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Abstract

The concept and application of Benford’s law have been examined a lot in the last 

10 years or so, especially with regard to accounting forensics. There have been 

many papers written as to why Benford’s law is so prevalent and the concomitant 

reasons why (proofs). There are, unfortunately, many misconceptions such as the 

newly coined phrase “the Summation theorem”, which states if a data set 

conforms to Benford’s law then the sum of all numbers that begin with a 

particular digit (1,2,3,4,5,6,7,8,9) should be equal. Such is usually not the case. 

For exponential functions (y = a˟) it is but not for most other functions. I will show 

as to why this is the case. The distribution tends to be a Benford instead of a 

Uniform distribution. 

Also, I will show that if the probability density function (pdf) of the logarithm of a 

data set begins and ends on the x axis and if the values of the pdf between all 

integral powers of ten can be approximated with a straight line then the data set 

will tend to conform to Benford’s law. 

 What is Benford’s Law 

 Benford’s law is a product of a number theory concept relating to the distribution 

of numbers, more specifically, the lead digits (or first two digits) of numbers 

obtained from a data set. For example, for a group of numbers such as: 23178, 

56789, 32150, and 09876 the lead digits are, respectively, 2, 5, 3, and 9 (leading 

zeros are excluded) the first two leading digits would be 23, 56, 32, and 98. One 

would expect the distribution of the aforementioned leading digits ( 

1,2,3,4,5,6,7,8,9 or 10, 11, 12 ……97,98,99) to be a Uniform distribution 

(equiprobable) but such is usually not the case. Most numbers that occur in 

nature consist of more of the lower digits than the higher digits as first digits. 
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About 30% of all first digits begin with the number 1 and almost half of all of 

these numbers begin with either 1 or 2.  One would expect the number 1 to 

appear (1/9 or 11.11%) of the time and either 1 or 2 to appear about (2/9 or 

22.22%) of the time. Only about 4.5% of these numbers start with 9 instead of the 

expected 11.11%.  More specifically the percentages are as follows: 

 First Digit  Percentage of Occurrence 

 1    30.1%   

2  17.6% 

 3    12.5% 

 4      9.7% 

 5      7.9% 

 6      6.7% 

 7      5.8%  

 8      5.1% 

 9      4.6% 

More exactly: 

First Digit       Fractional value  of Occurrence

 1    LOG10(2)     

2   LOG10(3/2) 

 3    LOG10(4/3)   

 4    LOG10(5/4) 

 5    LOG10(6/5) 
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 6    LOG10(7/6) 

 7    LOG10(8/7) 

 8    LOG10(9/8) 

 9    LOG10(10/9) 

Pr digit(n) = LOG10 (
𝑛+1

𝑛
) ; n = 1,2,3,4,5,6,7,8,9 

Examples of data that follow Benford’s law are population of cities, molecular 

weights, accounting data, tax return data, and multiplication of random numbers. 

Numbers such as assigned numbers i.e. check numbers, telephone numbers, 

invoice numbers follow a Uniform distribution instead (one sequential number 

per entity only). 

   Why is Benford’s Law true? 

Benford’s law (probability of 1st digits (n) = LOG10(
𝑛+1

𝑛
) ) is predicated on a 

Uniform distribution of the mantissas of the logarithms of a data set. If the 

probability density function of the mantissas of the logarithm of a data set is a 

Uniform distribution then the data set conforms exactly to Benford’s law. 

Proof: 

Fig#1 – probability density function of the logarithm of a data set 
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Given: pdf(log x) = 1.0 

1) y = log(x)

2) pdf( y) dy = pdf( x) dx

3) pdf( x)  = pdf(y)
dy

dx

4) y = log(x) = 
ln(x)

ln(10)

5) 
dy

dx
 = 

1

ln(10)x

6) Pdf(x) =
pdf(y)

ln(10)x
 = 

1

ln(10)x

Probability distribution function = ∫ pdf(x)dx
x

1
 

 ∫ pdf(x)dx
2

1
 = ∫

𝑑𝑥

ln(10)

2

1
dx = 

ln(2)

ln(10)
 = Log(2)   

     ∫ pdf(x)dx
3

2
 = ∫

dx

ln(10)

3

2
dx = 

ln(3/2)

ln(10)
 = Log(3/2) 

     ∫ pdf(x)dx
4

3
 = ∫

dx

ln(10)

4

3
dx = 

ln(4/3)

ln(10)
 = Log(4/3) 

    ∫ pdf(x)dx
5

4
 = ∫

dx

ln(10)

5

4
dx = 

ln(5/4)

ln(10)
 = Log(5/4) 

    ∫ pdf(x)dx
6

5
 = ∫

dx

ln(10)

6

5
dx = 

ln(6/5)

ln(10)
 = Log(6/5) 

    ∫ pdf(x)dx
7

6
 = ∫

dx

ln(10)

7

6
dx = 

ln(7/6)

ln(10)
 = Log(7/6) 

   ∫ pdf(x)dx
8

7
 = ∫

dx

ln(10)

8

7
dx = 

ln(8/7)

ln(10)
 = Log(8/7) 

   ∫ pdf(x)dx
9

8
 = ∫

dx

ln(10)

9

8
dx = 

ln(9/8)

ln(10)
 = Log(9/8) 

   ∫ pdf(x)dx
10

9
 = ∫

dx

ln(10)

10

9
dx = 

ln(10/9)

ln(10)
 = Log(10/9) 
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It can be further postulated that there is a rough proportionality that 

exists between the degree of uniformity of the probability density 

function (pdf) of the mantissas of the logarithm of a data set and 

compliance with Benford’s law 

It will be proven and demonstrated later that a Log Normal distribution 

approaches a Benford distribution as its standard deviation approaches 

infinity and approaches a Normal distribution as its standard deviation 

approaches zero. 

For each degree of mantissa pdf uniformity I have plotted, with the aid 

of Microsoft Excel, the corresponding 1st digit distribution. The results 

clearly demonstrate that as the degree of mantissa pdf uniformity 

decreases the less the data conforms to Benford’s law. With a mean of 

10 and a standard deviation of 2.0 there is almost complete conformity 

whereas with a mean of 10 and a standard deviation of 0.2 there is 

virtually no conformity 
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. 

Fig#2- Sum of the pdf of each mantissa value for each corresponding IPOT for a 

Log Normal distribution with a mean of 10 and various standard deviations 
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Fig#3- 1st digit distribution for a Log Normal distribution mean = 10 for various 

standard deviations 

Scale invariance 

The scale invariance associated with Benford’s law states that if the 
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Let a = scale factor:  
1

ln(10)
 ∫

dx

x

a10ᴺ⁺¹

a10ᴺ
 = 

1

ln(10)
 [ ln(a10ᴺ⁺¹) – ln(a10ᴺ)] = 

1

ln(10)
[(N+1)ln(10) + ln(a) – Nln(10) – ln(a)] = 

1

ln(10)
[Nln(10) - Nln(10) + ln(a) – ln(a) 

+ ln(10)] = 
ln(10)

ln(10)
 = 1 

Numbers starting from a →2a: 
1

ln(10)
 [∫

dx

x

2a10ᴺ

a10ᴺ
] = 

ln(2a10ᴺ)−ln(a10ᴺ)

ln(10)
 = 

ln(2)+ln(a)−ln(a)+nln(10)−nln(10)

ln(10)
= 

ln(2)

ln(10)
 = log10 2 

Likewise for numbers starting with 2: 
1

ln(10)
[∫

dx

x

3a10ᴺ

2a10ᴺ
 = 

ln(
3

2
)

ln(10)
 = log10 3/2 

Example: converting inches to centimeters 

Scale factor: a = 2.54 centimeters/inch 

1

ln(10)
 [∫

𝑑𝑥

𝑥

2x2.54𝑥10ᴺ

2.54x10ᴺ
 = 

1

ln(10)
[ln(2.54) + ln(2)  + Nln(10) – ln(2.54) – 

Nln(10)] = 
ln(2)

ln(10)
 = log10 2 

m = 1…….9  
1

ln(10)
∫

dx

x

a(m+1)10ᴺ

am10ᴺ
 =[ ln(a(m+1)x10ᴺ) – ln(amx10ᴺ)]/ln(10) = 

ln(a) + ln(m+1) +Nln(10) – ln(a) – ln(m) – Nln(10) = [ln(m+1) – 

ln(m)]/ln(10) = ln(
m+1

m
)/ln(10) = log10

m+1

m
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Exponential functions 

Exponential functions such as y = a ͬ conform exactly to Benford’s law. It 

can easily be proven that the probability density function of an 

exponential is 
1

ln(10)x
  and, therefore, completely conforms to Benford’s 

law. 

Proof that an exponential function conforms to Benford’s Law. 

1) Let exponential function  y = 10˟

2) Let v = Log₁₀ (y) = x Log₁₀ (10) = x , which is the probability distribution function

of the log of 10˟ as the log of    10˟ varies from 0 to 1

3) The probability density function of the log of 10˟is the derivative of v with

respect to x, which is 1.

4) Apply the formula pdfᵥ dv = pdfᵧ dy

5) pdfᵧ = pdfᵥ x 
dv

dy

6) v = Log₁₀ (y) = 
ln(y)

ln(10)

7) 
dv

dy
 = 

1

yln(10)

8) pdfᵧ =
1

yln(10)

9) ∫ pdfᵧ
b

a
dy = Probability [Pr(a ≤ y ≤ b)] = 

10) ∫
dy

yLn(10)

b

a
 = 

1

Ln(10)
 ∫

dy

y

b

a
= 
Ln(b)−Ln(a)

Ln(10)
 = 

Ln
b

a

Ln(10)
= Log₁₀ (

b

a
) 
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11) Let b = 2, a = 1; Log₁₀ (2) = 0.30103

Let b = 3, a = 2; Log₁₀ (
3

2
) = 0.176091 

Let b= 4, a = 3; Log₁₀ (
4

3
) = 0.124939 

Let b = 5, a = 4; Log₁₀ (
5

4
) = 0.096910 

Let b = 6, a = 5; Log₁₀ (
6

5
) = 0.079181 

Let b = 7, a = 6; Log₁₀ (
7

6
) = 0.066947 

Let b = 8, a = 7; Log₁₀ (
8

7
) = 0.057992 

Let b = 9, a = 8; Log₁₀ (
9

8
) = 0.051153 

Let b =10, a = 9; Log₁₀ (
10

9
) = 0.045757 

The Ist digit distribution conforms to Benford’s Law. 

Log Normal Distributions: 

As already having been illustrated with the Log Normal probability 

density function as the standard deviation approaches infinity the 

probability density function (pdf) of the mantissas of the logarithm of a 

data set approaches a uniform distribution and, therefore, approaches 

a Benford distribution. The following explanation is proof of this 

assertion.  
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Proof that as the standard deviation of a Log Normal 
distribution approaches infinity the distribution becomes 
a Benford distribution i.e. the probability density function 
approaches k/x 

1) The Benford probability density function = 1/xln(10).

2) The Log Normal probability density function =
1

x√2πσ²

e−(Ln(x)−u)
2/2σ²

3) For x=1: 1/xln(10) = 1/ln(10);
1

x√2πσ²
e−(Ln(x)−u)

2/2σ² =
1

√2πσ²

e−(u)
2/2σ²

4) Normalize by multiplying the Log Normal distribution by
√2𝜋σ²

ln(10)
e(u)

2/2σ²

5) The difference between the two distributions is :
1

xln(10)
 - 

1

xln(10)
(e−(Ln(x)−u)

2/2σ²) =

6) 
1

xln(10)
(1-e−(Ln(x)−u)

2/2σ²)

7) For any given value of x the value 1-e−(Ln(x)−u)
2/2σ² approaches 0;

since e
k(constant)

σ²  approaches 1 as σ approaches ∞. 

Also, as the standard deviation of a Log Normal distribution  
approaches 0, the Log Normal probability density function 
approaches a Normal or Gaussian distribution with a mean of eu 
and a standard deviation of σ eu where 𝑢 is the mean of the Log 
Normal pdf and σ is the standard deviation of the same Log 
Normal pdf. The following constitutes proof of this assertion. 
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Proof that as the standard deviation of a Log Normal 

distribution approaches 0 the distribution becomes a Normal 

distribution with a mean of 𝑒𝑢 where u is the mean of the 

natural logarithms of the data set values. 

1) Log Normal probability density function: pdf(x) =
1

x√2πσ²

𝑒
−(Ln(x)−u)²

2σ²  ; u = mean(ln(x)), σ =std_dev(ln(x)) 

2) Determine the mode of the Log Normal distribution i.e.

dy

dx
 = 

1

√2πσ²
 
dy

dx
(
𝑒−(ln(𝑥)−u)

2/2σ²

x
) = 0 ; solve for x

3) 
dy

dx
= e−(Ln(x)−u)

2/2σ² [ 
−(Ln(x)+u)

σ²
- 1] = 0

4) Solve x for 
−Ln(x)+u

σ²
- 1 = 0

5) Ln(x) = u-σ²

6) x = e(u−σ
2)

7) As σ→0; x→eu

8) pdf(x) =
1

x√2πσ²
 e

−(Ln(x)−u)²

2σ²

9) Taylor series of Ln(x) about eu =

10) Ln(eu) + 
x−eu

eu
 - 
(x−eu)²

2e2u
 + 

(x−eu)³

3e3u
  -  

(x−eu)⁴

4e⁴u
+ ….. =
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11) ln(𝑒𝑢) +    ∑
−(−1)ᵏ(x−eu)ᵏ

keku
∞
k=1

12) Ln(x-eu) ~ Ln(eu) + 
x−eu

eu
  as σ → 0 

13) Ln(x-eu) ~ u + 
x−eu

eu

14) pdf(x) ~
1

x√2πσ²
 e

−(u+
x−eu

eu
−u)²

2σ²

15) pdf(x) = ~
1

eu√2πσ²
 e

−(
x−eu

eu
)²

2σ²  as σ → 0 

16) pdf(x)  ~
1

√2π(σeᶸ)²
 e

−(x−eᶸ)²

2(σeᶸ)²

17) uₓ = mean(x); 𝛔ₓ = std_dev(x)

18) uₓ   ~  𝑒𝑢 ; 𝛔ₓ  ~ uₓ σ

19) pdf(x)   ~
1

√2𝜋(σₓ)²
𝑒
−(x−uₓ)²

2(𝜎ₓ)²

20) Which is a Normal Distribution with a mean of 𝑒𝑢 and a

standard deviation of  σ eu

The following graphs are plots of the Log Normal distribution with 

given values of mean (u) and standard  deviation of σ v. the Normal 

distribution with a mean of 𝑒𝑢 and a standard deviation of σ 𝑒𝑢. 
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Fig#6 

The plots were derived from a Microsoft Excel spreadsheet. They 
strongly indicate empirically that as the standard deviation does 
approach zero the Log Normal distribution with a given mean and 
standard deviation does converge to a Normal distribution with a mean 
equal to e raised to the Log Normal mean and the standard deviation 
equal to the Normal mean times the Log Normal standard deviation. 

The logarithm of the data generated from the probability density 

function of an exponential function is uniform throughout all orders of 

magnitude. 
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Fig#7-example of a probability density function of an exponential 

function     

The pdf of the logarithm of data generated from a Log Normal 

distribution and most other probability density functions, such as 

gamma, Chi Square, Weibull begin and end on the x-axis unlike the 

exponential function, which is a uniform straight line. For instance, the 

pdf of the logarithm of a data set generated from a Log Normal 

distribution is a Normal distribution with respect to Lnx or Log(x). 

 

The following argument constitutes a proof that the probability 

density function of the logarithm of data that conforms to a Log 

Normal distribution is a Gaussian or Normal distribution.  
 

1. For a Lognormal distribution the  pdfᵪ (probability density 

function) =  
1

x√2πσ²
 e−(Ln(x)−u)
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3. pdfᵧ dy = pdfᵪdx

4. pdfᵧ = pdfᵪ 
dx

dy

5. 
dy

dx
 = 

1

xLn(10)
; 
dx

dy
 = xLn(10) 

6. 𝑥 = 10ʸ

7. pdfᵧ(Log(x)) = Ln(10)* 10log(x)
1

x√2𝜋σ²
e−(Ln(10

log(x))−u)
2
/2𝜎² = 

8. (x)*Ln(10)
1

x√2πσ²
e−(Ln(x)−u)

2/2σ² = Ln(10)
1

√2πσ²
e−(Ln(x)−u)

2/2σ²,

which is a Gaussian distribution with respect to log(x) 

Figures 6-8 Illustrate the probability density function of the logarithm of 

a data set that conforms to a Lognormal distribution and how it 

approaches a uniform distribution of a true Benford distribution as the 

Standard deviation increases. 

Fig#8 – Probability Density Function of the Logarithm of a Data Set that 

Conforms to a Lognormal Distribution 
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For an exponential distribution, the mantissas between integral powers 

of ten (IPOT) are uniform since the probability density function is 1. This 

accounts for the fact that numbers beginning with 1 occur about 30% of 

the time and numbers beginning with 9 occur about 4.6% of the time. 

For a Lognormal distribution or any other distribution if it can be shown 

that the probability density function of the sum of each mantissa for 

each corresponding IPOT approaches a constant value as the number of 

number of integral powers of ten (IPOT) approaches infinity  the data 

set will conform to Benford’s Law.  The following argument constitutes 

a proof of this assertion.  

Proof that if the probability density function of the logarithm of a data 

set is continuous and begins and ends on the x-axis and the number of 

integral power of ten (IPOT) values approaches infinity then the 

probability density function of the resulting mantissas will be uniform 

and; therefore, the data set will conform to Benford’s law 

1) The probability density function of a data set that conforms to

Benford’s Law is k/x =
1

ln(10)x

2) The probability density function of the log of the same function is

a uniform distribution,

a. pdf(y)dy = pdf(x)dx
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b. Y = log(x) = 
ln(x)

ln(10)

c. pdf(y) = pdf(x)
dx

dy

d. 
dy

dx
 = 

1

xln(10)

e. 
dx

dy
 = xln(10) 

f. pdf(y) = 
xln(10)

xln(10)
 = 1 – Uniform Distribution 

3) Therefore, If it can be shown that the pdf of the log of a function

is uniform then the data set follows Benford’s Law.

4) Y = F(x)

5) Y’ = 
d(F(x))

dx
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6) ∫ Y′dx
Xf

Xo
  =  ∫ F′(x)dx

Xf

Xo
 =  F(Xf) – F(Xo) = 0 

7) Avg Value of Y’ =
1

Xf−Xo
 ∫ Y′dx

Xf

Xo
 =  

0

Xf−Xo

8) F’ᵢ (x) = 
F(i+1)−F(i)

∆x
 ; ∆x → 0 

9) ∫ F′(x)dx
Xf

Xo
 = 0 ; ∑

F(i+1)−F(i)

∆x

N−1
i=0  = 0  as ∆X → 0 

10) let m(i) = = 
F(i+1)−F(i)

∆x

11) ∑ m(i)𝑁−1
i=0  ∆X = 0 ; ∆X → 0 

Let’s consider a simpler case. 
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12) Let ∆X = 1

13) m₁+ m₂+ m₃+ m₄+m₅ =  0

14) ∑ xᵢ5
i=1  = m₁x + m₁ + m₂x + m₁ + m₂ + m₃x + m₁+ m₂ + m₃ + m₄x +

m₁ + m₂ + m₃ + m₄ + m₅x =  K

15) x( m₁+ m₂ + m₃ + m₄ +m₅) + m₁+ m₁ + m₁ + m₁+ m₂ + m₂ + m₂ + m₃ + m₃

+ m₄  =  K

16) m₁+ m₂ + m₃ + m₄ +m₅  = 0

17) ∑ xᵢ5
i=1  =  4m₁+3m₂ + 2m₃ + m₄ = K ( constant)

18) AREA UNDER PDF = 1
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18) ∫ 𝑓(x)
6

1
 dx = 1 

 20) 
m₁

2
+ m₁+ 

m₂

2
+ ( m₁+ m₂) + 

m₃

2
+( m₁ + m₂ + m₃) + 

m₄

2
+ (m₁ + m₂ + m₃ +m₄) + 

m₅

2

 = 1 

21) m₁+ m₂ + m₃ + m₄ +m₅ = 0

22) 4m₁ + 3m₂ + 2m₃ + m₄ = 1

 Therefore K = 1 

The sum of all functions at IPOT + x = 1 for any x. 

The sum of all mantissas is a uniform distribution whose amplitude is 

equal to 1 and the PDF approaches a Benford distribution as 
∆𝒙

𝒏
 → 0.

23) For the more general case:

24) ∑ 𝑚ᵢ𝑟−1
𝑖=1  =   

25) m₁x + m₂+m₂x + m₁+m₂ + m₃x + …..m₁+m₂+m₃+…

mᵣ₋₁x  = 

 K 

26)  x( m₁+m₂+….+mᵣ₋₁   ) + (r-2)m₁+(r-3)m₃+..+mᵣ₋₂ = K 

27) x(m₁+m₂+m₃+mᵣ₋₁ ) = 0

28) (n-2)m₁+(n-1)m₂+….+mᵣ₋₂ = K 
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  29) 
𝑚₁

2
+m₁+

𝑚₂

2
+m₁+m₂+

𝑚₃

2
+ m₁+m₂+m₃+..+mᵣ₋₂ +

𝑚ᵣ₋₁

2
 = K 

  30) 
1

2
 ( m₁+m₂+m₃+mᵣ₋₁ ) =0 

31) (n-2)m₁+(n-1)m₂+…..+mᵣ₋₂ = 1 

32) K=1

33) The sum of mantissa values at IPOT + x = 1 for any x

34) The sum of all mantissas is a uniform distribution whose

amplitude is   And, therefore, the PDF approaches a Benford 

distribution as 
∆x

N
 →0.

Proof that if the probability density function of the Logarithm  a data 

set is continuous  and begins and ends on the x-axis and the number 

of integral power of tens approaches infinity then the sum of 

probability distributions of all fixed intervals from all IPOT (∆X) 

equals the interval itself (∆X) itself. 
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1)∑ ∫ pdfdx
i+∆

i
4
1 = 

1

2
m₁(∆x)²+m₁∆x+

1

2
m₂(∆x)²+(m₁+m₂)∆x

+ 
1

2
m₃(∆x)²+(m₁+m₂+m₃)∆x+

1

2
 m₄(∆x)²=K 

2) 
1

2
 (∆x)²(m₁+m₂+m₃+m₄)+(3m₁ +2m₂+m₃)∆x=K 

3)m₁+m₂+m₃+m₄=0

4) 
1

2
m₁+m₁++

1

2
m₂+m₁+m₂++

1

2
m₃+m₁+m₂+m₃+

1

2

m₄= 

5) 
1

2
 (m₁+m₂+m₃+m₄)+3m₁+2m₂+m₃= 1 

6) 3m₁ +2m₂+m₃=1

7) (3𝑚₁ +2m₂+m₃)∆x=∆x

8)∑ ∫ pdfdx
i+∆x

i
4
1  =∆x 

In General: 

9)∑ ∫ pdfdx
i+∆x

i
r−1
i=1  =  

1

2
(∆x)²( m₁+m₂+m₃+…+mᵣ₋₁ )+ 
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10) [(n − 2)m₁ + (n − 1)m₂ +…+mᵣ₋₂]∆x  = ∆x 

 

It can be easily shown that the fixed intervals don’t have to start and 

end on an interval power of ten such as 10,100,1000 or 1,2,3 on a LOG 

plot as long as the fixed intervals are all offset by a power of ten.  

For instance, the left most interval starting point, where the curve 

intersects the x-axis, could be 2 with each succeeding  interval 10 times 

the previous interval i.e 20,200,2000 etc. The data would still conform 

to Benford’s Law with digit 1 contained in intervals 10-20, 100-200, 

1000-2000; digit 2: 2-3,20-30,200-300;digit 3: 3-4,30-40,300-400;digit 4: 

4-5,40-50,400-500;digit 5:5-6,50-60,500-600;digit 6:6-7,60-70,600-

700;digit 7:7-8,70-80,700-800;digit 8:8-9,80-90,800-900;digit 9:9-10,90-

100,900-1000. The first digit starts in the tens and ends in the 1000s; all 

of the others start in the single digits and end in the 100s. It’s still the 

same result obtained by having the IPOT at each interval such as 

1,10,100,1,000 etc. 

 

This would explain why data sets that span many orders of magnitude 

conform very closely to Benford’s law and data sets that span fewer 

orders of magnitude do not. This also explains why several other 

distributions such as gamma, beta, Weibull and exponential probability 

density functions conform fairly closely to Benford’s law and why 

Gaussian or Normal distributions do not ( the pdf of the logarithm of a 

Gaussian data span a very limited number of IPOTs. i.e.  

X* 
1

√2πσ²
e−(x−u)

2/2σ², the e−(x−u)
2/2σ² term falls too rapidly.  
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More examples: 

Chi Square distribution: 

Fig#9- Probability density functions of a Chi Square distribution for various 

degrees of freedom 
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Fig#10 - Sum of the pdf of each mantissa for each corresponding IPOT for the 

Logarithm of data sets that conform to the Chi Square distribution 
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Fig#11- Plots of the probability density functions of the logarithm of data 

sets that conform to a Chi Square distribution  
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Fig#12 - 1st digit distribution for a Chi Square distribution for various 

degrees of freedom 

Gamma distribution: 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9

ra
te

1st digit

Chi Square distribution

 Benford

dof = 1

dof = 2

dof = 3

dof = 4

dof = 5

29



Fig#13 - Probability density function of a Gamma function Beta = 1 and various 

values for alpha 

Fig#14 - Sum of the pdf of each mantissa for each corresponding IPOT of  the 

logarithm of data sets that conform to Gamma distribution for Beta = 1 
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Fig#15- Plots of the probability density functions of the logarithm of data sets 

that conform to a Gamma distribution 
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Fig#16  - 1st digit distribution for a Gamma distribution with various values of 

alpha 
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The Summation test: 

The Summation test consists of adding all numbers that begin with a 

particular first digit or first two digits and determining its distribution 

with respect to these first or first two digits numbers. Most people 

familiar with this test believe that the distribution is a uniform 

distribution for any distribution that conforms to Benford’s law i.e. the 

distribution of the mantissas of the logarithm of the data set is uniform 

U[0,1). This summation test that results in uniform distribution  is true  

for an exponential function (geometric progression) i.e. y = aᵏᵗ but not 

true for a data set that conforms to a Log Normal distribution even 

when the Log Normal distribution itself  closely approximates Benford’s 

Law.          

When the summation test is applied to real data such as population of 

cities, time intervals between earthquakes, and financial data, which all 

closely conforms to Benford’s law, the summation test results in a 

Benford like distribution and not a uniform distribution. Citing  

Benford’s Law, page 273, author Dr Mark Nigrini, “ The analysis 

included the summation test. For this test the sums are expected to be 

equal, but we have seen results where the summation test shows a 

Benford- like pattern for the sums.” Citing Benford’s Law, page 141, 

author Alex Kossovski, “ Worse than the misapplication and confusion 

regarding the chi-sqr test, Summation Test stands out as one of the 

most misguided application in the whole field of Benford’s Law, 

attaining recently the infamous status of a fictitious dogma and leading 

many accounting departments and tax authorities astray.” He also 

states on page 145, “Indeed all summation tests on actual statistical 

and random data relating to accounting data and financial data, census 

data, single-issue physical data, and so forth, show a strong and 
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consistent bias towards higher sums for low digits, typically by a factor 

of 5 to 12 approximately in the competition between digit 1 and digit 9, 

there is not a single exception!” 

The histograms of the logarithm of the aforementioned data tend to 

resemble a Normal distribution, which is the definition of a Log Normal 

distribution (the Central Limit theorem applied to random 

multiplications). Therefore, if it can be shown that the Summation test 

performed on data that conforms to a Log Normal distribution results in 

a Benford like distribution then the Summation test applied to most 

real world data that conforms to Benford’s law will also conform to a 

Benford like distribution and not a Uniform distribution.  

The exponential case: 

The probability density function of a purely exponential function is 

1/xLn(10). The expected value of a data set within an interval a, b  

Is = 
∫ x∗pdfdx
b
a

∫ pdfdx
b
a

 = 

1

ln(10)
∫ dx
b
a

1

ln(10)
∫ 

dx

x

b
a

= 
b−a

ln
b

a

The sum of numbers within an interval a, b = expected value within an 

Interval a, b * the number of data points within the same interval 

The number of data points within an interval a, b = N (total number of 

data points) * ∫ pdfdx
b

a
 = 

N∗
1

ln(10)
∫ 

dx

x

b
a



1

ln(10)
∫ 

dx

x

10
1

 = 
ln(

b

a
)

ln(10)
  contained within an 

integral power of ten, (10k,10k+1) 
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Therefore the sum is: 
b−a

ln(
b

a
)
 * 

𝑁𝑙n(
b

a
)

ln(10)
= 
𝑁(b−a)

ln(10)

Example: a=1, b=2; a=2, b=3 ….. a=9, b=10 Sum = 
𝑁

ln(10)

       a=10, b=20 ……. a=90, b=100      Sum = 
10𝑁

ln(10)

Over several orders of magnitude = 

Sum =  
𝑁[𝑏−𝑎+10(𝑏−𝑎)+102(𝑏−𝑎)+103(𝑏−𝑎)+⋯+10𝑘(𝑏−𝑎)]

ln(10)+ln(10)+ln(10)+ln(10)+⋯+ln(10)

Generally*: Sum = 
𝑁

log₁₀(
maxvalue

minvalue
)
 * 

1

ln(10)
* ∑ 10ᵏ

log₁₀(maxvalue)−1
log₁₀(minvalue) , b-a=1 

*The assumption is made that the minimum and maximum are integral

powers of 10 i.e. 1, 10, 100, etc.

Summation Test 

Digit   Sample   Benford   Sample 

1 28931 0.301029996 0.111048 

2 17082 0.176091259 0.1112 

3 11764 0.124938737 0.110844 

4 9424 0.096910013 0.110959 

5 7520 0.079181246 0.111414 

6 6507 0.06694679 0.110971 

7 5588 0.057991947 0.11068 

8 4977 0.051152522 0.111238 

9 4428 0.045757491 0.111646 

Total 96221 
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Fig# -17 Summation with Respect to the 1st Digits i.e. 1,2,3,4,5,6,7,8,9 of an 

Exponential Function      
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Proof that the probability distribution of the sum of the values of a Log Normal  

probability density function  with respect to the first digits (1 through 9) is 

nearly a Benford distribution and not a uniform distribution.  

The probability distribution function of the sum of the values of a Benford 

probability density function ( 1/x) with respect to the first digits is a uniform 

distribution but such is not the case for a Lognormal  density function.  

Most numbers encountered in real life such as populations, scientific data, and 

accounting data are derived from the multiplication of statistically independent 

numbers, which constitute a Lognormal probability density function analogous to 

a Gaussian or Normal probability density function, which is derived from the 

addition of statistically independent numbers.  

The following argument constitutes a proof that the sum of these numbers with 

respect to the first digits is nearly a Benford distribution as well as the number of 

values with respect to the first digits.  

1. Pdfᵪ ( probability density function)  =  f(x)

2. Average value = 
∫ xf(x)dx
b

a

∫ f(x)dx
b

a

3. Number of samples  between a and b  = N∫ f(x)dx
b

a

4. Sum of values between a and b is Average value X number of samples

between a and b =

5. = 
∫ xf(x)dx
b

a

∫ f(x)dx
b

a

  X  N∫ f(x)dx
b

a
 = 

6. N∫ xf(x)dx
b

a

7. For Lognormal distribution  f(x) = 
𝑒−(ln(x)−u)

2/2σ²

x√2𝜋σ²

8. N∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑏

𝑎
= N ∫ 

𝑒−(ln(x)−u)
2/2σ²

√2𝜋σ²

b

a
 dx 

9. Assume  Pdfᵪ = 
e−(ln(x)−u)

2/2σ²

√2𝜋σ²
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10. y = Log(x)

11. Pdfᵧ dy = Pdfᵪ dx

12. Pdfᵧ = Pdfᵪ 
𝑑𝑥

𝑑𝑦

13. 
dy

dx
 = 

1

xln(10)
; 
dx

dy
 = x ln(10) 

14. If Log plot of can be Pdfᵧ (log(x)) = ln(10)10log(x) 
𝑒
−(ln(10log(x))−u)

2
/2σ²

√2𝜋σ²
  = 

15. (x)* ln(10)* 
𝑒−(ln(x)−𝑢)

2/2σ²

√2𝜋σ²

16. approximated with straight line between Integral  power of ten (IPOT) then

Because the mantissa distribution approaches a uniform distribution the

resulting distribution of

The x will be a nearly Benford distribution.

17. Therefore, the Ist digit distribution of the sum of values should be a  nearly

Benford distribution

Instead of a uniform distribution as previously thought.

Proof that the sum of numbers that conform to a Log Normal 

distribution and begin with a particular digit will approach a  

distribution conforming to Benford’s Law and not a uniform 

distribution  as the standard deviation of the Log Normal distribution  

approaches infinity  

1. Pdfᵪ (Log_Normal) =
e−(ln(x)−m)2/2σ²

x√2𝜋σ²

2. Expected value = ∫ x ∗
∞

−∞

e−(ln(x)−m)2/2σ²

x√2𝜋σ²
 dx  = ∫ 

∞

−∞
 
e−(ln(x)−m)2/2σ²

√2𝜋σ²

dx  = em+
σ²

2
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3. Expected value in interval a-b =
∫ 
b
a


𝑒−(ln(𝑥)−m)2/2σ²

√2𝜋σ²
dx

∫ 
b
a 

𝑒−(ln(x)−m)2/2𝜎²

x√2𝜋σ²
dx

4. Sum = Expected value * number of values within interval a-b

5. Number of values within interval a-b = N ( total number of values)

* ∫ 
b

a

𝑒−(ln(x)−m)2/2σ²

x√2𝜋σ²
dx 

6. Sum =
∫ 
b
a


e−(ln(x)−m)2/2σ²

√2πσ²
dx

∫ 
b
a 

e−(ln(x)−m)2/2σ²

x√2πσ²
dx

* N* ∫ 
b

a

e−(ln(x)−m)2/2σ²

x√2πσ²
dx = 

N∫ 
b

a

e−(ln(x)−m)2/2σ²

√2πσ²
dx 

7. Let u = ln(x) – m; ln(x) = u + m; x = eu+m  = eu ∗ em; du = 
dx

x
 ; dx 

= xdu

8. Sum  = N∫ 
ln(b)−m

ln(a)−m

e
−u2

2σ2
⁄

√2πσ2
∗ 

eu

√2πσ2
∗

em

√2πσ2
du = N

em

√2πσ2

∫ 
ln(b)−m

ln(a)−m
e
−(u2−2σ2u)

2σ²  du = 

9. N
em

√2πσ2
 ∫ 

ln(b)−m

ln(a)−m
e
−(u2−2σ2u+σ4−σ4)

2σ²  du = 

10. N
em

√2πσ2
 ∫ 

ln(b)−m

ln(a)−m
e
−(u−σ2)²+σ4

2σ²  du = N
em

√2πσ2

∫ 
ln(b)−m

ln(a)−m
e
−(u−σ2)²

2σ² ∗ e
σ²

2  du = 

11. N
e
m+

σ²
2

√2πσ2
 ∫ 

ln(b)−m

ln(a)−m
e
−(u−σ2)²

2σ² du = 

12. N
em∗e

σ2
2⁄

√2πσ2
 ∫ 

ln(b)−m

ln(a)−m
e
−(u−σ2)²

2σ² du  as ln(a) → - ∞ and ln(b) → 

∞ , Sum = N *  em+
σ²

2
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13. As 𝜎→ ∞  Sum = N
em∗e

σ2
2⁄

√2πσ2
 ∫ e

−σ²

2
ln(b)−m

ln(a)−m
du =  N

em

√2πσ2

∫ 𝑑𝑢
ln(b)−m

ln(a)−m
  = N

em

√2πσ2
*[ ln(b) –m –(ln(a)-m)] =   = N

em

√2πσ2
*[ ln(b) 

– ln(a) ]

14. Let a=1; b=2  N
em

√2πσ2
* ln(2)

15. Let a=1; b=10  N
em

√2πσ2
* ln(10)

16. 
N

em

√2πσ2
∗ln(2)

N
em

√2πσ2
∗ln(10)

 = LOG₁₀(2) 

17. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝑑𝑜𝑣𝑒𝑟𝑎𝑙𝑙𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑝𝑜𝑤𝑒𝑟𝑠𝑜𝑓𝑡𝑒𝑛 =

18. 
∫ du+∫ du

ln(20)

ln(10)
+∫ du+⋯+∫ du

ln(2∗10ᵏ)

ln(1∗10ᵏ)
ln(200)

ln(100)


ln(2)
Ln(1)

∫ du+∫ du
ln(100)

ln(10) +∫ du+⋯+∫ du
ln(2∗10𝑘+1)

ln(1∗10𝑘)

ln(1000)

ln(100) 
ln(10)
ln(1)

= 
k∗ln(2)

k∗ln(10)
 =  

LOG₁₀(2) 

19. More Generally:

20. =
∫ du+∫ du

ln(𝑑₂0)

ln(𝑑₁0)
+∫ du+⋯+∫ du

ln(𝑑₂∗10ᵏ)

ln(𝑑₁∗10ᵏ)
ln(𝑑₂00)

ln(𝑑₁00)


ln(𝑑₂)
𝑙𝑛(𝑑₁)

∫ du+∫ du
ln(100)

ln(10) +∫ du+⋯+∫ du
ln(2∗10𝑘+1)

ln(1∗10𝑘)

ln(1000)

ln(100) 
ln(10)
ln(1)

 = 
k∗ln(

𝑑₂

𝑑₁
)

k∗ln(10)

=  LOG₁₀(
d₂

d₁
) 
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Fig#17 - plot of the logarithm of the probability density function of the expected 

value (or sum) of a data set that conforms to a Log Normal distribution 
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Fig#18 -  Sum of mantissas for Log Normal Summation test 

It is clear that the Summation test performed on a purely exponential 

function (Y = akt) results in a Uniform distribution. However, for data 

that conforms to a Log Normal distribution the Summation test in a 

Benford like distribution if the standard deviation is sufficiently large. 

This explains why the Summation test performed on a lot of real data 
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such as population, time interval between earthquakes, financial data 

results in a Benford like distribution, since the histograms closely 

resemble a Log Normal distribution 

In recent years, Benford’s law has been used to determine accounting 

and income tax fraud. Overall accounting and tax data should 

theoretically conform to Benford’s law. The following analysis was 

conducted by me of taxable income data for the year of 1978. The

results approximately follow Benford’s law including the summation

test, which is not what a lot of people conversant in Benford’s would 

expect (it is not at all uniform). While examining the Ist digit test, it

appears that there is a surplus of numbers that that begin with the 

lower numbers(1,2) and a dearth of numbers that begin with the 

higher digits(4,5,6,7,8,9) possibly indicating that people are 

understating their income ( example: 9XXXX is reduced to 8XXXXX, 

8XXXX is reduced to 7XXXXX and so on. The summation test could be 

used to determine if there are inordinate huge numbers( either one  or 

many large numbers that begin with a particular digit). 

Example: IRS data: Taxable Income – 1978 
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Fig#20 - Ist digit test for IRS data: Taxable Income 1978 

Fig#21 - Summation test for IRS data: Taxable Income 1978 
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Conclusions: 

1) The extent of conformity to Benford’s law is to how closely the  

pdf of the  mantissas of the logarithms of data set is uniform. 

2) The more skewed the probability density function the more 

Benford like the distribution becomes, since ∫ pdf(x)dx =
x2

x1

 ∫ pdf(x)dx
ax2

ax1
 (scale invariance) and if a is large then the pdf 

must be a much lower value for a considerable distance along the 

x axis 

3) If the pdf of the logarithms of a data set begins and ends on the x 

axis and the curve between all integral power of tens (IPOT) can 

be approximated with a straight line the pdf will approach a 

Benford distribution. 

4) The distribution of the logarithm of a data set is xpdf(x) 

a) If the data set is derived from an exponential function then the 

pdf of the logarithm of the data set will be uniform throughout 

all integral powers of ten.  

b) If the data set is derived from a Log Normal distribution then 

the pdf will be a Gaussian distribution will respect to lnx. 

c) Most distributions that involve an exponential component such 

as Gamma, Chi Square, Beta, Weibull will approach a Benford 

distribution as their respective standard deviations approach 

infinity, since xpdf(x)  tends to start and end on the x axis over 

several integral powers of ten.  

5) The summation test results in a uniform distribution for 

exponential functions; the pdf of the pdf xpdf(x) (expected values) 

is 
x

xln(10)
 = 

1

ln(10)
 for all ist digits. For Log Normal and the other 

aforementioned distributions the pdf of logarithm of the data set 
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ln(10)x^2pdf approaches a Benford distribution as the standard 

deviation approaches infinity.  
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