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Abstract

We explore a covering problem that implies the lonely runner conjec-
ture. We then prove that this covering has infinite measure.

1 Introduction

The lonely runner conjecture (LRC) is a very deep problem in the theory
of Diophantine approximations that asks the following question: Given
a circular track and k runners starting from a given starting line with
speeds s1 < s2 < . . . sk, is it true that each runner becomes lonely at
some time, i.e. seperated from the other runners by a distance of at least
1
k

? While easy to state, this conjecture is remarkably difficult and has
eluded proof since it was proposed by T.W. Cusick in 1967. In this paper
we will consider some covering problems that imply the LRC. We’ll then
prove that these coverings have infinite measure.

2 Covering Problems That Imply the LRC

To begin with, we’ll define the sequence dk and the sets Ik, Cdk and Edk .

Definition 1. Let k ≥ 3. Then define dk as

dk =
(k − 1)(k − 2)

2
. (1)

Let a, b . . . c, d ∈ N. Define Ik(a, b) as

Ik(a, b) =

[
ka+ 1

kb+ k − 1
,
ka+ k − 1

kb+ 1

]
(2)

and Cdk as

Cdk (a, b, . . . c) = Ik(a, b)× · · · × Ik(c, d). (3)

Define Edk as

Edk (a, b, . . . c) = I3(a, b)× · · · × I3(c, d). (4)
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Example. Let k = 4 and let n1, n2, n3 ∈ N. Then

Cd4(n2, n1, n3, n2, n3, n1) = I4(n2, n1)× I4(n3, n2)× I4(n3, n1) (5)

=

[
4n2 + 1

4n1 + 3
,

4n2 + 3

4n1 + 1

]
×
[

4n3 + 1

4n2 + 3
,

4n3 + 3

4n2 + 1

]
×
[

4n3 + 1

4n1 + 3
,

4n3 + 3

4n1 + 1

]
.

and

Ed4(n2, n1, n3, n2, n3, n1) = I3(n2, n1)× I3(n3, n2)× I3(n3, n1) (6)

=

[
3n2 + 1

3n1 + 2
,

3n2 + 2

3n1 + 1

]
×
[

3n3 + 1

3n2 + 2
,

3n3 + 2

3n2 + 1

]
×
[

3n3 + 1

3n1 + 2
,

3n3 + 2

3n1 + 1

]
.

Theorem 1. Let k ≥ 3. Then the LRC is true if

∞⋃
n1,n2,...nk−1=0

Cdk (n2, n1, n3, n2 . . . nk−1, nk−2) = R+
dk . (7)

Proof. Slowest runner. Let x ∈ ∪Cdk . Then ∃ n2, n3 . . . nk ∈ N such
that

knm−1 + k − 1

kni−1 + 1
≥ xj ≥

knm−1 + 1

kni−1 + k − 1
(8)

where 2 ≤ m, i ≤ k,m > i. Hence for sk > · · · > s3 > s2 > s1 ∃
n2, n3 . . . nk ∈ N such that

knm−1 + k − 1

kni−1 + 1
≥ sm − s1

si − s1
≥ knm−1 + 1

kni−1 + k − 1
(9)

where 2 ≤ m, i ≤ k,m > i. By [1] this implies the slowest runner
becomes lonely.

Intermediate runner. Let x ∈ ∪Cdk . Then there exists exists q1, q2, . . . qk−1 ∈
N such that

kqm + k − 1

kqi + 1
≥ sj − sm

sj − si
≥ kqm + 1

kqi + k − 1
for 1 ≤ i,m ≤ j − 1, i < m, (10)

kqm + k − 1

kqi + 1
≥ sm − sj

si − sj
≥ kqm + 1

kqi + k − 1
for j + 1 ≤ i,m ≤ k − 1, i < m,

(11)

kqb + k − 1

kqa + 1
≥ sb − sj
sj − sa

≥ kqb + 1

kqa + k − 1
for 1 ≤ a ≤ j − 1 and j + 1 ≤ b ≤ k − 1

(12)

Hence by [1] the intermediate runner becomes lonely.
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Fastest runner. Let x ∈ ∪Cdk . Then ∃ r1, r2 . . . rk−1 ∈ N such that

krm + k − 1

kri + 1
≥ xj ≥

krm + 1

kri + k − 1
(13)

where 1 ≤ m, i ≤ k − 1,m > i. Therefore for sk > · · · > s3 > s2 > s1
∃ r1, r2 . . . rk−1 ∈ N such that

krm + k − 1

kri + 1
≥ sk − sm

sk − si
≥ krm + 1

kri + k − 1
. (14)

where 1 ≤ m, i ≤ k − 1,m > i. By [1] the fastest runner becomes
lonely. �

Lemma 1. Let k ≥ 3. Then

∞⋃
n1,n2,...nk−1=1

Edk (n2, n1, n3, n2 . . . nk−1, nk−2) ⊂ (15)

∞⋃
n1,n2,...nk−1=0

Cdk (n2, n1, n3, n2 . . . nk−1, nk−2).

Proof. Let x = (x1, x2, . . . xdk ) and let x ∈ ∪Edk . Then ∃ n1, n2 . . . nk−1 ∈
N such that

3nm + 2

3ni + 1
≥ xj ≥

3nm + 1

3ni + 2
(16)

where 1 ≤ m, i ≤ k− 1,m > i. Since 3(nm + ni + 1) ≤ k(nm + ni + 1)
for k ≥ 3 it follows with algebra that

3nm + 1

3ni + 2
≥ knm + 1

kni + k − 1
. (17)

Likewise, it follows that

knm + k − 1

kni + 1
≥ 3nm + 2

3ni + 1
. (18)

Hence

knm + k − 1

kni + 1
≥ 3nm + 2

3ni + 1
> xj >

3nm + 1

3ni + 2
≥ knm + 1

kni + k − 1
. (19)

Hence x ∈ ∪Cdk . �

Corollary 1. The LRC is true if

∞⋃
n1,n2,...nk−1=1

Edk (n2, n1, n3, n2 . . . nk−1, nk−2) = R+
dk . (20)
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Proof. Let R+
dk ⊂ ∪Edk . Then by Lemma 1, R+

dk ⊂ ∪Cdk . Since
∪Cdk ⊂ R+

dk , it follows that ∪Cdk = R+
dk which implies the LRC by

Theorem 1. �

Projections. We now consider projections of ∪Edk onto each of its
subspaces. It is intuitively clear that if ∪Edk covers R+

dk then the pro-
jections of ∪Edk cover each of its subspaces. We define a projection as
follows.

Definition 2. Let S ⊂ R+
dk . Define a projection Pj of S as

Pj(S) = {x ∈ S | x = (x1, . . . xj−1, 0, xj+1, . . . xdk )}. (21)

Corollary 2. Let k > 3. Then if ∪Edk = R+
dk , the LRC must be

true for j runners for any 3 ≤ j < k.

Proof. Since ∪Edk = R+
dk , it follows that for 1 ≤ m ≤ dk

PmPm+1 . . . Pdk (∪Edk ) = {x ∈ ∪Edk | x = (x1, . . . xm−1, 0, 0, . . . 0} = R+
m−1.

(22)
Note that

PmPm+1 . . . Pdk (∪Edk ) = ∪PmPm+1 . . . Pdk (Edk ) = R+
m−1. (23)

Hence for 1 ≤ dj + 1 ≤ dk

Pdj+1Pdj+2 . . . Pdk (∪Edk ) = ∪Pdj+1Pdj+2 . . . Pdk (Edk ) = R+
dj . (24)

We have that

Pdj+1Pdj+2 . . . Pdk (Edk ) = {x ∈ Edk | x = (x1, . . . xdj , 0, 0, . . . 0}. (25)

Hence ∃ n1, n2, . . . nj such that

3nm + 2

3ni + 1
≤ xq ≤

3nm + 1

3ni + 2
(26)

where 1 ≤ m, i ≤ j − 1,m > i. Therefore, ∃ n1, n2, . . . nj such that
x ∈ Edj . Hence

Pdj+1Pdj+2 . . . Pdk (Edk ) = Edj . (27)

Hence

∪Pdj+1Pdj+2 . . . Pdk (Edk ) = ∪Edj = R+
dj . (28)

Therefore the LRC is true for 3 ≤ j < k. �

Example. Let k = 4. Then suppose that
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∞⋃
n1,n2,n3=0

E3(n2, n1, n3, n2, n3, n1) = R+
3. (29)

Then

P2P3

( ∞⋃
n1,n2,n3=0

E3(n2, n1, n3, n2, n3, n1)

)
(30)

=

∞⋃
n1,n2,n3=0

P2P3E3(n2, n1, n3, n2, n3, n1)

=

∞⋃
n1,n2=0

E1(n2, n1) = R+.

Hence the LRC is true for j = 3 < 4.

3 Measure Theorems

We now prove that ∪Edk and ∪Cdk have infinite measure. While intu-
itively this seems obvious, this is somewhat tricky to prove. The trick to
doing this is to consider sets of the form

Ik(0, 0)dk−1 × Ik(0,mi)
k−2 (31)

and to show that there is an infinite number of disjoint sets of this
form all of which have a measure larger than some constant. We first
prove the following lemmas.

Lemma 2. Let k ≥ 3 and consider the set

Ik(0, 0)n × Ik(0, j)l (32)

where n and j ∈ N. Then if

m >
(kj + k − 1)(k − 1)− 1

k
(33)

it follows that

Ik(0, 0)n × Ik(0, j)l ∩ Ik(0, 0)n × Ik(0,m)l = ∅. (34)

Proof. Since

m >
(kj + k − 1)(k − 1)− 1

k
(35)

it follows that

km+ 1

k − 1
> kj + k − 1 (36)

and hence
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[
kj + 1

k − 1
, kj + k − 1

]
<

[
km+ 1

k − 1
, km+ k − 1

]
. (37)

Hence

Ik(0, j) ∩ Ik(0,m) = ∅. (38)

This implies that

Ik(0, 0)n × Ik(0, j)l ∩ Ik(0, 0)n × Ik(0,m)l = ∅. � (39)

Lemma 3. Let k ≥ 3, n ∈ N and let λ(S) be the Lebesgue measure
of set S. Then

λ(Ik(0, 0)n × Ik(0, j)l) =

[
k(k − 2)

k − 1

]n+l

(j + 1)l. (40)

Proof. With algebra

λ(Ik(0, 0)n) =

[
k − 1− 1

k − 1

]n
=

[
k(k − 2)

k − 1

]n
. (41)

Also,

λ(Ik(0, j)l) =

[
kj + k − 1− kj + 1

k − 1

]l
=

[
k(k − 2)

k − 1
(j + 1)

]l
. (42)

Hence

λ(Ik(0, 0)n × Ik(0, j)l) =

[
k(k − 2)

k − 1

]n[
k(k − 2)

k − 1
(j + 1)

]l
(43)

=

[
k(k − 2)

k − 1

]n+l

(j + 1)l. � (44)

Lemma 4. Let k ≥ 3. Then

∞⋃
nk−1=0

Ik(0, 0)dk−1 × Ik(0, nk−1)k−2 ⊂

∞⋃
n1,n2,...nk−1=0

Cdk (n2, n1, n3, n2, . . . nk−1, nk−2). (45)

Proof. Note that
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∞⋃
nk−1=0

Ik(0, 0)dk−1 × Ik(0, nk−1)k−2 =

∞⋃
nk−1=0

Cdk (0, 0, 0, 0, . . . 0, nk−1).

(46)
Also

∞⋃
nk−1=0

Cdk (0, 0, 0, 0, . . . 0, nk−1) ⊂ (47)

∞⋃
n1,n2,...nk−1=0

Cdk (n2, n1, n3, n2, . . . nk−1, nk−2).

Hence Lemma 3 follows. �

Theorem 2. Let k ≥ 3. Then λ(∪Cdk ) =∞.

Proof. Consider the sequence {mi}ni=0 wheremi ∈ N, m0 is any natural
number and

mi+1 >
(kmi + k − 1)(k − 1)− 1

k
. (48)

Then by Lemma 2 it follows that

Ik(0, 0)n × Ik(0,mi)
l ∩ Ik(0, 0)n × Ik(0,mi+1)l = ∅. (49)

Now, consider the following union

n⋃
i=0

Ik(0, 0)dk−1 × Ik(0,mi)
k−2. (50)

This is a finite union of disjoint sets with each set having measure[
k(k − 2)

k − 1

]dk
(mi + 1)k−2 (51)

by Lemma 3. Denote
∑
mi = M . Then

λ

( n⋃
i=0

Ik(0, 0)dk−1 × Ik(0,mi)
k−2

)
≥
[
k(k − 2)

k − 1

]dk
(M + 1). (52)

Now as n→∞ it is clear from the way mi were chosen that

∞∑
i=0

mi =∞. (53)

Hence,

λ

( ∞⋃
i=0

Ik(0, 0)dk−1 × Ik(0,mi)
k−2

)
=∞. (54)
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Note that

∞⋃
i=0

Ik(0, 0)dk−1 × Ik(0,mi)
k−2 ⊂

∞⋃
nk−1=0

Ik(0, 0)dk−1 × Ik(0, nk−1)k−2.

(55)
Also note that

∞⋃
nk−1=0

Ik(0, 0)dk−1×Ik(0, nk−1)k−2 ⊂
∞⋃

n1,n2,...nk−1=0

Cdk (n2, n1, n3, n2 . . . nk−1, nk−2)

(56)
by Lemma 4. This implies that

λ

( ∞⋃
n1,n2,...nk−1=0

Cdk (n2, n1, n3, n2 . . . nk−1, nk−2)

)
=∞. � (57)

Corollary 3. Let k ≥ 3. Then λ(∪Edk ) =∞.

Proof. Same argument as for ∪Cdk but with k = 3. �
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