Theorem 1 Let G be a group of order $p^n m$, where p is prime and $p \nmid m$. Suppose that G has a normal subgroup P of order p^n . Prove that $\theta(P) \subset P$ for every automorphism θ of G.

Proof.

Let θ be an automorphism of *G*. Since *P* is a normal subgroup of *G* and $\theta(P)$ is a subgroup of *G*, $P\theta(P)$ is a subgroup of *G*. Moreover $|\theta(P)| = |P|$. Since $P \cap \theta(P)$ is a subgroup of *P*, $|P \cap \theta(P)|$ divides |P|. So $|P \cap \theta(P)| = p^k$ where $0 \le k \le n$. Thus

$$|P\theta(P)| = \frac{|P||\theta(P)|}{|P \cap \theta(P)|} = \frac{p^n p^n}{|P \cap \theta(P)|}$$

To claim $|P \cap \theta(P)| = p^n$. If not, then $|P \cap \theta(P)| = p^k$ where k < n. Thus

$$|P\theta(P)| = \frac{p^n p^n}{p^k} = p^{2n-k},$$

so is divisible by p^{n+1} since $2n - k \ge n + 1$. But $|P\theta(P)|$ divides |G|; that is $|P\theta(P)|$ divides $p^n m$. So $p^{n+1}|p^n m$ and thus p|m which is a contradiction. Since $|P \cap \theta(P)| = p^n$, $P \cap \theta(P) = \theta(P)$ and hence $\theta(P) \subset P \cap \theta(P) \subset P$.

Theorem 2 If N is a normal subgroup of G and $M \subset N$ is a characteristic subgroup of N. Then M is a normal subgroup of G.

Proof.

Let $a \in G$, $n \in N$. Since N is a normal subgroup of G, $a^{-1}na \in N$. Define $\varphi : N \to N$ by $\varphi(n) = a^{-1}na$. Thus φ is an automorphism of N. Let $m \in M$. Since $M \subset N, m \in N$. So $a^{-1}ma = \varphi(m) \in \varphi(M) \subset M$. To conclude $a^{-1}ma \in M$.

Theorem 3 $V = \{e, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$ is normal in S_4 .

Proof.

 $|A_4| = 2^2 3$ where 2 is prime and $2 \nmid 3$. Also, V is a normal subgroup of A_4 of order 2^2 . By Theorem 1, $V \subset A_4$ is a characteristic subgroup of A_4 . Since A_4 is a normal subgroup of S_4 and $V \subset A_4$ is a characteristic subgroup of A_4 , V is a normal subgroup of S_4 by Theorem 2.