

[2] Symantec Internet Security Threat Report Volume 23, March 2018
[3] F. Bamber, A. Bowyer, N. Leung, F. Lopes, L. Mills, D. Williams

under direction of R. White, “Investigation: Wannacry cyber attack nd
the NHS”, Report by Comptroller and Auditor General, Department of
Health, 25th April, 2018, www.nao.org.uk

[4] Equifax, “2017 Cybersecurity incident & important consumer
information”, 1st March, 2018, www.equifaxsecurity2017.com

[5] Nicole Perlroth, “All 3 billion Yahoo accounts were affected by 2013
attack”, New York Times, 3rd October, 2017

[6] Sam Kottler, “February 28th DDoS Incident Report”, Github
Engineering, 1st March 2018

[7] Xiaokui Shu, Ke Tian, Andrew Ciambrone and Danfeng Yao, member
IEEE, “Breaking the Target: An analysis of Target data breach and
lessons learned”, arXiV:1701.04940v1, 18th January 2017

[8] Aorato Labs, “The untold story of the Target attack tep by step”,
August 2014

[9] Pui Y. Lee, Siu C. Hui, A. C. M. Fong, “Neural Networks on web
content filtering”, IEEE Intelligent Systems, Vol. 17, Sep/Oct 2002

[10] Faronics, “Blacklist versus Whitelist Software solutions”, August,
2005

[11] Vrushali Sanjay Kharad, Prof. S. S. Kulkarni, “Design model on
website filtering and blocking”, International Journal of Advanced
Research in Computer Science and Software Engineering, Vol. 5, Issue
4, April 2005

[12] S. Sheng, B. Wardman, G. Warner, L. F. Cranor, J. Hong, C. Zhang,
“An emperical analysis of phishing blacklists”, 6th Intl. Conference on
Email and antispam CEAS, Mountain View, California, 2009

[13] R. Du, R. Safavi-Naini, Willy Susilo, “Web filtering using text
classification”, 11th IEEE international conference on networks, 2003

[14] J. Ma, L. K. Saul, S. Savage, G. M. Voelkar, “Beyond
Blacklists:learning to detect malicious web sites from suspicious urls”,
Proceedings of the 15th ACM SIGKDD international conference
Knowledge discovery and data mining, 2009

[15] Phishtank, “https://www.phishtank.com/faq.php”
[16] P. Prakash, M. Kumar, R. R. Kompella, M. Gupta, “Phishnet:

predictive blacklisting to detect phishing attacks”, IEEE 2010
[17] A. Blum, B. Wardman, T. Solorio, and G. Werner, “Lexical features

based phishing url detection sing online learning”, Proceedings of the
3rd ACM workshop on artificial intelligence and security, 2010

[18] P. Kolari, T. Finin, A. Joshi, “SVMs for blogoshpere: Blog
identification and splog detection”, AAAI Symposium,: Computational
approaches to analyse weblogs, 2006

[19] S. Yadav, A. K. K. Reddy, A. Reddy, S. Ranjan, “Detecting
algorithmically generated malicious domain names”, ACM 2010

[20] A. Le, A. Markopoulou, M. Faloutsos, “Phishdef: Url names say it all”,
IEEE 2011

[21] Michael Chau, Hsinchun Chen, “A machine learning approach to web
page filtering using content and structure analysis”, Elsevier 2007

[22] O. Baujard, V. Baujard, S. Aurel, C. Boyer, R.D. Appel, “Trends in
medical information retrieval on the Internet”, Computers in Biology
and Medicine 28 (1998) 589–601

[23] Sergey Brin, Lawrance Page, “The anatomy of a large-scale
hypertextual web search engine”

[24] Jon M. Kleinberg, “Authoritative source in a hyperlinked
environment”, Proceedings in ACM-SIAM Symposium n discrete
algorithms, 1998

[25] Y. T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen, “Malicious
web content detection by machine learning,” Expert Systems with
Applications, vol. 37, no. 1, pp. 55–60, 2010

[26] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: a fast filter
for the large-scale detection of malicious web pages,” in Proceedings

of the 20th international conference on World wide web. ACM, 2011
pp. 197–206

[27] Dharmaraj R. Patil, J. B. Patil, “Detection of Malicious JavaScript code
in web pages”, Indian Journal of Science and Technology, Vol 10(19),
May 2017

[28] Seshagiri P, Vazhayil A, Sriram P., “AMA: Static code analysis of web
page for the detection of malicious scripts”, Procedia Computer
Science. 2016 Dec 31; 93:768-73.

[29] Cova M, Kruegel C, Vigna G., “Detection and analysis of drive-by-
download attacks and malicious JavaScript code”, Proceedings of the
19th International Conference on World Wide Web; 2010. p. 281-90

[30] Fraiwan M, Al-Salman R, Khasawneh N, Conrad S., “Analysis and
identification of malicious JavaScript code”, Information Security
Journal: A Global Perspective. 2012; 21(1):1-1

[31] Wang WH, Yin-Jun LV, Chen HB, Fang ZL., “A static malicious
JavaScript detection using svm”, Proceedings of the International
Conference on Computer Science and Electronics Engineering. 2013.
p. 21-30

