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Abstract

The ML-kNN algorithm is one of the most famous and most e�cient multi-label classi�er. Its
performances are very remarkable when compared with the other state-of-art multi-label classi�ers.
Nevertheless, it su�ers from two major drawbacks: its accuracy crucially depends on the metric
function used to compute distances between instances, and when dealing with high dimensions data,
the neighborhoods identi�cation task becomes very slow. So, both metric learning and dimensional-
ity reduction are essential to improve the ML-kNN performances. In this report, we propose a novel
multi-label Mahalanobis distance learned via a supervised dimensionality reduction approach that
we call ML-ARP. ML-ARP is a process that adapts random projections on a multi-label dataset to
improve the ML-kNN performances. Unlike most state of art multi-label dimensionality reduction
approaches that solve eigenvalue or inverse problem, our method is iterative and scales up with
high dimensions. There is no eigenvalue or inverse problems to solve. Experiments show that the
ML-ARP allows us to highly upgrade the ML-kNN classi�er. Statistical tests assert that the ML-
ARP is better than the remaining state-of-art multi-label dimensionality reduction approaches.

Keywords: ML-kNN, dimensionality reduction, random projections, distance metric learning,
nearest neighbor.
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Résumé

L'algorithme ML-kNN basé sur le principe des k plus proches voisins est considérée comme le
classi�eur le plus robuste et le plus connu dans le domaine de la classi�cation multi-label. Toute-
fois, le principe des k plus proches voisins présente deux points faibles majeurs. Premièrement,
les performances du ML-kNN dépendent étroitement de la métrique choisie pour l'identi�cation
des structures de voisinage. Ensuite, la recherche des voisins dans une large base de donnée n'est
pas une tâche facile à faire. En e�et, plus les dimensions d'entrée sont grandes, plus la recherche
des voisins se fait plus lentement. C'est pour ces raisons qu'un apprentissage de métrique adaptée
et une réduction de dimension e�cace s'imposent. Nous proposons ainsi, une nouvelle approche
d'apprentissage de métrique via une réduction de dimension supervisée. Notre méthode se nomme
ML-ARP pour Multi-Label Adaptative Random Projection. ML-ARP adapte des projections aléa-
toires à n'importe quelle base de donnée multi-label dans le but d'améliorer les performances du
ML-kNN. Contrairement à la majorité des algorithmes de l'état de l'art en réduction de dimension
multi-label qui se basent généralement sur des résolutions de problèmes aux valeurs propres ou des
inversements de matrices coûteuses en complexité, ML-ARP s'itère et passe facilement à l'échelle.
L'étude expérimentale menée a�rme que ML-ARP améliore nettement les performances du ML-
kNN. Ensuite, des tests statistiques con�rment que ML-ARP est largement meilleur que le reste
des algorihtmes de l'art de l'art en réduction de dimension multi-label.

Mots clef : ML-kNN, réduction de dimension supervisée, projections aléatoires, apprentissage
de métrique, plus proches voisins.
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Chapter 1
Context

1.1 Orange group

The Orange group is one of the most important telecommunication operators in the world. With
almost 230 million customers and 172 000 collaborators across 32 countries.
Orange is ranked at the 50th position in the global brands. Formely France Telecom, the group
took the name of Orange on May 28, 2012.
France Telecom was founded on January 1,1988, in response to a European directive for competition
in telecomuunication services. The company became in 1990 a statutory operator, obtaining a
separate legal personality of the State, then a limited company in 1996 where the French government
was the sole shareholder. France Telecom became a private company since 2004, when the State
abandons its majority shareholder status.

1.2 R&D department

Orange group attaches great importance to research and development. Research and develop-
ment laboratories dubbed Orange Labs are distributed throughout France. Orange Labs network
has also 18 laboratories across three contiments: China, South Korea, USA, France, Japan, Poland,
the United Kingdom and also, very recently, in Jordan and Egypt.
These laboratories have long maintained strong cooperation with some engineering "Grandes écoles"
such as: TELECOM ParisTech, TELECOM Bretagne, TELECOM ParisSud until the France Tele-
com group becomes a private company.
Orange Labs' work clusters around six major R&D projects: smart cities, mobile payment, content
aggregation, mobile connections, services and applications, and �nally, smart networks. There are
more than 5000 employees including 3700 engineers and scientists.

9
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1.3 Social responsibility

Orange group has made many commitments with regard to the environment and its social re-
sponsibilities respect.
The list of Orange commitments in the areas of environment, employment, technology and also
customer relations are available on its website.

1.3.1 Environment

Regarding the environment, Orange objectives are, to reduce emissions of greehouse gas by 20%
and energy consumption by 15% between 2006 and 2020, or increase by half the collection of used
mobile phones. Orange also wants to reduce the impact generated by its products to its customers
through eco-design approach.
In its main entities, the group deploys an Environmental Management System (EMS) following the
ISO 14001 standard. They aim at covering 60% of the group with this system (an then with the
14001 certi�cation).

1.3.2 Working conditions and diversity

Orange aims at improve the working conditions of its employees with the implementation of the
new social contact in 2010 in France, which is deployed since 2011 in 23 countries. This charter sets
a new Fashion Group's relationship with its employees. These commitments have enabled Orange
to record a signi�cant improvement of its image among its employees. Since 2015, Orange has been
recognized as one of the preferred employers in the main countries where the Group operates.
It may be noted that Orange has been awarded the "Top Employers Europe 2013" in March 2013
in London, the "Top employer Africa" in August 2013, and has also received the "great place to
work" label in Brazil. Orange Business Service (OBS) has been awarded the "Top Employer" in
India in January 2014.
Orange aims at have 35% women in its leadership and ensure equal pay by conducting regular
diagnoses. Orange was the �rst French group to receive the 2011 European label on professional
equality.

1.3.3 Social responsibility

From the social point of view, one may cite the supporting of local developments. In France, for
instance, Orange sells phones at very low prices and conducts workshops to educate people in order
to reduce their costs related to ICT (Information and Communication Technologies). In Africa,
Orange has developped new mobile services like text-to-speech (allows audio playback of a written
text) or audio messaging to adapt to the problems of illiteracy.
To �ght against the digital divide, Orange sets several goals such as covering 80% of the AMEA
(Africa, Middle-East, Asia) by the end of 2015 and the deployment of solar radio and community
stations for phones collective access to the internet in the most remote areas.
The Orange Healthcare division develops for over 10 years solutions to the health problems and
addiction.
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1.4 Orange labs team

This work was done within the "Pro�ling and Data-Mining" research team of Orange Labs Lannion
under the direction of the manager Fabrice CLEROT and under the supervision of Frank MEYER,
R&D engineer and Wissam SIBLINI, PhD student.

1.5 Big Data

Nowadays, about 90% of data stored in the world has been created in the last two years (according
to the IBM website). This �nding gives us an idea about the importance and the exponential
growth of data volumes involved in our society.
The term "Big Data" refers to the problems and the solutions ecosystem for the storage and
analysis of these gigantic masses of data. The data sources are numerous: climate sensors, spatial
information sensors, online shopping transactions and �nally messages through social networks.
Big Data includes several analytic applications which aim at make sense to the data. Among these
applications, one may found the automatic recommendation. The work presented in this document
is located in this area. It is an engineering end-of-study internship in the domain of machine
learning.

1.6 Automatic recommendation

Automatic recommendation systems aim at facilitating the user choices by applying a �rst �lter
to the products o�ered to him. These products can be of di�erent types (movies, books, videos,
music, ...). We call them "items". These systems are mainly found in video on demand (VoD)
applications and also in online sales of movie, books, clothing,...etc.
The domain of automatic recommendation has experienced a signi�cant advance since 2006 when
NetFlix, the �rst american DVD rental market, has organized a competition in order to improve its
recommendation engine. For this purpose, NetFlix has proposed to o�er one million dollars price
to any system o�ering higher performances than their original. This event has then allowed much
progress in the automatic recommendation domain.
These recommendation engines are crucial for online retail websites. There are three main interests
for this purpose:

• Helping the user to deal with a huge catalog. With an e�cient recommendation engine, we
can o�er a large range of products. Thus, everyone can �nd precisely what they are seeking
for.

• Creating a customer loyalty by o�ering them relevant product without discomforting him.

• Making sophisticated recommendations by proposing not very well-known items from the
catalog. This allows to provide the best possible user experience, and also facilitates the
online sales of products considered less "maintream".
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The success of this last point is a very important issue for recommendation systems. The added
value of these engines is their capacity to valorize all products taken from the catalog. The user is
more likely to make discoveries if the recommendation engine manages to recommand products of
the "long tail".
The "long tail" (Fig.1.1) represents all products purchassed or viewed whose combined sales volume
represents a signi�cant market share. Successfully discovering these products to customers is a
critical issue for online shopping websites.

Figure 1.1: Long tail

1.7 VIPE: Visual Interactive and Personalized Ex-

ploration of data

VIPE is a multi-label interactive classi�cation system developped in Orange Labs. It is a multi-user
system hosted in a web application accessed from any browser (See http://prof.orange-labs.fr/vipe/index.php).
In an interactive way, the user creates target concepts and explains them with a set of examples
and counter-examples.
The learning algorithm integrates in real time these training examples in order to correct the learned
system by performing several iterations.
The learning loop ends when the user considers that VIPE performances are satisfactory. Therefore,
the systm is able to classify new unseen data.
In Orange Labs, two use-cases are targeted:

• Movies interactive multi-label classi�cation.
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• Tweets interactive multi-label classi�cation.

Currently, VIPE is a demonstrator: the current version uses a learning algorithm based on Gravity
fast matrix factorisation [Takacs et al., 2007] which is not the �nal target algorithm.

1.7.1 Movies interactive multi-label classi�cation

To choose a "good" movie for the evening, users who have no speci�c title may be puzzled by
the huge number of movies available in the current catalogs of VoD. Therefore, a user needs to be
assisted in his choice of television programs for which he will spend time and money. VIPE allows
us to create customized movies classi�er which proposes suitable movies without much e�ort from
the user. First of all, the user de�nes its set of preferred labels (e.g. Funny, I like, Beautiful music,
sad) then annotates a small set of movies conveying his preferences to the learning algorithm. For
example, he annotates Titanic positively with three labels: "Like", "Beautiful Music" and "sad".
The learning algorithm can predict the most probable labels for a selected movie or the most likely
movies for a selected label or a combination of them.

1.7.2 Tweets interactive multi-label classi�cation

With the popularization of social media, the analysis of opinions has become a challenge for com-
panies aiming at constantly improving their customer relationships. Many e�orts are now on the
development of automatic processing [Liu, 2012]. Moreover, we see the emergence of new systems of
customer relantionship management [Ajmera et al., 2013]. The major drawback of social media is
the unstructured and noisy properties of circulating data. These characteristics are especially found
on Twitter which, despite a very recent attractiveness decline, remains a major site for opinions
dissemination.
Recetly, VIPE system has been adapted to classify tweets by detecting the most relevant messages.
To do this, the user de�nes its set of desired labels (E�ciency, Innovation, Problems, Negative),
then he proceeds to the labeling of a small set of tweets to give positive and negative examples to
the system. For example, he annotates the tweet "this is the # 4G:D" positively with two labels:
E�ciency and Innovation and implicitly endorses negative with the other two labels: Problems
and Negative. Based on this set of labeled messages, the learning algorithm helps the agents in
foretelling the most probable labels for a selected tweet or the most likely tweets for a selected
labels or a combination of them.
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Chapter 2
Introduction

In various real-world problems, objects mostly tend to be associated with multiple notions si-
multaneously instead of one. For instance, for a Video-On-Demand application, a movie might
be annotated as both romantic, funny, emotional and dramatic. In image categorization tasks, a
picture might contain di�erent notions simultaneously like mountains, trees, desert. Then, in text
mining, a document may treat several topics, such as litterature, law and history. This domain is
known as multi-label learning. To address this issue, conventional classi�cation based on a single
label association has been extended to multi-label. Multi-label classi�cation is getting a growing
attention today due, in particular, to the expansion in online labeling services and the in�ation in
the volume of data.

Associated to the increasing importance of applications, various algorithms have been proposed
(Zhang and Zhou, 2013; Madjarov et al.,2012; Tsoumakas and Katakis, 2007). Roughly speaking,
they can be categorized in three main families:

• problem transformation methods transform the multi-label learning problem into one or several
single label classi�cation or regression problems.

• ensemble methods apply a collection of learners.

• algorithm adaptation methods adapt existing learning algorithms to learn from multi-label
data.

The problem transformation methods were the �rst most popular approaches but the ensemble and
the adaptation methods have proved interest. Among the latter, the adaptation of the well-known
k-nearest neighbor algorithm is probably the most successful. Based on the maximum a posteri-
ori principle, the multi-label k-nearest neighbor ML-kNN is one of the most e�cient algorithms
[Zhang and Zhou, 2007]. It operates instance-based learning and is able to outrun many model-
based methods from the state of art approaches. However, the kNN principle su�ers from a major
drawback: its accuracy crucially depends on the metric function used to compute distances be-
tween instances. Typically, when no prior knowledge is assumed, kNN computes simple Euclidean
distances. Unfortunately, such distance may overlook the usefulness of di�erent irrelevant features
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describing the handling instances. Metric learning has been integrated in the learning process to
overcome this limit with signi�cant improved results.

In this report, we propose a Mahalanobis distance metric learning method based on a kNN prin-
ciple. We impose the matrix to be of low rank and thus considered as a dimensionality reduction
metric. Our dimensionality reduction method is then combined with the ML-kNN algorithm. Our
proposal solves an optimization problem by using a metaheuristic called Reduced Variable Neigh-
borhood Search principle. To highlight our algorithm's e�ciency, we make a comparative study
with the state-of-art multi-label dimensionality reduction algorithm. We compare the impact of our
dimensionality reduction with many approaches which cover the main di�erent families of dimension
reduction algorithms: Canonical Correlation Analysis (CCA), Multi-label Dimensionality reduction
via Dependencies Maximization (MDDM) [Zhang and Zhou, 2010], the Partial Least Squares re-
gression (PLS) [Maitra and Yan, 2008], or its Orhtonormal version (OPLS). The remainder of this
report is as follow. Chapter III reviews previous approaches standing for the state-of-art multi-label
dimensionality redution. We then introduce our proposal in chapter IV. Chapter V stands for an
experimental study on several data sets. Chapter VI dicusses the results obtained according to
several performance measures taken from the litterature. Chapter VII concludes by summarizing
our main contributions and sketching many directions of ongoing research.

page 18 CHAPTER 2. INTRODUCTION



Chapter 3
Related Works

Over the last decade, researchers have focused on dimensionality reduction for multi-label classi�-
cation problems. Several reduction methods were developped and coupled with classi�er [Li et al., 2013]
[Zhang and Zhou, 2010] [Yu et al., 2005], especially ML-kNN [Zhang and Zhou, 2007] and SVM
[Godbole and Sarawagi, 2004], to improve their classi�cation performance. In this section, we give
a brief review on multi-label dimensionality reduction methods that were coupled with a kNN classi-
�er. There are approaches in which dimensionality reduction methods is applied as an independent
preprocessing on data before classi�cation and others in which the two tasks are accomplished
simultaneously.

3.1 Independent Reduction Methods

The independent methods can be categorized into three main types: The unsupervised reduction
methods that usually tend to summarize the feature space while keeping a maximum of its structural
information (such as features' covariance or co-occurence). The supervised reduction methods that
aim at emphasizing the link between the projected features and the labels (based on dependence
or covariance criteria). And �nally, the weakly-supervised methods whose purpose is to reduce the
feature space while preserving high order relationship between variables and/or satisfying distance
constraints between instances.

In this report, we describe �ve methods that represent the three previous categories and that
are widely used in multi-label dimensionality reduction comparative studies: Principal Component
Analysis (PCA) [Abdi and Williams, 2010], Canonical Correlation Analysis (CCA) [Sun et al., 2011,
Hotelling, 1936], Orthonormal Partial Least Square (OPLS) [Rosipal and Krämer, 2006], Multi-
label Dimensionality reduction via Dependence Maximization (MDDM) [Zhang and Zhou, 2010]
and Variable Pairwise Constraint projection for Multi-label Ensemble (VPCME) [Li et al., 2013].

Unsupervised feature space reduction methods can be borrowed from single-label problems as they
only operate and focus on the feature space. There are many of them and the most used is
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PCA [Abdi and Williams, 2010]. It seeks the principal components of the features' covariance
and use them to project the feature space. This kind of approach, however, do not consider the
links between features and labels. When the main purpose is classi�cation, it is more common to
guide dimensionality reduction with supervised information such as pairwise constraints or label
informations.

To address this, supervised methods emerged such as CCA [Sun et al., 2011, Hotelling, 1936] and
Partial Least Square (PLS) [Bishop, 2006]. These two approaches are commonly used in multi-label
problems since they analyze and maximize correlation between two sets of variables.

PLS seeks the directions, in the feature space, that have a maximum covariance with the label
space while CCA seeks directions in both label and feature space which have a maximum �canon-
ical� correlations with each other. We consequently project the feature space into its best direc-
tions. These two methods have a close connection and their equivalence has been recently proved
[Sun et al., 2009]. In this paper, we did not use PLS but Orthonormal PLS (OPLS), a variant of
Partial Least Square that aims at obtaining orthonormal directions [Rosipal and Krämer, 2006].

Besides, MDDM, an approach based on Hilbert-Schmidt Independence Criterion (HSIC) [Zhang and Zhou, 2010],
is also supervised. This algorithm �nds a projection of the feature space that maximizes the HSIC
between the projected data features and the labels.

Finally, VPCME is a weakly supervised method. This type of methods focus on high-order re-
lationship between variables [Chen et al., 2009] or between instances [Li et al., 2013]. For exam-
ple, VPCME computes a projection on the feature space that preserves a small distance between
�Must-link� instances and a large distance between �Cannot-link� instances. The author proposed
an automatic build of these constraints based on the percentage of common label between two in-
stances. Formally, the algorithm seeks the projection that optimizes a tradeo� between minimizing
the must-link set scatter and maximizing the cannot-link set scatter. The authors extended this
method with a boosting-link strategy by learning several projection on bootstraps.

The �ve previously listed methods have been coupled with a kNN classi�er and performed success-
fully in many real-world problems. Nevertheless, as they were used as an independant preprocessing
before kNN classi�cation, their optimization did not take the kNN performance into account. These
methods' only objective is to optimize their own criteria (covariance, dependence, co-occurence) al-
though it might be partially inconsistant with the principle of the classi�er. Thus, the performance
of the classi�cation can be penalized.

3.2 Simultaneous Dimensionality Reduction and Multi-

Label Classi�cation

To tackle this problem, a few studies proposed a dimensionality reduction method that is aware
of the classi�er criterion [Guo and Schuurmans, 2012] [Ji and Ye, 2009]. These studies proposed
approaches that learn dimensionality reduction and a classi�er simultaneously in a global opti-
mization problem. They either used an SVM classi�er [Ji and Ye, 2009] or a large margin clas-
si�er [Guo and Schuurmans, 2012]. Their classi�cation performances were increased compared to
an approach with independant dimensionality reduction. However, we did not focus on these
methods. We speci�cally targeted a kNN classi�er since it does not need to learn, it is online
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and it is naturally multi-label. Moreover, there might remain a weakness in their proposal. In
[Guo and Schuurmans, 2012], in the optimization problem, they expressed the loss function as a sum
of two reconstruction errors: dimensionality reduction and classi�cation. As they jointly optimize
these two inconsistant objectives, each objective cannot be optimally satist�ed. In [Ji and Ye, 2009],
they combined the two formulations which led to a two-parameter optimization problem that they
solved alternatively.

In this report, we propose a novel dimensionality reduction approach with the projection as our
unique parameter and the ML-kNN performance as our sole purpose. We compare our reduction
method to the four methods PCA, CCA, OPLS and MDDM coupled with the ML-kNN classi�ca-
tion.
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Chapter 4
Proposal

4.1 Notations and De�nitions

4.1.1 Multi-label Mining

Let us introduce notations �rst.
We consider X = Rdx (or Zdx) to be the dx-dimensional feature space and Y = {0, 1}dy the labels'
�nite set which consists in dy possible class labels.
An instance x ∈ X , typically represented by a features vector x = (x1, x2, ..., xdx), is linked to a
binary vector Y = (y1, y2, ..., ydy ) ∈ Y.
In order to build a predictive model and then evaluate it in term of performances, one needs to deal
with two kinds of data sets:

• the training set L =
{(
xLi , Y

L
i

)
∈ X × Y | i ∈ {1, ..., NL}

}
of cardinality NL used to tain the

model.

• the testing one T =
{(
xTi , Y

T
i

)
∈ X × Y | i ∈ {1, ..., NT }

}
of cardinality NT used to compute

the performances of the model.

The predictive model wished to be well-learned consists in a multi-label classi�er. It aims at
mapping an instance x taken from X with the label vector Y ∈ Y that optimizes a speci�c loss
function.
To do this, we need to compute a kind of con�dence that the label yl is a proper label of x. This can
be done by de�ning a real-valued function f : X ×Y → [0, 1] where f(x, y) traduces the probability
that the instance x is associated with the label y.
We denote by f(x, ·), the real valued vector of dimension dy carrying out the values f(x, y) for a
given instance x:

f(x, ·) =
(
f(x, y1), ..., f(x, ydy )

)
∈ [0, 1]

dy (4.1)
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A successful learning classi�er system will tend to output greater values for the correct labels than
the incorrect ones, i.e:

f(xi, y) � f(xi, z)⇔ y ∈ Yi ∧ z /∈ Yi (4.2)

Moreover, the fonction f can be transformed to a ranking bijection rank(·, ·), which maps the
outputs given by f(xi, y) for any label y with an element from {1, 2, ..., dy} such that:

f(xi, y) � f(xi, z)⇔ rank(xi, y) � rank(xi, z) (4.3)

Furthermore, a multi-label classi�er h(·) can be derived from the function f by choosing a threshold
function t(·), where:

h(xi) = {y | f(xi, y) ≥ t(xi) ∧ y ∈ Y} (4.4)

Finally, we predict the labels vector Zi ∈ Y of an unseen instance by exploiting the outputs of the
classi�er h:

Zi =
(
by1 ∈ h(xi)c, by2 ∈ h(xi)c, ..., bydy ∈ h(xi)c

)
(4.5)

where:

bξc =

{
1 when the event ξ holds

0 otherwise

4.1.2 Metric Learning via Supervised Dimensionality Reduction

Through supervised dimensionality reduction framework, one aims at �nding a low dimensional
representation maximizing the correlated information between the instances space X and the labels
space Y. This low dimensional representation can be expressed with a projection matrix P ∈ Rr×dx
of low rank r � dx.
So, let P =

{
M ∈ Rr×dx | rank(M) = r

}
be the space containing all projection matrices of rank r.

Then, we de�ne the projected version of any collection of instances I = {xi ∈ X | i ∈ J1, NIK} with
regards to the r-rank matrix P : IP = {x · P τ ∈ Rr | x ∈ I}.
To do this, we introduce the following operator:

〈·〉P : Rdx → Rr
I = {xi | i ∈ J1, NIK} 7→ 〈I〉P = IP = {x · P τ |x ∈ I} (4.6)

Based on the low rank matrix P , one can de�ne a Mahalanobis (pseudo) distance [Joseph et al., 2013]
‖ ·, · ‖M between two instances x and x′ taken from X :

‖ x, x′ ‖M=
√

(x− x′) · M · (x− x′)τ (4.7)

where: M = P τ · P ∈ Rdx×dx is a symmetric positive semi-de�nite (PSD) matrix of rank r ≺ dx.
We summarize all symbols and notations used in this report in Table 4.1.

4.2 ML-kNN Classi�er

The main idea of this algorithm consists in adapting the k-nearest neighbor principle in order to
deal with multi-label data, where a maximum a posteriori rule (MAP) is used to predict labels by
exploiting the labeling pattern embodied in the instance neighborhood.
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Notations Mathematical Meanings

X dx-dimensional instance space Rdx (or Zdx)
Y dy possible class labels space {0, 1}dy
x dx-dimensional feature vector x = (x1, x2, ..., xdx) ∈ X
Y correct label vector Y = (y1, y2, ..., ydy ) associated with x
Y complementary vector of Y in Y: Y = (1, 1, .., 1)︸ ︷︷ ︸

dy

−Y

dx number of features
dy number of labels (classes)
xLi training instance taken from X
Y Li training label vector associated with xLi
xTi testing instance taken from X
Y Ti testing label vector associated with xTi
L multi-label training dataset

{(
xLi , Y

L
i

)∣∣ 1 ≤ i ≤ NL}
SLx multi-label training instance set

{
xLi
∣∣ 1 ≤ i ≤ NL}.

SLy multi-label training label set
{
Y Li
∣∣ 1 ≤ i ≤ NL}.

T multi-label testing dataset
{(
xTi , Y

T
i

)∣∣ 1 ≤ i ≤ NT }
STx multi-label testing instances set

{
xTi
∣∣ 1 ≤ i ≤ NT }.

STy multi-label testing labels set
{
Y Ti
∣∣ 1 ≤ i ≤ NT }.

NL training dataset cardinality
NT test dataset cardinality

hML(·) ML-kNN classi�er hML : X → 2Y , where hML(x) returns
the predicted labels vector for x

h(·) kNN classi�er h : X → 2Y , where h(x) returns the predicted
labels vector for x

fML(·, ·) real-valued fonction resulting from the ML-kNN maximum
a posteriori principle fML : X × Y → [0, 1] where fML(x, y) returns
the probability of y being a correct label of x

f(·, ·) real-valued fonction resulting from the kNN classi�er
f : X × Y → [0, 1] where f(x, y) returns the probability of y being a
correct label of x

rank(·, ·) ranking function which maps, based on the descending order induced
from the outputs of f(xi, y) or fML(xi, y), any y ∈ Y to {1, 2, ..., dy}

Z predicted label vector (z1, z2, ..., zdy ) ∈ Y associated with x by
applying the ML-kNN or the kNN classi�er

b·c where, for any event ξ, bξc = 1 if ξ holds and 0 otherwise

| · | |Y =
(
y1, ..., ydy

)
| returns the number of entries yl equal to 1,

i.e. |Y | =
∑dy
l=1byl = 1c

{y ∈ Y } for any Y =
(
y1, ..., ydy

)
, return the labels {yi | yi = 1, i ∈ J1, dyK}

P Space containing all projection matrices of rank r:
{
M ∈ Rr×dx | rank(M) = r

}
P r × dx projection matrix of rank r ≺ dx
M M = P τ · P Mahalanobis PSD matrix of rank r ≺ dx

‖ ·, · ‖M Mahalanobis distance with regards to the PSD matrixM
〈I〉P Projected version of any collection of instances I taken from X .

Table 4.1: Notations Summary
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Let N(x) describes the set containing the k nearest neighbors of an unseen instance x taken
from the training data set L. To identify the neighborhood, we generally deal with the well-
known Euclidean distance with regards to the Euclidean properties of the instance space. ML-kNN
calculates for any class label l ∈ {1, 2, ..., dy} the following amount:

Cl =
∑

(x+,Y +)∈N(x)

byl ∈ Y +c (4.8)

Basically, the quantity Cl records the number of x's neighbors with label l.

We denote by H1
l the event that the instance x has label l and P(H1

l |Cl) represents the posterior
probability that H1

l is true when x has exactly Cl neighbors associated to the label l.
Subsequently, H0

l represents the event that the instance x don't have the label l and P(H0
l |Cl) =

1− P(H1
l |Cl) represents the posterior probability that H0

l holds under the same condition.
To predict the label vector Y of an instance x, a decision is done by applying the maximum a
posteriori rule (MAP) for each label yi:{

Y =
[
y1, ..., ydy

]
∈ Y

yl = bP(H
1
l |Cl)

P(H0
l |Cl)

� 1c ∀l ∈ {1, ..., dy}
(4.9)

According to Bayes theorem, we deduce that:

P(H1
l |Cl)

P(H0
l |Cl)

=
P(H1

l ) · P(Cl|H1
l )

P(H0
l ) · P(Cl|H0

l )
(4.10)

In Eq (4.10), P(H1
l ) (or P(H0

l )) represents the prior probability that the event H1
l holds (or H0

l

holds). These prior probabilities are estimated by counting the number of training examples asso-
ciated with each label l according to equations (4.11) and (4.12):

P(H1
l ) =

s+
∑i=NL
i=1 byl ∈ Yic

s× 2 +NL
(4.11)

P(H0
l ) = 1− P(H1

l ) ∀l ∈ {1, .., dy} (4.12)

Where s is the Laplace smoothing parameter controlling the uniform prior e�ect on the estimation.
This is the �rst step of the ML-kNN algorithm.

The second step consists in computing the two quantities P(Cl|Hj
l ) (j ∈ {0, 1}) representing the

likelihood that the instance x has exactly Cl neighbors with label l when the event Hj
l holds.

To do this, we de�ne two dy × (k + 1) frequency matrices Υ0 and Υ1 within the equations (4.13)
and (4.14):

∀ (l, κ) ∈ {1, ..., dy} × {0, ..., k}

Υ1
l,κ =

NL∑
i=1

byl ∈ Yic · bεl(xi) = κc (4.13)
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Υ0
l,κ =

NL∑
i=1

byl /∈ Yic · bεl(xi) = κc (4.14)

where εl(xi) =
∑

(x+,Y +)∈N(xi)
byl ∈ Y +c

The quantities εl(xi) mark the number of xi's neighbors associated with the label yl. By this
way, Υ1

l,κ records the exact number of training instances associated with the label yl having exactly
κ neighbors with label yl.
Correspondingly, Υ0

l,κ records the exact number of training instances not associated with the label
yl having exactly κ neighbors with label yl.
Subsequently, the likelihoods P(Cl|Hj

l ) (j ∈ {0, 1}) are computed according to the equation (4.15):

P(Cl|Hj
l ) =

s+ Υj
l,Cl

s× (k + 1) +
∑k
κ=0 Υj

l,κ

(j, l, Cl) ∈ {0, 1} × {1, ..., dy} × {0, ..., k} (4.15)

This step conclude the ML-kNN training phase.
Then, the ML-kNN testing phase only consists in substituting Eq (4.12), Eq (4.11) and Eq (4.15)
into Eq (4.10).
Therefore, the labels vector prediction step is naturally-done by following equation (4.9). We
summarize the ML-kNN algorithm in Fig. 4.1 and Fig. 4.2.

4.3 ML-ARP: Multi-Label Adaptative Random Pro-

jections

4.3.1 Backgrounds

Traditionally, according to Johnson-Lindenstrauss lemma [Dasgupta and Gupta, 2003], random
projection methods are used in order to preserve - up to a small distorsion - pairwise l2 distances
between instances.
In mono-label classi�cation, these techniques have been called several times in processing of both
noisy and noiseless images and also in text documents information retrieval [Bingham and Mannila, 2001].
In multi-label mining, projection techniques have mainly been used in order to reduce the space
representation dimentionality while the pairwise distances are carefully preserved. Among these
applications, one may found:

• labels random projection (output space), where in [Wan et al., 2016], small random subset
of labels are coupled with a single-label classi�er in order to build the RAKEL (RAndom k-
labELsets) multi-label classi�er.

• features random projection (input space), where in [Ran and Oh, 2015] sparse random
projections are used in order to optimize wireless sensor networks.
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Algorithm 1 Y=ML-kNN(L, k, x)
Inputs:

• L =
{(
xLi , Y

L
i

)
∈ X × Y | i ∈ {1, ..., NL}

}
: multi-label training dataset of cardinality NL

• k: Neighborhood size

• x ∈ X : testing instance

Training Step

• Computing Prior Probabilities

for l = 1 to dy do
Estimate P(H1

l ) and P(H0
l ) according to Eq.(4.11) and Eq.(4.12)

endfor

• Computing neighborhood

for i = 1 to NL do
Identify the k nearest neighbors N(xLi ) for xLi

endfor

• Computing Posterior Probabilities

for κ = 0, l = 1 to k, dy do
Update frequency matrices Υ0

l,κ and Υ1
l,κ according to Eq.(4.14) and (4.13).

endfor

Testing Step

• Identify the k nearest neighbors N(x) for x.

• for l = 1 to dy do
Calculate the statistics Cl according to Eq.(4.8)
endfor

• Compute Y by applying Eq.(4.9) (in conjuction with Eq.(4.11), Eq.(4.12), Eq.(4.15) and
Eq.(4.10))

Output:

• Y ∈ Y: Predicted label vector for the instance x.

Figure 4.1: Pseudo-code of the ML-kNN algorithm applied on an unseen instance x
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Algorithm 2 Sz=ML-kNN(L, k, Sx)
Inputs:

• L =
{(
xLi , Y

L
i

)
∈ X × Y | i ∈ {1, ..., NL}

}
: multi-label training dataset of cardinality NL

• k: Neighborhood size

• Sx = {xi | i ∈ {1, ..., NS}} ⊂ X : testing set

Process:

for i = 1 to NS do
Yi = ML-kNN(L, k, xi) (according to Fig.4.1)

endfor

Output:

• Sz = {Yi | i ∈ {1, ..., NS}} ⊂ Y: Predicted label vector set

Figure 4.2: Pseudo-code of the ML-kNN algorithm applied on a set of unseen instances Sx

4.3.2 ML-ARP

In order to improve the performances of the ML-kNN classi�er, we need to �nd a better instance
space representation than the original one. In other words, we seek to build a new instance space
in which the ML-kNN classi�er performances become optimal.
For this issue, we propose to resolve the following problem:

min
P∈P

Θ(P ) = min
P∈P

‖ SLy ,SLz = MLkNN(LP , k, 〈SLx 〉P ) ‖ (4.16)

where:

• Θ: denotes the reconstruction error between the true training set of labels SLy and SLz the set
of labels predicted with Ml-kNN on the P -projected space.

• P : the low rank projection matrix P ∈ P traducing the transition between the original space
X and the reduced dimensional space XP = Rr.

• ‖ ·, · ‖: denote the Hamming Loss measure (Eq.(5.1)).

• k: the instances neighborhood size used as the second input parameter in the ML-kNN
algorithm (see 4.2).

• 〈SLx 〉P : projected version of the training instance set SLx with regards to the projection matrix
P according to Eq.(4.6).

• LP : denotes the projected version of the training set L according to Eq.(4.17):

LP =
{(
xLi · P τ , Y Li

)
∈ XP × Y | i ∈ {1, ..., NL}

}
(4.17)
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Because of the nonconvex properties of the problem 4.16, we propose to follow an heuristic opti-
mization way via the Reduced Variable Neighborhood Search (RVNS) [Xiao et al., 2011].
The RVNS principle revolves around iteratively and ramdomly changing the parameter P and val-
idating the changes that improve the objective function. We can summarize the main steps of the
RVNS principle applied on the problem 4.16 as follows:

1. Draw a current solution P from P.

2. Make a slightly modi�cation of the solution P into a new solution P ′ using a sparse speed
matrix ϑ (See Algorithm 4.3.2).

3. Evaluate both P and P ′ according to the reconstruction error Θ(P ) and Θ(P ′).

4. If Θ(P ′) is lesser than Θ(P ), then P ′ become the new current solution, otherwise P is kept.

5. Repeat the steps 2., 3. and 4. until convergence.

This process is repeated many times, generally, several hundred times. In our framework, the RVNS
principle is applied to the search of a good projection according to the performances of the ML-kNN
classi�er using this projection as a new representation space. Thus, we learn the projection globally
and naturally in a supervised way.
We choose the �rst solution of the optimization process to be a random projection drawn from a zero-
mean, unit-variance gaussian distribution. By this way, we progressively adapt the initial random
projection to the handled multi-label dataset. We call this method the Multi-Label Adaptative
Random Projection (ML-ARP).
It should be noted that ML-ARP don't rely on the Johnson-Lindenstrauss lemma. Its objective
is far from preserving geometric distances of the original space X . Contrariwise, ML-ARP uses
random projections are used to deform the original space in furtherance of improving the ML-kNN
accuracy. Thusly, we can easily override the k-nearest neighbors methods drawback.
E�ectively, ML-ARP approach provides us with a new instance space representation caracterized
by the transition matrix P which can be used to build a Mahalanobis pseudo-distance. Instead
of computing a low accuracy Euclidean distance between two instances x and x′ taken from the
original space X , we propose to compute the distance between their respective projected versions
x · P τ and x′ · P τ according to Eq.(4.7).
Thus, this guarantees that ML-kNN accuracy is widely improved.
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Algorithm 3 ϑ = SpeedMatrix(r, dx)

Inputs:

• r: Row number

• dx: Column number

Process:

MutationRate ∼ U[0,1]
for i = 1 to r do
for j = 1 to dx do
val ∼ U[0,1]
if(val < MutationRate) do
ϑi,j ∼ N (0, 1)

else

ϑi,j ← 0
endIf

endFor

endFor

Output:

• ϑ ∈ P: Sparse speed matrix.

Figure 4.3: Algorithm to draw a sparse speed matrix
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4.4 ML-ARP Algorithm

Algorithm 4 P ∗=ML-ARP(L, k, r, PerfMesure, StopCondition)
Inputs:

• L =
{(
xLi , Y

L
i

)
∈ X × Y | i ∈ {1, ..., NL}

}
: multi-label training dataset of cardinality NL

divided into:

� SLx =
{
xLi ∈ X | i ∈ {1, ..., NL}

}
: set of training instances.

� SLy =
{
Y Li ∈ Y | i ∈ {1, ..., NL}

}
: set of true labels.

• k: Neighborhood size

• r: Reduced dimension

• PerfMesure: A multi-label performance measure taken from 5.2 denoted by ‖ ·, · ‖.

• StopCondition: One of the following conditions:

� Maximum of the CPU time allowed.

� Maximum number of iterations allowed.

Initialization

• Draw P ∈ P such that: Pi,j ∼ N (0, 1) ∀(i, j) ∈ J1, rK× J1, dxK

• Normalize each row of P according to an unit Euclidean norm.
(Pi,· · P τi,· = 1)

• Project the set SLx into P to get 〈SLx 〉P according to Eq:4.6.

• Get the projected version of L denoted by LP according to Eq.4.17.

• Perform a ML-kNN process (according to Fig 4.2) with LP , k and 〈SLx 〉P as inputs. Recover
SLz as output.

• Compute the actual reconstruction error: actual error =‖ SLy ,SLz ‖.

Learning Step

• Draw a speed matrix ϑ according to �g. 4.3.2.

• while(StopCondition not reached) do

� Compute P ∗ = P + ϑ

� Normalize each row of P ∗ according to an unit Euclidean norm.
(P ∗i,· · P ∗τi,· = 1)

� Project the set SLx into P ∗ to get 〈SLx 〉P∗ according to Eq:4.6.

� Get the projected version of L denoted by LP∗ according to Eq.4.17.

� Perform a ML-kNN process (according to Fig 4.2) with LP∗ , k and 〈SLx 〉P∗ as inputs.
Recover SL∗z as output.

� Compute the new reconstruction error new error =‖ SLy ,SL∗z ‖.
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• if(new error < actual error) do

� actual error ← new error.

� P ← P ∗

• else do

� Draw a speed matrix ϑ according to �g. 4.3.2.

• endIf

• endWhile

Output:

• P ∗ ∈ P: Projection matrix of rank r solution of the problem 4.16.
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Chapter 5
Experiments

5.1 Data sets

In order to evaluate the performances of multi-label classi�ers, one need to de�ne some real-world
data set taken from varions domains such as: music, images, text and medical.

5.1.1 Yeast Gene Functional Analysis

The goal of studying the Yeast dataset [Elissee� and Weston, 2001] is to predict the gene func-
tional classes of the Yeast Saccharomyces cerevisiae. Each gene is described by the concatenation
of micro-array expression data and phylogenetic pro�le and is associated with a set of functional
classes of cardinal 14. The multi-label data set contains 2417 genes (instances) represented by a
103-dimensional real-valued feature vectors.

5.1.2 Emotions

This is a small datatset [Trohidis et al., 2008] where each instance describes a piece of music
by 71-dimensional real-valued feature vector. Each of the 593 instances linked to 6 possible emo-
tions (labels): sad-lonely, angry-aggressive, amazed-surprised, relaxing-calm, quiet-still and happy-
pleased.

5.1.3 Mediamill

Mediamill dataset [Sorower, 2010] is a multimedia dataset �rstly introduced in a generic video
indexing challenge problem that decomposes the problem into unimodal and multimodal video
analysis [Snoek et al., 2006]. The set contains 85 hours of international broadcast news data, divided
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into 43907 instances described by 120-deimensional real-valued feature vectors, categrorized into
101 class labels.

5.1.4 Natural Scene

In natural scene categorization [Boutell et al., 2004], each scene picture belongs to several image
classes simultaneously. For instance, the image in �gure 5.1(a) can be classi�ed as a tree scene
as well as a sea scene, while image in �gure 5.1(b) may be categorized as a tree scene as well as
mountain scene. The picture in �gure 5.1(c) is considered as both sunset and sea scene, while the
one in �gure 5.1(d) belongs to both sunset and mountain categories. The natural scene multi-label
data set consists in 2407 examples represented by a 294-dimensional real-valued feature vectors
which are categorized into 6 possible class labels: sea, sunset, montain, desert, tree and urban.

(a) Tree+sea (b) Trees+mountains

(c) Sunset+Sea (d) Sunset+mountain

Figure 5.1: Examples of multi-labelled images

5.1.5 Corel5k

The Corel5k [Ponce et al., 2006] data set contains images from the Stock Photo Cds. Each image
is annotated with 1 to 5 keywords which are considered as labels. There is 374 possible keywords.
The data set consists in 5000 real-valued feature vectors of 499 dimensions.
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5.1.6 Delicious

Delicious dataset [Bi and Kwok, 2013] is a collection of 16105 textual data from webpages along
with their associated 983 tags. Each instance is caracterized by a 500 binary features vector. Such
web data is collected from a social bookmarking website namely, del.icio.us, data collected until
April,2007.

5.1.7 Enron

Enron [Klimt and Yang, 2004] is a sparse dataset where 1702 emails are de�ned by 1001 binary
features. They can be tagged with up to 53 genres.

5.1.8 Genbase

Genbase [Diplaris et al., 2005] is another microbiological dataset where the genes are described
with 1186 binary features. They can be associated with 27 biological functions.

5.1.9 Medical

The biomedical dataset [Read et al., 2009] is taken from the Computational Medical Center
[Crammer et al., 2007] which organizes Medical NLP Challenge with a rich set if medical text
corpus. This dataset consists in a collection of patient symptom histories, diagnosis and prognoses
reports to the insurance companies. There is 978 instances described by 1449 binary vectors which
can be tagged up to 45 labels.

5.1.10 Bibtex

Bibtex dataset [Katakis et al., 2008] contains metadata for the bibtex items like the title of the
paper, the authors, the keywords,etc. It consists in 7395 examples catacterized by 1836-dimensional
binary features vectors which can be tagged up to 159 di�erent labels.

5.1.11 Bookmarks

The bookmarks [Levati¢ et al., 2015] dataset contains metadata for bookmark items such as the
URL of the web page, a description of the web page. The dataset consists in 87856 examples
described by 2150 binary features vectors which are linked to 208 labels.

5.1.12 Reuters (RCV1V2S1)

Reuters Corpus Volume 1 [Ghamrawi and McCallum, 2005] consists in a large volume text corpus
which exceeds 800000 newswise stories, collected and manualy organized by Reuters Ltd. for their
research purposes [Lewis et al., 2004]. Signi�cant e�orts have been made in order to clean this text
data with all sorts of text processing techniques, including the most famous ones: removing stop
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words, stemming, transformation to TF-IDF [Al-Talib and Hassan, ] and also normalization to get
the new version of the Reuters data set (RCV1V2). Then, the dataset is decomposed into 5 subsets.
In this paper, we are only dealing with the �rst subset (RCV1V2S1), consisting in 6000 real valued
features vectors of dimension 47236 which are associated with 101 di�erent tags.

Data sets description summary

We recall all the experimental data set descriptions [Luaces et al., 2012] in Table 5.1.

Domain # instances # training s. # testing s. # features # labels labels
density

Yeast genetic 2417 2173 244 103 14 0.3
Emotions audio 593 533 60 72 6 0.31
Mediamill video 43907 39516 4391 120 101 0.043
Scene images 2407 2166 241 294 6 0.18
Corel5k images 5000 4500 500 499 374 0.0094
Delicious text(tags) 16105 14495 1610 500 983 0.019
Enron text 1702 1531 171 1001 53 0.064
Genbase biology 662 595 67 1186 27 0.05
Medical health 978 880 98 1449 45 0.0027
Bibtex text 7395 6656 739 1836 159 0.015

Bookmarks text 87856 79070 8786 2150 208 0.0098
Reuters text 6000 5400 600 47229 101 0.026

Table 5.1: Datasets description summary

5.2 Performance measures

In order to quantify the classi�cation quality of any multi-label classi�er, we de�ne a set of
measures calculated between:

• the set of true labels vectors Sy = {Yi ∈ Y | i ∈ {1, ..., n}}.

• the set of predicted labels vectors Sz = {Zi ∈ Y | i ∈ {1, ..., n}}.

• the set of labels' con�dence vectors Sf =
{
f(xi, ·) ∈ Rdy | i ∈ {1, ..., n}

}
.

5.2.1 Hamming Loss ↓

Hamming loss measure evaluates how many time on average a label not belonging to the instance
is predicted and vice versa.

HammingLoss (Sy,Sz) =
1

n

i=n∑
i=1

1

dy
|Yi∆Zi| (5.1)

page 36 CHAPTER 5. EXPERIMENTS



CHAPTER 5. EXPERIMENTS

where ∆ stands for the symmetric di�erence between two sets, which is, in Boolean logic, the
exclusive disjunction set-theoretic equivalent.
The lesser the hamming loss, the better the classi�cation performance.

5.2.2 Jaccard Loss ↓

Jaccard loss is the average across all instances of the jaccard distance between the predicted
labels vector Z and the correct labels vector Y of a given instance.

JaccardLoss (Sy,Sz) =
1

n

i=n∑
i=1

|Y i ∩ Zi|+ |Yi ∩ Zi|
|Y i ∩ Zi|+ |Yi ∩ Zi|+ |Yi ∩ Zi|

(5.2)

The lesser the jaccard loss, the better the classi�cation performance.

5.2.3 Ranking Loss ↓

Ranking loss is the average across all instances of the average fraction of label pairs that are
misordered for the handled instances.

RankingLoss (Sy,Sf ) =
1

n

i=n∑
i=1

1

|Yi||Y i|
|
{

(y1, y2) |f (xi, y1) ≤ f (xi, y2) , (y1, y2) ∈ Yi × Y i
}
| (5.3)

The lesser the ranking loss, the better the classi�cation performance.

5.2.4 One Error ↓

One-error describes how many times the best predicted label in term of ranking is misclassi�ed.

OneError (Sy,Sf ) =
1

n

i=n∑
i=1

b[argmaxy∈Y f (xi, y)] /∈ Yic (5.4)

5.2.5 Coverage ↓

Coverage describes on the average how far we need to go down the ordered list of labels in term
of relevancy to cover all non-zero labels of the instance.

Coverage (Sy,Sf ) =
1

n

i=n∑
i=1

maxy∈Yi
rank (xi, y)− 1 (5.5)

The lesser the coverage, the better the classi�cation performance.
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5.2.6 Root Mean Square Error (RMSE) ↓

We de�ne the root mean square error as the average over all instances of the Euclidean distance
between the correct labels vector and the predicted real values vector of an instance.

RMSE (Sy,Sf ) =
1

n

i=n∑
i=1

√∑
y∈Yi

(y − f (xi, y))
2 (5.6)

5.2.7 Accuracy ↑

We de�ne the accuracy as the average across all instances of the proportion of the predicted
correct labels for an instance to the total number of labels (predicted and correct) for the handled
instance.

Accuracy (Sy,Sz) =
1

n

i=n∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(5.7)

The higher the accuracy, the better the classi�cation performance.

5.2.8 Recall ↑

We de�ne the recall as the average over all instances of the proportion of predicted correct labels
to the total number of correct labels.

Recall (Sy,Sz) =
1

n

i=n∑
i=1

|Yi ∩ Zi|
|Yi|

(5.8)

The higher the recall, the better the classi�cation performance.

5.2.9 Precision ↑

We de�ne the precision as the average over all instances of the proportion of predicted correct
labels to the total number of predicted labels.

Precision (Sy,Sz) =
1

n

i=n∑
i=1

|Yi ∩ Zi|
|Zi|

(5.9)

The higher the precision, the better the classi�cation performance.

5.2.10 Subset Accuracy ↑

We de�ne the subset accuracy as the average over all instances of the number of totally correct
predicted labels vector.

SubsetAccuracy (Sy,Sz) =
1

n

i=n∑
i=1

bYi = Zic (5.10)

The higher the subset accuracy, the better the classi�cation performance.
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5.2.11 Average Precision ↑

Average precision evaluates the average over all instances of the average fraction of labels ranked
above a given label y ∈ Y which actually belong to Y .

AveragePrecision (Sy,Sf ) =
1

n

i=n∑
i=1

1

|Yi|
∑
y∈Yi

| {y′|rank (xi, y
′) ≤ rank (xi, y) , y′ ∈ Yi} |
rank (xi, y)

(5.11)

The higher the average precision, the better the classi�cation performance.

5.2.12 F1-Measure ↑

We de�ne the F1-Measure as the harmonic mean of precision and recall measures.

F1 (Sy,Sz) =
1

n

i=n∑
i=1

2 · precision · recall
precision+ recall

=
1

n

i=n∑
i=1

2|Yi ∩ Zi|
|Zi|+ |Yi|

(5.12)

which is a particular case of a more generalized score: the Fβ-score

Fβ =
1

n

i=n∑
i=1

(1 + β2) · precision · recall
(β2 · precision) + recall

(5.13)

The higher the F1-Measure, the better the classi�cation performance.

5.3 Experimental protocol

In order to:

• evaluate the performances of the learned model from an available dataset and gauge the
generalizability of the model.

• make a comparison study of di�erent algorithms and �nd out the best one.

we perform a 10-fold cross validation paradigm which is traditionally done by following the following
steps:

• Partition the dataset D into 10 equally (or nearly equally) sized folds Fi (D =
⋃10
i=1 Fi)

• Repeat 10 times the following instructions:

� Choose a fold Fi to be the test set T containing:

∗ the testing instances set STx .
∗ the labels set STy ,

� merge the 9 remaining folds to build the learning dataset L.
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� Learn the model by using L.
� Apply the learned model on the testing instances set STx to recover the set of predicted
labels STz

� Compute the performance measures Perfs (see 5.2) on the true labels set STy and the
predicted one STz .

• Compute the means and the standard deviations of the computed performances Perfs.
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Chapter 6
Results and Discussions

6.1 Results on data sets

In what follows, a 10-fold cross validation has been performed on the 12 choosen datasets according
to the previous experimental protocol 5.3.

Notations meaning

We brie�y recall the meaning of the initials used from table 6.1 to table 6.12.

• Baseline: computes the frequency of each label in the training set. When an unseen instance
comes, it returns the most frequent label.
There is no metric learning or dimensionality reduction preprocessing to do before applying
the baseline.

• ML-kNN: Direct application of the ML-kNN algorithm according to �g.4.1 and �g.4.2.

• RP: Draw a zero-mean, unit-variance gaussian random projection matrix PRP of rank r.
Then, application of the ML-kNN algorithm on the projected version of the training set
〈L〉PRP

and the testing set 〈T 〉PRP
with regards to the projection matrix PRP (see Eq.4.17).

• ML-ARP: Learning the projection matrix PML−ARP according to �g.4. Then, application
of the ML-kNN algorithm on the projected version of the training set 〈L〉PML−ARP

and the
testing set 〈T 〉PML−ARP

with regards to the projection matrix PML−ARP (see Eq.4.17).

• MDDM: Learning the projection matrix PMDDM according to A.1. Then, application of the
ML-kNN algorithm on the projected version of the training set 〈L〉PMDDM

and the testing set
〈T 〉PMDDM

with regards to the projection matrix PMDDM (see Eq.4.17).
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• PCA: Learning the projection matrix PPCA according to A.2. Then, application of the
ML-kNN algorithm on the projected version of the training set 〈L〉PPCA

and the testing set
〈T 〉PPCA

with regards to the projection matrix PPCA (see Eq.4.17).

• OPLS: Learning the projection matrix POPLS according to A.4. Then, application of the
ML-kNN algorithm on the projected version of the training set 〈L〉POPLS

and the testing set
〈T 〉POPLS

with regards to the projection matrix POPLS (see Eq.4.17).

• CCA: Learning the projection matrix PCCA according to A.3. Then, application of the
ML-kNN algorithm on the projected version of the training set 〈L〉PCCA

and the testing set
〈T 〉PCCA

with regards to the projection matrix PCCA (see Eq.4.17).

• N\A: means that the algorithm cannot be applied on the given dataset because of one of the
following reason:

� Singularity of the Y τY matrix in the generalized eigenvalue problem A.5.

� Non-positiveness of the second term of the generalized eigenvalue problems (OPLS and
CCA) A.5 and A.6.

� Maximum CPU time or RAM memory allowed reached when resolving the eigenvalue
problems A.2, A.4, A.5 and A.6.
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6.1.1 Yeast

• k = 5: Neighborhood size.

• r = 64: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.335 ± 0.01 0.512 ± 0.0169 0.484 ± 0.013 0.53 ± 0.014 0.376 ± 0.014 0.514 ± 0.0144 0.47 ± 0.011 0.471 ± 0.018

Average Precision 0.703 ± 0.01 0.759 ± 0.0165 0.750 ± 0.016 0.761 ± 0.013 0.714 ± 0.01 0.759 ± 0.014 0.746 ± 0.015 0.746 ± 0.013
Coverage 6.79 ± 0.089 6.34 ± 0.15 6.44 ± 0.116 6.37 ± 0.14 6.727 ± 0.075 6.35 ± 0.142 6.494 ± 0.134 6.496 ± 0.145

F1 0.228 ± 0.005 0.308 ± 0.008 0.295 ± 0.008 0.303 ± 0.007 0.246 ± 0.008 0.309 ± 0.008 0.29 ± 0.006 0.29 ± 0.010
Hamming Loss 0.232 ± 0.003 0.195 ± 0.007 0.202 ± 0.006 0.191 ± 0.005 0.227 ± 0.003 0.194 ± 0.007 0.203 ± 0.006 0.204 ± 0.005
Jaccard Loss 0.664 ± 0.01 0.487 ± 0.016 0.515 ± 0.013 0.49 ± 0.014 0.623 ± 0.014 0.485 ± 0.014 0.529 ± 0.011 0.528 ± 0.018
One Error 0.247 ± 0.014 0.238 ± 0.028 0.24 ± 0.023 0.24 ± 0.019 0.25 ± 0.016 0.238 ± 0.02 0.24 ± 0.021 0.243 ± 0.018
Precision 0.749 ± 0.015 0.716 ± 0.016 0.717 ± 0.019 0.717 ± 0.013 0.72 ± 0.019 0.721 ± 0.017 0.723 ± 0.012 0.725 ± 0.014
RMSE 0.327 ± 0.004 0.309 ± 0.004 0.311 ± 0.001 0.310 ± 0.002 0.324 ± 0.004 0.309 ± 0.004 0.313 ± 0.002 0.314 ± 0.001

Ranking Loss 0.211 ± 0.009 0.172 ± 0.012 0.178 ± 0.011 0.174 ± 0.01 0.204 ± 0.009 0.172 ± 0.012 0.182 ± 0.011 0.181 ± 0.011
Recall 0.335 ± 0.009 0.589 ± 0.024 0.547 ± 0.019 0.59 ± 0.023 0.397 ± 0.022 0.59 ± 0.022 0.528 ± 0.017 0.531 ± 0.025

Subset Accuracy 0.014 ± 0.008 0.185 ± 0.019 0.152 ± 0.016 0.198 ± 0.017 0.056 ± 0.014 0.183 ± 0.0169 0.142 ± 0.011 0.139 ± 0.015

Table 6.1: Experimental Results on the Yeast data set
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6.1.2 Emotions

• k = 5: Neighborhood size.

• r = 64: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.374 ± 0.042 0.374 ± 0.04 0.477 ± 0.063 0.109 ± 0.042 0.374 ± 0.042 0.359 ± 0.058 0.384 ± 0.065

Average Precision 0.578 ± 0.014 0.715 ± 0.023 0.718 ± 0.0225 0.761 ± 0.037 0.592 ± 0.034 0.719 ± 0.023 0.716 ± 0.0437 0.725 ± 0.034
Coverage 3.15 ± 0.165 2.27 ± 0.128 2.27 ± 0.123 2.002 ± 0.20 2.98 ± 0.19 2.278 ± 0.128 2.315 ± 0.218 2.272 ± 0.149

F1 0.0 ± 0.0 0.226 ± 0.025 0.22 ± 0.023 0.277 ± 0.029 0.069 ± 0.027 0.226 ± 0.025 0.215 ± 0.031 0.229 ± 0.031
Hamming Loss 0.313 ± 0.002 0.262 ± 0.013 0.261 ± 0.02 0.226 ± 0.022 0.31 ± 0.0189 0.262 ± 0.013 0.256 ± 0.0259 0.252 ± 0.029
Jaccard Loss 1.0 ± 0.0 0.625 ± 0.04 0.625 ± 0.04 0.522 ± 0.063 0.89 ± 0.042 0.625 ± 0.042 0.64 ± 0.058 0.615 ± 0.065
One Error 0.542 ± 0.0327 0.374 ± 0.041 0.376 ± 0.047 0.321 ± 0.059 0.553 ± 0.073 0.374 ± 0.041 0.374 ± 0.08 0.357 ± 0.06
Precision 0.0 ± 0.0 0.550 ± 0.058 0.554 ± 0.062 0.627 ± 0.052 0.2 ± 0.085 0.55 ± 0.058 0.521 ± 0.06 0.544 ± 0.063
RMSE 0.431 ± 0.00049 0.41 ± 0.003 0.409 ± 0.004 0.393 ± 0.01 0.43 ± 0.003 0.41 ± 0.003 0.409 ± 0.008 0.406 ± 0.008

Ranking Loss 0.412 ± 0.016 0.259 ± 0.025 0.256 ± 0.022 0.207 ± 0.036 0.401 ± 0.034 0.259 ± 0.025 0.263 ± 0.046 0.249 ± 0.036
Recall 0.0 ± 0.0 0.421 ± 0.054 0.423 ± 0.05 0.545 ± 0.064 0.111 ± 0.044 0.421 ± 0.054 0.402 ± 0.066 0.437 ± 0.06

Subset Accuracy 0.0 ± 0.0 0.154 ± 0.038 0.156 ± 0.026 0.241 ± 0.083 0.033 ± 0.021 0.154 ± 0.038 0.154 ± 0.049 0.172 ± 0.07

Table 6.2: Experimental Results on the Emotions data set
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6.1.3 Mediamill

• k = 5: Neighborhood size.

• r = 64: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.339 ± 0.004 0.4767 ± 0.003 0.469 ± 0.004 0.4825 ± 0.002 N\A N\A 0.518 ± 0.003 N\A

Average Precision 0.614 ± 0.002 0.7298 ± 0.002 0.726 ± 0.0035 0.7474 ± 0.0023 N\A N\A 0.758 ± 0.0029 N\A
Coverage 20.86 ± 0.156 14.18 ± 0.237 14.36 ± 0.30 14.09 ± 0.26 N\A N\A 12.55 ± 0.227 N\A

F1 0.223 ± 0.004 0.2910 ± 0.001 0.288 ± 0.002 0.299 ± 0.001 N\A N\A 0.307 ± 0.001 N\A
Hamming Loss 0.035 ± 0.003 0.027 ± 0.00023 0.0279 ± 0.00021 0.027 ± 0.00021 N\A N\A 0.025 ± 0.00014 N\A
Jaccard Loss 0.66 ± 0.009 0.5105 ± 0.003 0.517 ± 0.004 0.505 ± 0.003 N\A N\A 0.466 ± 0.003 N\A
One Error 0.23 ± 0.004 0.154 ± 0.005 0.157 ± 0.005 0.1408 ± 0.006 N\A N\A 0.145 ± 0.003 N\A
Precision 0.7 ± 0.008 0.7498 ± 0.005 0748 ± 0.005 0.761 ± 0.004 N\A N\A 0.764 ± 0.004 N\A
RMSE 0.127 ± 0.007 0.116 ± 0.00023 0.116 ± 0.00027 0.104 ± 0.00022 N\A N\A 0.112 ± 0.00018 N\A

Ranking Loss 0.064 ± 0.0089 0.037 ± 0.00085 0.0386 ± 0.001 0.037 ± 0.00087 N\A N\A 0.032 ± 0.000815 N\A
Recall 0.344 ± 0.04 0.526 ± 0.0028 0.519 ± 0.004 0.539 ± 0.003 N\A N\A 0.566 ± 0.003 N\A

Subset Accuracy 0.048 ± 0.0012 0.167 ± 0.0038 0.160 ± 0.004 0.171 ± 0.004 N\A N\A 0.217± 0.005 N\A

Table 6.3: Experimental Results on the Mediamill data set

45



6.1.4 Scene

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.669 ± 0.03 0.425 ± 0.02 0.658 ± 0.024 0.683 ± 0.025 0.64 ± 0.033 0.191 ± 0.0379 0.197 ± 0.027

Average Precision 0.426 ± 0.001 0.859 ± 0.018 0.625 ± 0.014 0.851 ± 0.016 0.857 ± 0.016 0.845 ± 0.02 0.635 ± 0.021 0.643 ± 0.02
Coverage 2.366 ± 0.08 0.521 ± 0.07 0.621 ± 0.1 0.546 ± 0.06 0.5 ± 0.054 0.526 ± 0.07 1.418 ± 0.094 1.390 ± 0.084

F1 0.0 ± 0.0 0.341 ± 0.016 0.269 ± 0.018 0.336 ± 0.012 0.347 ± 0.013 0.326 ± 0.01 0.097 ± 0.019 0.100 ± 0.014
Hamming Loss 0.179 ± 0.004 0.088 ± 0.008 0.108 ± 0.005 0.091 ± 0.007 0.089 ± 0.0077 0.097 ± 0.01 0.166 ± 0.006 0.162 ±0.004
Jaccard Loss 1.0 ± 0.0 0.330 ± 0.03 0.56 ± 0.054 0.341 ± 0.024 0.316 ± 0.025 0.359 ± 0.03 0.808 ± 0.037 0.802 ± 0.027
One Error 0.781 ± 0.0012 0.228 ± 0.027 0.29 ± 0.035 0.241 ± 0.025 0.239 ± 0.026 0.262 ± 0.035 0.545 ± 0.03 0.537 ±0.029
Precision 0.0 ± 0.0 0.697 ± 0.033 0.598 ± 0.032 0.684 ± 0.026 0.710 ± 0.025 0.665 ± 0.034 0.199 ± 0.037 0.205 ± 0.029
RMSE 0.394 ± 0.002 0.289 ± 0.007 0.315 ± 0.0057 0.292 ± 0.005 0.289 ± 0.0057 0.298 ± 0.007 0.372 ± 0.0036 0.371 ± 0.003

Ranking Loss 0.485 ± 0.0085 0.086 ± 0.014 0.251 ± 0.009 0.091 ± 0.013 0.083 ± 0.012 0.088 ± 0.014 0.264 ± 0.018 0.259 ± 0.016
Recall 0.0 ± 0.0 0.684 ± 0.0325 0.184 ± 0.014 0.673 ± 0.023 0.691 ± 0.027 0.653 ± 0.035 0.194 ± 0.038 0.199 ±0.028

Subset Accuracy 0.0 ± 0.0 0.627 ± 0.0288 0.516 ± 0.063 0.618 ± 0.025 0.648 ± 0.025 0.602 ± 0.032 0.181 ± 0.037 0.186 ± 0.024

Table 6.4: Experimental Results on the Scene data set
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6.1.5 Corel5k

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.016 ± 0.0036 0.01 ± 0.0017 0.01 ± 0.0038 0.03 ± 0.0059 0.01 ± 0.002 0.029 ± 0.007 N\A

Average Precision 0.290 ± 0.005 0.251 ± 0.006 0.241 ± 0.01 0.245 ± 0.0057 0.273 ± 0.008 0.254 ± 0.007 0.260 ± 0.007 N\A
Coverage 48.13 ± 2.1 105.6 ± 3.24 109.61 ± 3.12 108.76 ± 3.1 107.09 ± 2.96 110.097 ± 4.17 106.16 ± 2.43 N\A

F1 0.0 ± 0.0 0.010 ± 0.0022 0.007 ± 0.0011 0.0069 ± 0.002 0.0194 ± 0.0035 0.007 ± 0.0014 0.019 ± 0.004 N\A
Hamming Loss 0.009 ± 0.0 0.009 ± 0.0 0.009 ± 0.0 0.009 ± 0.0 0.009 ± 0.0 0.009 ± 0.0 0.009 ± 0.0 N\A
Jaccard Loss 1.0 ± 0.0 0.983 ± 0.0036 0.988 ± 0.0017 0.989 ± 0.0038 0.969 ± 0.0059 0.989 ± 0.002 0.970 ± 0.007 N\A
One Error 0.776 ± 0.008 0.737 ± 0.009 0.749 ± 0.02 0.738 ± 0.012 0.707 ± 0.017 0.727 ± 0.011 0.724 ± 0.014 N\A
Precision 0.0 ± 0.0 0.031 ± 0.007 0.0265 ± 0.004 0.024 ± 0.0065 0.059 ± 0.01 0.023 ± 0.005 0.060 ± 0.013 N\A
RMSE 0.067 ± 0.0 0.069 ± 0.0 0.069 ± 0.0 0.069 ± 0.0 0.069 ± 0.0 0.069 ± 0.0 0.069 ± 0.0 N\A

Ranking Loss 0.147 ± 0.0021 0.139 ± 0.0036 0.141 ± 0.004 0.140 ± 0.003 0.134 ± 0.003 0.136 ± 0.003 0.137 ± 0.003 N\A
Recall 0.0 ± 0.0 0.017 ± 0.0037 0.012 ± 0.0018 0.01 ± 0.003 0.031 ± 0.006 0.011 ± 0.002 0.031 ± 0.007 N\A

Subset Accuracy 0.0 ± 0.0 0.005 ± 0.0024 0.0006 ± 0.0009 0.001 ± 0.0009 0.007 ± 0.0049 0.0008 ± 0.0009 0.005 ± 0.003 N\A

Table 6.5: Experimental Results on the Corel5k data set
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6.1.6 Delicious

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.104 ± 0.002 0.292 ± 0.01 0.119 ± 0.0037 0.115 ± 0.002 0.101 ± 0.002 N/A N/A

Average Precision 0.419 ± 0.011 0.326 ± 0.0037 0.567 ± 0.01 0.319 ± 0.0038 0.337 ± 0.002 0.324 ± 0.002 N/A N/A
Coverage 393.19 ± 4.3 626.73 ± 8.19 20.31 ± 0.75 623.65 ± 8.35 618.01 ± 6.61 627.92 ± 5.13 N/A N/A

F1 0.0 ± 0.0 0.081 ± 0.0019 0.183 ± 0.0059 0.076 ± 0.003 0.089 ± 0.001 0.079 ± 0.002 N/A N/A
Hamming Loss 0.0193 ± 0.0 0.014 ± 0.0 0.02 ± 0.0 0.014 ± 0.0 0.018 ± 0.0 0.018 ± 0.0 N/A N/A
Jaccard Loss 0.999 ± 0.0005 0.894 ± 0.0029 0.625 ± 0.009 0.902 ± 0.0038 0.884 ± 0.002 0.897 ± 0.0029 N/A N/A
One Error 0.596 ± 0.009 0.402 ± 0.01 0.379 ± 0.012 0.414 ± 0.013 0.389 ± 0.004 0.406 ± 0.0069 N/A N/A
Precision 0.0 ± 0.0 0.457 ± 0.006 0.472 ± 0.012 0.443 ± 0.015 0.477 ± 0.011 0.440 ± 0.01 N/A N/A
RMSE 0.064 ± 0.000046 0.063 ± 0.00006 0.102 ± 0.0003 0.062 ± 0.00004 0.062 ± 0.0 0.063 ± 0.0 N/A N/A

Ranking Loss 0.173 ± 0.0029 0.135 ± 0.002 0.0596 ± 0.003 0.137 ± 0.002 0.131 ± 0.002 0.135 ± 0.002 N/A N/A
Recall 0.0 ± 0.0 0.114 ± 0.003 0.33 ± 0.011 0.105 ± 0.004 0.126 ± 0.002 0.111 ± 0.003 N/A N/A

Subset Accuracy 0.0008 ± 0.00049 0.002 ± 0.001 0.137 ± 0.006 0.002 ± 0.0006 0.002 ± 0.0007 0.002 ± 0.00099 N/A N/A

Table 6.6: Experimental Results on the Delicious data set
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6.1.7 Enron

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.222 ± 0.038 0.328 ± 0.018 0.314 ± 0.015 0.359 ± 0.024 0.397 ± 0.039 0.387 ± 0.038 0.3108 ± 0.034 0.318 ± 0.016

Average Precision 0.539 ± 0.015 0.627 ± 0.017 0.619 ± 0.017 0.637 ± 0.016 0.666 ± 0.018 0.661 ± 0.018 0.531 ± 0.022 0.542 ± 0.014
Coverage 13.55 ± 0.62 13.68 ± 0.547 14.02 ± 0.657 14.01 ± 0.657 12.77 ± 0.76 13.28 ± 0.62 15.024 ± 0.67 14.86 ± 0.67

F1 0.165 ± 0.026 0.213 ± 0.009 0.207 ± 0.008 0.231 ± 0.013 0.251 ± 0.019 0.247 ± 0.019 0.209 ± 0.018 0.213 ± 0.009
Hamming Loss 0.062 ± 0.001 0.051 ± 0.001 0.053 ± 0.001 0.05 ± 0.001 0.049 ± 0.001 0.049 ± 0.001 0.067 ± 0.003 0.064 ± 0.002
Jaccard Loss 0.777 ± 0.038 0.671 ± 0.018 0.685 ± 0.015 0.64 ± 0.02 0.602 ± 0.039 0.612 ± 0.038 0.689 ± 0.034 0.681 ± 0.016
One Error 0.463 ± 0.02 0.309 ± 0.028 0.33± 0.028 0.288 ± 0.03 0.260 ± 0.028 0.253 ± 0.023 0.500 ± 0.037 0.475 ± 0.036
Precision 0.519 ± 0.015 0.579 ± 0.025 0.564 ± 0.024 0.6117 ± 0.02 0.629 ± 0.03 0.632 ± 0.038 0.477 ± 0.04 0.488 ± 0.026
RMSE 0.186 ± 0.004 0.163 ± 0.0 0.164 ± 0.0 0.162 ± 0.0009 0.174 ± 0.004 0.175 ± 0.023 0.176 ± 0.0016 0.175 ± 0.001

Ranking Loss 0.118 ± 0.009 0.096 ± 0.007 0.1 ± 0.007 0.099 ± 0.007 0.088 ± 0.008 0.091 ± 0.007 0.117 ± 0.009 0.115 ± 0.009
Recall 0.257 ± 0.055 0.371 ± 0.02 0.359 ± 0.016 0.409 ± 0.03 0.457 ± 0.04 0.442 ± 0.04 0.418 ± 0.04 0.422 ± 0.025

Subset Accuracy 0.001 ± 0.002 0.072 ± 0.018 0.06 ± 0.017 0.078 ± 0.022 0.104 ± 0.032 0.088 ± 0.027 0.048 ± 0.025 0.054 ± 0.016

Table 6.7: Experimental Results on the Enron data set
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6.1.8 Genbase

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 ± 0.0 ± N\A

Average Precision 0.423 ± 0.013 0.427 ± 0.012 0.427± 0.012 0.427 ± 0.012 0.427 ± 0.427 ± 0.427 ± N\A
Coverage 4.241 ± 0.26 4.365 ± 0.27 4.365 ± 0.27 4.365 ± 0.27 4.365 ± 4.365 ± 4.365 ± N\A

F1 0.0 ± 0.0 0.0 ± 0.0 0.0± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 N\A
Hamming Loss 0.047 ± 0.001 0.047 ± 0.001 0.047± 0.001 0.047 ± 0.001 0.047 ± 0.001 0.047 ± 0.001 0.047 ± 0.001 N\A
Jaccard Loss 1.0 ± 0.0 1.0 ± 0.0 1.0± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 N\A
One Error 0.752 ± 0.015 0.752 ± 0.015 0.752± 0.015 0.752 ± 0.015 0.752 ± 0.015 0.752 ± 0.015 0.752 ± 0.015 N\A
Precision 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 N\A
RMSE 0.195 ± 0.002 0.195 ± 0.002 0.195± 0.002 0.195 ± 0.002 0.195 ± 0.002 0.195 ± 0.002 0.195 ± 0.002 N\A

Ranking Loss 0.156 ± 0.005 0.156 ± 0.005 0.156± 0.005 0.156 ± 0.005 0.156 ± 0.005 0.156 ± 0.005 0.156 ± 0.005 N\A
Recall 0.0 ± 0.0 0.0 ± 0.0 0.0± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 N\A

Subset Accuracy 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 N\A

Table 6.8: Experimental Results on the Genbase data set

50



6.1.9 Medical

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.612 ± 0.052 0.535 ± 0.033 0.580 ± 0.05 0.679 ± 0.042 0.621 ± 0.041 N\A N\A

Average Precision 0.399 ± 0.025 0.795 ± 0.035 0.752 ± 0.022 0.777 ± 0.026 0.829 ± 0.035 0.804 ± 0.035 N\A N\A
Coverage 5.313 ± 0.57 3.198 ± 0.994 3.369 ± 0.521 3.144 ± 0.809 2.462 ± 0.61 2.987 ± 0.64 N\A N\A

F1 0.0 ± 0.0 0.321 ± 0.025 0.282 ± 0.016 0.305 ± 0.026 0.354 ± 0.02 0.325 ± 0.02 N\A N\A
Hamming Loss 0.028 ± 0.0 0.015 ± 0.002 0.018 ± 0.001 0.017 ± 0.001 0.013 ± 0.001 0.015 ± 0.02 N\A N\A
Jaccard Loss 1.0 ± 0.0 0.387 ± 0.05 0.464 ± 0.03 0.419 ± 0.053 0.320 ± 0.042 0.378 ± 0.002 N\A N\A
One Error 0.735 ± 0.0355 0.254 ± 0.043 0.315 ± 0.034 0.277 ± 0.0369 0.210 ± 0.046 0.241 ± 0.04 N\A N\A
Precision 0.0 ± 0.0 0.671 ± 0.048 0.593 ± 0.036 0.643 ± 0.0522 0.738 ± 0.042 0.682 ± 0.04 N\A N\A
RMSE 0.204 ± 0.007 0.159 ± 0.007 0.126 ± 0.002 0.122 ± 0.004 0.148 ± 0.008 0.157 ± 0.04 N\A N\A

Ranking Loss 0.145 ± 0.009 0.063 ± 0.014 0.067 ± 0.011 0.062 ± 0.011 0.051 ± 0.011 0.057 ± 0.007 N\A N\A
Recall 0.0 ± 0.0 0.643 ± 0.054 0.564 ± 0.033 0.605 ± 0.05 0.709 ± 0.042 0.643 ± 0.01 N\A N\A

Subset Accuracy 0.0 ± 0.0 0.519 ± 0.0539 0.445 ± 0.034 0.490 ± 0.057 0.587 ± 0.046 0.537 ± 0.04 N\A N\A

Table 6.9: Experimental Results on the Medical data set
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6.1.10 Bibtex

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.14 ± 0.008 0.101 ± 0.008 0.122 ± 0.008 0.305 ± 0.008 0.195 ± 0.006 N\A N\A

Average Precision 0.203 ± 0.01 0.334 ± 0.0123 0.279 ± 0.0126 0.295 ± 0.01 0.509 ± 0.01 0.391 ± 0.007 N\A N\A
Coverage 42.13 ± 1.59 58.61 ± 2.02 64.46 ± 1.49 62.45 ± 1.02 40.39 ± 1.32 50.94 ± 1.62 N\A N\A

F1 0.0 ± 0.0 0.087 ± 0.004 0.063 ± 0.004 0.076 ± 0.0035 0.178 ± 0.004 0.116 ± 0.03 N\A N\A
Hamming Loss 0.015 ± 0.0001 0.0135 ± 0.0002 0.014 ± 0.0002 0.0139 ± 0.0002 0.0123 ± 0.0002 0.013 ± 0.0002 N\A N\A
Jaccard Loss 1.0 ± 0.0 0.859 ± 0.009 0.898 ± 0.008 0.877 ± 0.008 0.694 ± 0.008 0.804 ± 0.006 N\A N\A
One Error 0.853 ± 0.014 0.604 ± 0.019 0.681 ± 0.02 0.641 ± 0.018 0.425 ± 0.017 0.552 ± 0.008 N\A N\A
Precision 0.0 ± 0.0 0.270 ± 0.01 0.203 ± 0.01 0.241 ± 0.011 0.456 ± 0.012 0.335 ± 0.01 N\A N\A
RMSE 0.095 ± 0.0 0.091 ± 0.0 0.092 ± 0.0 0.092 ± 0.0 0.086 ± 0.0004 0.089 ± 0.0003 N\A N\A

Ranking Loss 0.330 ± 0.007 0.228 ± 0.006 0.258 ± 0.008 0.251 ± 0.008 0.142 ± 0.006 0.194 ± 0.007 N\A N\A
Recall 0.0 ± 0.0 0.144 ± 0.007 0.104 ± 0.008 0.124 ± 0.008 0.327 ± 0.008 0.201 ± 0.006 N\A N\A

Subset Accuracy 0.0 ± 0.0 0.059 ± 0.006 0.046 ± 0.006 0.055 ± 0.006 0.172 ± 0.011 0.109 ± 0.0069 N\A N\A

Table 6.10: Experimental Results on the Bibtex data set
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6.1.11 Bookmarks

• k = 5: Neighborhood size.

• r = 128: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.209 ± 0.0028 0.193 ± 0.0028 0.210 ± 0.0029 N\A N\A N\A N\A

Average Precision 0.158 ± 0.002 0.376 ± 0.0029 0.346 ± 0.002 0.357 ± 0.0021 N\A N\A N\A N\A
Coverage 66.61 ± 1.268 56.75 ± 0.457 59.8 ± 0.5 59.99 ± 0.414 N\A N\A N\A N\A

F1 0.0 ± 0.0 0.107 ± 0.0014 0.098 ± 0.001 0.098 ± 0.001 N\A N\A N\A N\A
Hamming Loss 0.009 ± 0.0 0.008 ± 0.0 0.008 ± 0.0 0.008 ± 0.0 N\A N\A N\A N\A
Jaccard Loss 1.0 ± 0.0 0.790 ± 0.002 0.806 ± 0.002 0.785 ± 0.002 N\A N\A N\A N\A
One Error 0.922 ± 0.0019 0.641 ± 0.003 0.679 ± 0.003 0.67 ± 0.003 N\A N\A N\A N\A
Precision 0.0 ± 0.0 0.228 ± 0.003 0.204 ± 0.003 0.225 ± 0.0 N\A N\A N\A N\A
RMSE 0.079 ± 0.0 0.073 ± 0.0 0.074 ± 0.0 0.073 ± 0.001 N\A N\A N\A N\A

Ranking Loss 0.263 ± 0.002 0.187 ± 0.002 0.2 ± 0.002 0.201 ± 0.0029 N\A N\A N\A N\A
Recall 0.0 ± 0.0 0.214 ± 0.002 0.197 ± 0.003 0.197 ± 0.0032 N\A N\A N\A N\A

Subset Accuracy 0.0 ± 0.0 0.191 ± 0.002 0.18 ± 0.002 0.195 ± 0.003 N\A N\A N\A N\A

Table 6.11: Experimental Results on the Bookmarks data set
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6.1.12 Reuters subset 1

• k = 5: Neighborhood size.

• r = 4000: Number of reduced dimension.

BaseLine ML-kNN RP ML-ARP MDDM PCA OPLS CCA
Accuracy 0.0 ± 0.0 0.193 ± 0.0139 0.193 ± 0.014 0.189 ± 0.01 N\A N\A N\A N\A

Average Precision 0.272 ± 0.012 0.581 ± 0.01 0.568 ± 0.008 0.559 ± 0.012 N\A N\A N\A N\A
Coverage 28.76 ± 1.529 16.52 ± 0.825 17.34 ± 0.69 17.93 ± 0.83 N\A N\A N\A N\A

F1 0.0 ± 0.0 0.123 ± 0.008 0.121 ± 0.008 0.1192 ± 0.006 N\A N\A N\A N\A
Hamming Loss 0.028 ± 0.0001 0.026 ± 0.0004 0.026 ± 0.0004 0.026 ± 0.0002 N\A N\A N\A N\A
Jaccard Loss 1.0 ± 0.0 0.806 ± 0.013 0.806 ± 0.014 0.810 ± 0.01 N\A N\A N\A N\A
One Error 0.769 ± 0.017 0.435 ± 0.014 0.459 ± 0.015 0.454 ± 0.019 N\A N\A N\A N\A
Precision 0.0 ± 0.0 0.359 ± 0.023 0.355 ± 0.019 0.355 ± 0.02 N\A N\A N\A N\A
RMSE 0.129 ± 0.015 0.119 ± 0.001 0.116 ± 0.0005 0.115 ± 0.001 N\A N\A N\A N\A

Ranking Loss 0.167 0.003± 0.071 ± 0.004 0.076 ± 0.003 0.080 ± 0.005 N\A N\A N\A N\A
Recall 0.0 ± 0.0 0.205 ± 0.016 0.203 ± 0.016 0.194 ± 0.01 N\A N\A N\A N\A

Subset Accuracy 0.0 ± 0.0 0.062 ± 0.012 0.066 ± 0.007 0.063 ± 0.007 N\A N\A N\A N\A

Table 6.12: Experimental Results on the Reuters data set
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CHAPTER 6. RESULTS AND DISCUSSIONS

6.2 Statistical Tests

In this section, we propose to run the Friedman statistical test on the previous results in order to
test the two following hypothesis:

• H0: all the algorithms are equivalent.

• H1: at least one algorithm is di�erent from the others.
In this case, we aim at knowing the best and the worst algorithm by attributing to each
algorithm a unique rank.
The lesser the rank, the better the algorithm.

6.2.1 Friedman Test

The statistical Friedman test [Dem²ar, 2006] is a non-parametric test used in order to detect di�er-
ences in several di�erent treatments across multiple attempts. In our case, the treatments are the
di�erent compared algorithms. The attempts are their performance on the datasets (we only use
RMSE and Hamming Loss which are most general reconstruction errors).
We brie�y recall the main steps of the Friedman test.
First of all, let us introduce the notations for this purpose.
We consider N di�erent algorithms caracterized by M di�erent attempts (data sets).
Let Ri,j be the rank attributed to the jth of N algorithms applied on the ith of M attempts. The
main idea of the Friedman test revolves around comparing the average rank of each algorithm Rj :

Rj =
1

M
·
M∑
i=1

Ri,j (6.1)

We de�ne the general average rank R:

R =
1

N ·M

M∑
i=1

N∑
j=1

Ri,j (6.2)

Then, we de�ne the sum of squares between traitments SSt and the errors SSe as:

SSt = M ·
N∑
j=1

(Rj −R)2

SSe =
1

M(N − 1)

M∑
i=1

N∑
j=1

(
Ri,j −R

)2 (6.3)

Finally, we compute the statistic test Q:

Q =
SSt
SSe

(6.4)
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Based on the previous quantities, one may compute the Friedman statistic:

χ2
f =

12M

N (N + 1)

 N∑
j=1

R2
j −

N(N + 1)2

4

 (6.5)

Under the null hypothesis H0, χ2
f is distributed according to the χ2

N−1 distribution [Plackett, 1983]
with N−1 degrees of freedom, with the condition that both N andM are big enough (traditionnaly,
M > 10 and N > 5).
When the previous condition is not satis�ed, exact critical values have been proposed by [Sheskin, 2003].
Because of the undesirably conservative property of χ2

f , a better statistic can be derived from
Eq.(6.5) [Iman and Davenport, 1980]:

Ff =
(M − 1)χ2

f

M(N − 1)− χ2
f

(6.6)

which is distributed according to the F−distribution [Ramirez et al., 2000] with (N − 1) and (N −
1)(M − 1) as input parameters. To decide whether the null-hypothesis H0 is rejected or not, we
de�ne the p-value p associated with the test as follow:

p = P(Ff ≥ Q) (6.7)

Given a level of signi�cance α ∈ [0 1] (as a rule of a thumb α = 0.01 or α = 0.05), we apply the
following rule (Eq. 6.8) to reject or accept H0:{

if p ≤ α rejectH0

if p ≥ 1− α acceptH0

(6.8)

Finally, whenH0 is rejected, one can proceed with a post-hoc test. The Nemenyi test [�ubelj et al., 2015]
allows us to decide whether the mean rank di�erence between two algorithms is signi�cant or not.
For this purpose, we compute the critical distance CritDist as follows [Dem²ar, 2006]:

CritDist = qα

√
N(N + 1)

6N
(6.9)

where qα represents the critical values for the two-tailed Nemenyi test.
Table 6.13 recalls the most important values of qα for two cases of α ∈ {0.01, 0.05} [Dem²ar, 2006].

Number of algorithms 2 3 4 5 6 7 8
q0.05 1.96 2.343 2.569 2.728 2.85 2.949 3.031
q0.01 1.645 2.052 2.291 2.459 2.589 2.693 2.78

Table 6.13: Critical values for the two tailed Nemenyi test

Finally, we apply the following rule (Eq.6.10) to decide whether two algorithms are signi�canlty
di�erent or not:{

if |Ri −Rj | ≥ CritDist Then the ith and jth algorithms are different

if |Ri −Rj | ≤ CritDist Then the ith and jth algorithms are equivalent
(6.10)
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6.2.2 Statistical Results

Because of the non appliable properties of some algorithms (MDDM, CCA, OPLS, PCA), we choose
to follow an ascendent order where, at �rst we only use the friedman teston the datasets where all
algorithms are computable, then we add little by little datasets and remove little by little the non
appliable algorithm from the process. Doing this, we have identi�ed �ve di�erent statistical tests
to run.

Warning

There is no evidence of signi�cant di�erences for algorithms joined by the vertical lines. Depending
on the model we are dealing with, di�erent groups can be formed. These groups are identi�ed
using the mean rank of an algorithm ± the critical distance (CritDist). One should notice that
the algorithms are ranked by putting the best one in the top and naturally the worst one in the
bottom.

Test 1

In this test, all the eight algorithms are choosen. They are appliable on only four datasets (Yeast,
Emotions, Scene, Enron).

BaseLine − 8.00

RandomProjection − 3.88

MLKNN − 2.63

MLARP − 2.00

MDDM − 4.88

PCA − 4.13

OPLS − 5.63

CCA − 4.88

Friedman p−value: 0.022 •  All same •  CritDist: 6.1•  SignLevel: 0.01

(a) RMSE

BaseLine − 7.50

RandomProjection − 4.50

MLKNN − 3.38

MLARP − 2.25

MDDM − 4.38

PCA − 3.25

OPLS − 5.25

CCA − 5.50

Friedman p−value: 0.089 •  All same •  CritDist: 6.1•  SignLevel: 0.01

(b) Hamming loss

Figure 6.1: Nemenyi test for α = 0.01

Based on �gure 6.1, we notice that for a signi�cance level α = 0.01, all the algorithms are equivalent.
There is no reason to choose a particular approach than another. Nonetheless, ML-ARP comes �rst
in term of mean rank (2).
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BaseLine − 8.00

RandomProjection − 3.88

MLKNN − 2.63

MLARP − 2.00

MDDM − 4.88

PCA − 4.13

OPLS − 5.63

CCA − 4.88

Friedman p−value: 0.022 •  Different •  CritDist: 5.2•  SignLevel: 0.05

(a) RMSE

BaseLine − 7.50

RandomProjection − 4.50

MLKNN − 3.38

MLARP − 2.25

MDDM − 4.38

PCA − 3.25

OPLS − 5.25

CCA − 5.50

Friedman p−value: 0.089 •  All same •  CritDist: 5.2•  SignLevel: 0.05

(b) Hamming loss

Figure 6.2: Nemenyi test for α = 0.05

From �gure 6.2(a), we have p < α, so the null hypothesis H0 is totally rejected. Therefore, we can
form at least two di�erent groups of algorithms. A group consisting in the baseline and the second
group consisting in the remaining algorithms. Because of its bad mean rank, the baseline is the
worst classi�er. It would never be choosen. Then, we notice that there is an equivalence between the
remaining seven algorithms, but ML-ARP comes �rst again. So, one will tend to choose ML-ARP.

Test 2

In this test, we cancel CCA algorithm, so we add two datasets to the test (corel5k, genbase).

BaseLine − 5.50

RandomProjection − 3.83

MLKNN − 3.00

MLARP − 2.75

MDDM − 4.33

PCA − 3.92

OPLS − 4.67

Friedman p−value: 0.139 •  All same •  CritDist: 4.3•  SignLevel: 0.01

(a) RMSE

BaseLine − 5.83

RandomProjection − 4.17

MLKNN − 3.42

MLARP − 2.83

MDDM − 3.92

PCA − 3.33

OPLS − 4.50

Friedman p−value: 0.080 •  All same •  CritDist: 4.3•  SignLevel: 0.01

(b) Hamming loss

Figure 6.3: Nemenyi test for α = 0.01
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BaseLine − 5.50

RandomProjection − 3.83

MLKNN − 3.00

MLARP − 2.75

MDDM − 4.33

PCA − 3.92

OPLS − 4.67

Friedman p−value: 0.139 •  All same •  CritDist: 3.7•  SignLevel: 0.05

(a) RMSE

BaseLine − 5.83

RandomProjection − 4.17

MLKNN − 3.42

MLARP − 2.83

MDDM − 3.92

PCA − 3.33

OPLS − 4.50

Friedman p−value: 0.080 •  All same •  CritDist: 3.7•  SignLevel: 0.05

(b) Hamming loss

Figure 6.4: Nemenyi test for α = 0.05

From �gures 6.3 & 6.4, the tested algorithms are equivalent with some preference for the ML-ARP
because of its well mean rank (it comes �rst once again).

Test 3

In this test, we cancel the OPLS algorithm. So we add the following datasets to the test: delicious,
bibtex, medical.

BaseLine − 5.06

RandomProjection − 3.78

MLKNN − 3.06

MLARP − 2.50

MDDM − 3.17

PCA − 3.44

Friedman p−value: 0.033 •  All same •  CritDist: 3.0•  SignLevel: 0.01

(a) RMSE

BaseLine − 5.33

RandomProjection − 4.33

MLKNN − 2.83

MLARP − 2.72

MDDM − 2.89

PCA − 2.89

Friedman p−value: 0.001 •  Different •  CritDist: 3.0•  SignLevel: 0.01

(b) Hamming loss

Figure 6.5: Nemenyi test for α = 0.01

Figure 6.5(b) shows that the null hypothesis H0 is rejected for a signi�cance level of 0.01. Because
of its well mean rank, ML-ARP is statistically the best one.
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BaseLine − 5.06

RandomProjection − 3.78

MLKNN − 3.06

MLARP − 2.50

MDDM − 3.17

PCA − 3.44

Friedman p−value: 0.033 •  Different •  CritDist: 2.5•  SignLevel: 0.05

(a) RMSE

BaseLine − 5.33

RandomProjection − 4.33

MLKNN − 2.83

MLARP − 2.72

MDDM − 2.89

PCA − 2.89

Friedman p−value: 0.001 •  Different •  CritDist: 2.5•  SignLevel: 0.05

(b) Hamming loss

Figure 6.6: Nemenyi test for α = 0.05

Both �gures 6.6(a) and (b) shows that the null hypothesis H0 is rejected for a signi�cance level of
0.05. We should notice that ML-ARP stands out from the other algorithms and comes �rst.

Test 4

In this test, we cancel MDDM and PCA, we recover OPLS. So we add the mediamill database to
the second test.

BaseLine − 4.14

RandomProjection − 3.07

MLKNN − 2.57

MLARP − 1.93

OPLS − 3.29

Friedman p−value: 0.042 •  All same •  CritDist: 2.8•  SignLevel: 0.01

(a) RMSE

BaseLine − 4.43

RandomProjection − 3.43

MLKNN − 2.71

MLARP − 2.07

OPLS − 2.36

Friedman p−value: 0.006 •  Different •  CritDist: 2.8•  SignLevel: 0.01

(b) Hamming loss

Figure 6.7: Nemenyi test for α = 0.01
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BaseLine − 4.14

RandomProjection − 3.07

MLKNN − 2.57

MLARP − 1.93

OPLS − 3.29

Friedman p−value: 0.042 •  Different •  CritDist: 2.3•  SignLevel: 0.05

(a) RMSE

BaseLine − 4.43

RandomProjection − 3.43

MLKNN − 2.71

MLARP − 2.07

OPLS − 2.36

Friedman p−value: 0.006 •  Different •  CritDist: 2.3•  SignLevel: 0.05

(b) Hamming loss

Figure 6.8: Nemenyi test for α = 0.05

From �gures 6.7 & 6.8, the null hypothesis H0 is rejected. The ML-ARP is statistically the best
algorithm.

Test 5

In this test, we cancel all the algorithms based on resolving eigenvalues problem. So, we add the
bookmarks and the reuters databases to the test.

BaseLine − 3.54

RandomProjection − 2.71

MLKNN − 2.13

MLARP − 1.63

Friedman p−value: 0.001 •  Different •  CritDist: 1.6•  SignLevel: 0.01

(a) RMSE

BaseLine − 3.67

RandomProjection − 2.75

MLKNN − 1.83

MLARP − 1.75

Friedman p−value: 0.000 •  Different •  CritDist: 1.6•  SignLevel: 0.01

(b) Hamming loss

Figure 6.9: Nemenyi test for α = 0.01
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BaseLine − 3.54

RandomProjection − 2.71

MLKNN − 2.13

MLARP − 1.63

Friedman p−value: 0.001 •  Different •  CritDist: 1.4•  SignLevel: 0.05

(a) RMSE

BaseLine − 3.67

RandomProjection − 2.75

MLKNN − 1.83

MLARP − 1.75

Friedman p−value: 0.000 •  Different •  CritDist: 1.4•  SignLevel: 0.05

(b) Hamming loss

Figure 6.10: Nemenyi test for α = 0.05

Based on �gures 6.9 & 6.10, the null hypothesisH0 is rejected. By this way, the baseline is considered
as very bad classi�er. We notice that ML-ARP comes �rst one again with an equivalence with ML-
kNN.
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6.2.3 Statistical tests summary
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Table 6.14: Mean ranks obtained by launching �ve Friedman statistical tests
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6.3 ML-ARP Fast Version

The ML-ARP algorithm is mainly based on iteratively optimizing a multi-label criterion measure
which can typically be the Hamming Loss or the RMSE. In each iteration a ML-kNN process is
learned and tested on the projected version of the training set. This process can take long time.
In order to accelerate the optimization process, we propose to replace the ML-kNN process by a
simple kNN classi�er. This new version of the ML-ARP is called Fast ML-ARP.
Unlike the ML-kNN which consists in two steps: a training and a testing one, kNN classi�er is
performed by only following a testing phase.

Remark

We only replace ML-kNN with kNN in the "projection learning phase". After the projection is
learnt, it is still combined to ML-kNN.

kNN Classi�er

The idea around the kNN classi�er is as simple as possible.
Let x be an unseen instance taken from X .
In order to predict its associated label vector Y ∈ Y, we seek the neighborhood N(x) of the unseen
instance x based on the training data set L. Then, a label yl is considered as a proper one to x
if the majority of its neighbors is associated with this label. Finally, the probability of this event
f(x, yl) is computed by averaging the number of neighbors which are associated with the label yl
across the neighborhood size k.
Formally, we have: {

f(x, ·) =
[
f(x, y1), ..., f(x, ydy )

]
∈ [0 1]

dy

f(x, yl) =
∑

(x+,Y +)∈N(x)byl∈Y
+c

k ∀l ∈ {1, ..., dy}
(6.11)

then: {
Y =

[
y1, ..., ydy

]
∈ Y

yl = bf(x, yl) ≥ 1
2c ∀l ∈ {1, ..., dy}

(6.12)
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7.1 Discussions

Based on the statistical tests (See 6.2), we deduce the following facts:

• Case of low and medium dimensions:
This case coincides with the four �rst statistical tests (see 6.2.2, 6.2.2, 6.2.2, 6.2.2). The ML-
ARP performances are absolutely competitive with the remaining state of art dimensionality
reduction methods. The majority of the statistical tests (for the two values of signi�cance
levels α = 0.01 or 0.05) show that we cannot statistically di�erentiate between di�erent
algorithms with regards to their performances. We should notice that the ML-ARP algorithm
always comes �rst in term of mean rank. This tends to highlight the robustness of the ML-
ARP approach.

• Case of high dimensions:
When we are dealing with high dimensions data (see test 6.2.2), all the algorithms based on
resolving eigenvalues problem (MDDM, CCA, OPLS, PCA) came to nothing because of the
high complexity of the analysis (O(n3)).
We should notice that ML-ARP performances for high dimensions data are similar to those
obtained by the ML-kNN algorithm without dimension reduction preprocessing whereas the
dimensions have been greatly reduced (from 47229 to 4000 features with the prior that a Tf-
IDF preprocessing have been performed on the reuters dataset). The statistical test results
show that there is no signi�cant di�erences between the two methods. On the other hand, the
dimensionality reduction learned by the ML-ARP allows a signi�canty faster nearest neighbors
identi�cation (the accelaration rate is of the order of the dimensionality reduction). Finally,
one may notice that ML-ARP performs better than a simple random projection. Thus, the
adaptative projection tends to greatly extract the emboddied pattern linking the input space
X to the output one Y. Therefore, we show that the ML-ARP algorithm is an operational
and very competitive multi-label dimensionality reduction method.
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7.2 Conclusions

This work proposes a novel multi-label dimensionality reduction approach. The ML-ARP algorithm
uses random projections according to a novel paradigm. In our framework, random projections cou-
pled with the most famous multi-label classi�er (ML-kNN), are iteratively adapted by optimizing
one of the ML-kNN performances criterion. Thus, we obtain a multi-label supervised dimensional-
ity reduction based on the ML-kNN classi�er.
An expertimental framework has been done to highlight the validity of our proposal: The ML-ARP
performs as well as the remaining state of the art multi-label dimensionality reduction approaches
(MDDM, OPLS, CCA, PCA), but in addition it allows us to deal with high dimensional data.
Moreover, additionnal experiments show that ML-ARP is able to greatly reduce the input dimen-
sions without harming the ML-kNN predictive performances. These results are not due to a simple
random projection, but they are due to the iterative optimization process. Therefore, ML-ARP is
a promising novel multi-label dimensionality reduction approach.

7.3 Future works

Some directions of ongoing research can be sketched as follow:

• The optimization problem resolution can be accelerated by improving the RVNS heuristic, or
seeking another optimization heuristic like [Kirkpatrick et al., 1983, Das and Chakrabarti, 2005,
Oblow, 2001, Rudlof and Köppen, 1997, Hansen and Mladenovi¢, 2001].

• In our optimization framework, we use a sparse speed matrix to build the neighborhood of
the current solution, we can use another way to build this neighborhood.

• The neighborhood identi�cation task (according to the instances) can be fastly performed by
inserting clustering approaches, like Voronoi cells [Ghosh et al., 1997] and product quantiza-
tion [Jegou et al., 2011].

• The reducing dimension number r which coincides with the projection matrix rank, is currently
given. So, to improve performances, we propose to perform a smarter choice of r by using a
cross-validation principle.

• The neighborhood size k is currently given. So, for a better learned model, we propose to well
choose the number of neighbors used as second input of the ML-kNN algorithm by applying
a cross-validation way.
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Appendix A
State-of-the-art Multi-Label

Dimensionality Reduction

This appendix is specially devoted to brie�y describe the four multi-label dimensionality reduction
methods: MDDM, PCA, OPLS, CCA.
First of all, we introduce the notations used in this apprendix.
Based on the training set L =

{(
xLi , y

L
i

)
∈ X × Y | i ∈ {1, ..., NL}

}
, one can form the two following

matrices:

• Instance matrix X ∈ RNL×dx , where the ith row of X represents the ith instance xLi of L.

• Label matrix Y ∈ [0 1]
NL×dy , where the ith row of Y represents the ith labels vector yLi of L.

A.1 MDDM: Multi-label Dimensionality reduction

via Dependence Maximization

MDDM attempts to �nd a lower-dimensional feature space in which features and labels are strongly
dependent. Thus, we seek the r-rank projection matrix P ∈ P which maximizes the dependence
between the projection version 〈x〉P of the instance x and its labels vector y. Based on the Hilbert-
Schmidt Independance Criterion (HSIC) [Gretton et al., 2007], we seek to resolve the following
problem:

P ∗ = argmaxP tr(HXP τPXτHL) (A.1)

where:

• L = Y Y τ : the matrix of inner product of instances in Y

• H = (Hi,j)NL×NL such that: Hi,j = δi,j − 1
NL
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If we denote Pi the ith row of P , one can easily deduce that:

max
P

tr(HXP τPXτHL) = max
P

r∑
i=1

Pi (XτHLHX)P τi (A.2)

Traditionally A.2 is resolved via an eigenvalue problem. The optimal P ∗ is thus obtained by
seeking the eigenvectors associated to the r largest eigenvalues of XτHLHX. For further details,
see [Zhang and Zhou, 2010].

A.2 PCA: Principal Component Analysis

PCA attemps to �nd a lower-dimensional feature space in which almost all the energy of the input
data is conserved. This energy is traduced by the trace of the covariance matrix Ξ = XτX. Thus,
we seek the r-rank projection matrix P ∈ P which conserves almost all the energy of Ξ. In other
words, we aim at resolving the following problem:

P ∗ = argmaxP tr(PXτXP τ ) (A.3)

By denoting Pi the ith row of P , one can easily deduce that:

maxP tr(PXτXP τ ) = max
P

r∑
i=1

Pi (XτX)P τi = max
P

r∑
i=1

PiΞP
τ
i (A.4)

Traditionally A.4 is resolved via an eigenvalue problem. The optimal P ∗ is then obtained by
seeking the eigenvectors associated to the r largest eigenvalues of Ξ. For further details, see
[Maitra and Yan, 2008].

A.3 CCA: Canonical Correlation Analysis

The objective of CCA is to compute two projection matrices Px ∈ P and Py ∈ Rr×dy maximizing
the following amount:

max
Px,Py

tr(PxX
τY Py)

under the following conditions:

• PxXτXPx = I

• PyY τY Py = I

Assuming that Y Y τ is nonsingular, Px is given by seeking the r principal eigenvectors of the
following generalized eigenvalue problem:

XτY (Y τY )
−1
Y τXpx = λXτXpx (A.5)

where: λ represents the eigenvalue and px its associated eigenvector.
For further details, see [Sun et al., 2011].
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A.4 OPLS: Orthogonal Partial Least Square

OPLS attempts to �nd a lower-dimensional feature space P ∈ P in which the covariance of data is
maximized. Thus, OPLS seeks to resolve the following problem:

max
P

tr (PXτY Y τXP τ ) subject to PXτXP τ = I (A.6)

It can be shown that the rows of the optimal P are given by the r principal eigenvectors of the
following generalized eigenvalue problem:

XτY Y τXpx = λXτXpx (A.7)

where: λ represents the eigenvalue and px its associated eigenvector.
For further details, see [Maitra and Yan, 2008].
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