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In the Euclidean space R,, of n dimensions, let us consider integral

[ s

taken along some real curve (M) with arc s; f — given function with curvatures
ki(i = 1,2,...,n — 1) of curve and their derivatives against s up to order r
including. It is required to determine extremal curves for which first variation
of integral is equal to zero.

For curves of Rj3 following results are known. Radon [1] has found that for
f = f(k;) finite equations of extremals may be found by quadratures. De
Castro Brzezicki [2] has shown that at

dky
f=1r (khds)

finite equations may be get by quadrature, if natural equations of curve are
found.

In this work, general expressions for variation of all k; and their derivatives are
found (§ 1); equations of Euler-Lagrange are found (§ 2); some considerations
are given on integration these equations, and it is shown that results of de
Castro Brzezicki work for arbitrary f in Rs, Ry and Rs (§ 3). Finally, some
particular cases in R3 are considered, in addition result of Radon is generalized
to functions f(k1, k2) that satisfy some differential equations.

In what follows it is assumed that all derivatives, which are encountered in
the calculations, exist and are continuous. Derivatives against s are indicated
by strokes and indicators in brackets; summations always are explicit. Border
conditions are assumed to be satisfied.



1 VARIATIONS OF CURVATURES AND THEIR
DERIVATIVES

Let M(s) — radius vector of curve (M) to be considered, ¢;(i = 1,...,n) — unit
vectors of orthonormal frame, t;;(j = 1,...,n) — coordinates ¢; in some fixed
orthonormal system of coordinates.
Using orthogonal matrix

T = |t 7

and antisymmetric matrix of Frenet
K = k|7,
where
kij = kjdij—1 — ki—10i j+1,ko = kn =0,

and 6;; — symbol of Kronecker, formulae of Frenet may be written in the form
T" = KT. (1)

Supposedly, all k;(i = 1,...,n — 1) are different from zero.
We take radius vector of curve (V) to be varied in the form

i=1

where € — parameter, u; - arbitrary functions of s.

In what follows, magnitudes we are interested in, that characterize curve (INV),
decompose in increasing powers of €, where powers higher that first are dropped.
Coefficient at € we name variation of corresponding magnitude, and denote by

J.
By differentiation of (2) with respect to s, we get

dN =
E = []. —+ E(Ull — ]fl’UJQ)}tl -+ EZ (ki_lui_l -+ ’LL; — kiui+1)ti~ (3)
=2

Module of this vector gives derivative of arc o of curve (N) against s:

Z—Zzl—i—ea, (4)

where
a = uj — kius, (5)

but unit vector p; tangent to (N) is equal to

dN -
do =t + €Z2a1iti,
im



where
at; = ki—1ui—1 + i — kiuig, = 2,3, ... (6)

Let p; be unit vectors of accompanied orthonormal frame of curve (N), and
P =PIy
for matrix of their coordinates. Latter is connected with matrix T" by expression
P =T+ €AT. (7)

Due to orthogonality P and T', matrix A = ||a;; ||} is antisymmetric. Expressions
(6) give elements of first row (and first column) of matrix A. Remaining elements
of A, as well as variations k; of curvatures k;, may be received in the following
way: for curve (N), Frenet matrix is equal to

K +e€l,

where antisymmetric matrix L = ||x;;||T is composed from magnitudes x; in the
same way as K is composed from k;:

Kij = Ki0ij—1 — Ki—10;,j+1, ko = kn = 0.
Consequently, for P relationship holds

dpP
— = (K +eL)P.
do (K +eL)

Substituting for P expression (7), and taking into account (1) and by equating
coeflicients at €, we get

L+aK = A"+ AK — KA. (8)

Due to the fact that in both parts of equation (8) are present antisymmetric

matrices, it is equivalent to system of @ scalar independent equations, to
be received by equating elements above the main diagonal:

/
Ki+aki = a; ;11 + kic10;-1i+1 — Kit104 512, 9)
where 1 =1,2,...,n— 1, and
/
kiait1j = az; + ki,aio15 + kj10i-1 = kjai g, (10)

where
1=1,2,.n—2;=1i4+2,1+3,...,n.

Equation (10) allows to determine all elements of i+ 1-st row of matrix A by use
of elements of previous rows and curvatures. Due to fact that (6) determines all
a5, it is possible to express all a;; — and by their use all x; too — as functions of
curvature k;, variations u; and their derivatives against s. Explicit expressions,



received in this way, in what follows are but not necessary.
If variations
5(ds) = ads,

5(]{51) = Ki,

are known, then, using expression (¢ — arbitrary function of s)

.1 (d(p+edp) dp
3(¢") = lim - [ ——<15 — =5
() e <(1+ea)ds ds )’
ie.
3(¢') = (d¢)' — ay, (11)
we have

o(k;) = K} — aks,
and, repeatedly applying (11), we get
6 (K1) = K™ = (k)0 — (@)D .~ k", (12)
for derivatives of order h, or, compressing,

h—1

)+ 1 ) .
0 (’fgh)) =" -3 (:7;; )ao)kgh o)
=0
where a0 = ¢, s() = %.

2 EQUATIONS OF EULER-LAGRANGE

For the integral along curve (M) in R

7= [ tis

where f — given function of k; (i = 1,...,m — 1) and their derivatives against s
up to order r including, variation is equal to

n—1 r
5J:/ i+ Y 5(/@?’“)1 ds.

(h)
i=1 h—o Ok;
Substituting expression (11) for variations of derivatives against curvatures and
removing by integration in parts from function in integral derivatives against x;
and a, we receive this function in this form

n—1

F=ab+ Z(m + ak;)bi i1, (13)
i=1



where
T

biit1 =Y (—1)"fh, (14)
h=0

n—1

T r—h
b:f__E:lmm¢ﬂ-+§:kﬁ)§:c—ngghw], (15)
h=1 g=0

N
ih = gsa | g™ |

i=1
Further transformation of F' by integration in parts turns into selection from F'
full derivations against s of suitable functions in order to remove all derivatives
of initial variations u;. As a result we should receive linear homogeneous form of
all u;. By equating all coefficients of this form to zero we should receive desired
equations of Euler-Lagrange.
In order to perform specified transformation, let us consider matrix B = ||b;;||7,
determined by the following features:
B — antisymmetric; elements of first over-diagonal have values (14); the following
relationship holds

and where

B +BK — KB = -G, (16)

where G' = ||g;;||7 — matrix with elements distinct from zero only these

These features determine matrices B and G unambiguously. Truly, we have

% scalar equations, expressing equality of elements of antisymmetric ma-

trices of both parts of (16):
bij + kio1bio1j — kibivr,j +kj—1bijo1 — kjbi j11 = =010,

where
i=1,2,..,n—1;j=i+1,i+2,...,n.

Taking into account
bii = 0,k, =0,

we get following order of determination of desired values, based on known ele-
ments (14) of first over-diagonal of matrix B.

kn—an—Z,n = -0

n—1,n
ki—1bi—1,i41 = —bé,m + kiy1biivo
(i=n—-2,n-3,..,2), (17)
kibij = —=biiq j + kit1bito,j — kj—1biy1j—1 + kjbit1, 41
(i=n—-3,n—4,..1;j=i+3,i+4,,..,n).
At last
g2 = —biy + kabis,
gi = =y + k1boj — kj_1b1 1 + kjb1 i1 (18)
(1 =3,4,...,n).



At j = n last members of right part drop, containing multiple k,, = 0.
Let us determine product of two matrices, e.g., A and B by use of expression

1 n n
AXx B= 522(1”@]
i=1 j=1

Because each of multiples is linear and homogeneous with respect to its elements,
this product is additive with respect to each multiple. Due to this, we get by
differentiation

(AxB) =A"xB+AxB. (19)
Using explicit expression for scalar product, it is easy to check that because of

antisymmetry of K
(AK)x B+ Ax (BK) =0,

(KA) x B+ Ax (KB) =0, (20)

where brackets contain ordinary product of matrices. By substitution in the
right part of (19) values of derivatives A’ and B’ from expressions (8) and (16),
and taking into account distributivity of scalar product and expressions (20),
we get

(L+aK)xB=(AxB)+AxG,

or
n—1 n
> (ki + aki)bii = (Ax B) + > ang:.
i=1 1=2

Then (13) gives
F = (A X B)/ + ab + Zaugi,

i=2
or, taking into account values (5) and (6) and assuming

g1 = ba
F=(AxB) +Y (wg) =Y wilgi+ki19i-1 — kigiyr).
i=1 i=1
As it was notified higher, equations of Euler-Lagrange are received by equating
to zero coeflicients of individual u; in the last sum of right side, that gives

/ g1 = k192,
;= —ki—19i-1 + kigit1
(=23 ..n—1), (21)
9,/1 = _kn—lgn—l-

Due to the fact that uy characterize movement along curve (M), that can’t
cause variation of integral J, first of the equations (21) should hold identically,
what is the case. Really, by differentiating values (15) at g1 = b, we get

n—1
r /
g1 == E kibi,iJrl'
i=1



On the other hand, multiplying from equations (17) and (18) these that contain
bii+1 (1=1,2,...,n—1) with corresponding k; and summing, after simplification
we get

n—1
kigs = — Z k’ib;‘,i+1 =01
=1

Remaining n—1 equations (21) comprise system of Euler-Lagrange, determining
n — 1 curvatures of extremals that was sought for.

3 ABOUT INTEGRATION OF EQUATIONS OF THE
PROBLEM

Let us assume that there exists solution of the system (21); in this case set of
values k;, b;;and g;, satisfying set of equations (17), (18) and (21), exists. Along
with consideration of finding of finite equations of curve (M), we will find first
integrals of equations (21) too. These expressions must contain k;, b;; and g;,
but their values will not depend from s.

Integration of natural equations of curve in R,, with curvatures ki, ko, ..., kn—1
reduces to finding of n independent systems of solutions x1, x2, ..., £, of equa-

tions of Frenet
/
;= —ki_1@i_1 + kiTip

(i=1,2,....n:kg = ky = 0) (22)

If vector using such system of values x; is built

Tr = Zaziti, (23)
i=1

then this vector must be fixed, i.e., its derivative must be equal to zero. Back-
wards, if representation (23) exists for a fixed nonzero vector z, then x; — system
of solutions of equations of Frenet (22). x1,x, ..., 2, may be called relative co-
ordinates of vector x, while its length — first integral of system (22). Such fixed
vector is g.

Taking n fixed vectors corresponding to n linear independent solutions of the
system (22), we may build orthonormal system of fixed vectors

n
t1 = Z &inZi,
i—1

and by integration we get radius vector of curve (M) in the system Z;.
If functions x; are known at which vector (23) is not fixed, but are in some fixed
plane (7), then by one quadrature we get two linear independent fixed vectors
in this plane.
Vector & may be normalized. In plane (7) we find unit vector y orthogonal to
z. Then expressions hold

' = ay,



y/ = —ax,

where o = 2’y is known. We compute function

Y = $o — / adsv
50

where g = const. Then vectors
21 = xCosp + Yysiny,

2o = —xSInY + Yycosy

are fixed and orthonormal.

In order to find vectors that are fixed or are in the fixed plane, "fixed" tensors
may be used, i.e., tensors with constant coordinates in fixed system of coordi-
nates. Vectors and planes, uniquely determined by such tensors, will be fixed
too. But, if relative coordinates of tensor are known, i.e., its coordinates with
respect to orthonormal frame of the desired curve, by use of them relative co-
ordinates of desired vector may be found, consequently, one or two systems of
solutions (22) may be found.

Considering tenson of second order B to be obtained by general product of two
fixed vectors, we may get condition of "immobility" or Frenet’s formulae for
tensors. In matrix notation, these formulae have view of (16), where G = 0, but
in coordinate denotation — view of last equation of (17), taken for all 4, j.
Obviously, matrix or tensor B, considered in previous paragraph, is not fixed,
because G must differ from zero. But, combining tensor B with any fixed vector
x in way of maltiplication and alternation, as a result we will get fixed tensor of
third order D, if the used operation applied to tensors D’ and D is the same as
in case of combination of fixed tensor with vector x, consequently, corresponding
formulae of Frenet will be satisfied.

As = we takeg, and alternate it with respect to all indices. Dropping denomi-
nator 3, we get expression for elements of D

dijr = gibjx + gbri + grbij, (24)

and tensor G by this turns into zero tenson.

The obtained antisymmetric tensor D in general case is not zero tensor. We
will show that in Rs, R4 and Rs with the solution of system (21) known deter-
mination of curve (M) is completed by quadratures.

3.1 Curve in Rs.

First integrals (21) — length of vector g and pseudoscalar — the only significant
coordinate of D. After normalization of g, as vectors z and y in the fixed plane
perpendicular to g may be taken

[N

T = (9% + gg)_ (gsta — gat3),



[N

Y= (g% + gg)_ [— (g% + 932,) t1 + g192t2 + 9193t3] .

Then
_ kigs
95 + 93
and by use of one quadrature we get orthonormal system of fixed vectors g, 21,
Z92.

3.2 Curve in R,.

Tensor V, additional to D [comp. 3| — of first order, consequently, equivalent
to pseudovector. So, fixed will be vector v with coordinates

vy = Gibji + g;bri + gibij,

where h,i,j,k — even permutation of indices 1,2,3,4. In general, v isn’t zero
vector; its length - second first integral.

Obviously, v and g are orthogonal. Any vector x, perpendicular both to v and
g, is parallel to fixed plane and, in accordance with argued higher, allow to
determine two fixed orthogonal vectors z; and zo. The last two, together with
normalized g and v, are giving fixed frame.

As in the case of R3, determination of ¢; requires one quadrature.

3.3 Curve in R;.

We have fixed antisymmetric tensor V' of second order, additional at D, with
coordinates

Vhm = Gibjr + g;brs + gkbj,
where h,m,1,j,k — even permutation of indices 1,2,3,4,5. Vector g — charac-
teristic vector of this tensor, corresponding to zero characteristic number. Re-
maining characteristic numbers pure imaginar and pairwise conjugate, in general
distinct and differing from zero. Each pair of conjugate characteristic numbers
has some two dimensional plane in correspondence, and besides, these planes
are perpendicular both between themselves and to vector g [comp. 4]. By de-
termining in each of these planes pair of fixed orthonormal vectors, we by use
of two quadratures get representation of ¢; in fixed frame.
Product of tensor vy, to itself, alternate against three indices, gives antisym-
metric tensor of forth order, consequently, pseudovector too. However, the last
is collinear to g, so that in place of new fixed vector we get only first integral —
ratio of coordinates of both vectors. We receive that by use of expression

_ V12034 — V13024 + V14023
- )
95

or expressions, received by any even permutation of indices in the right side.
Besides length of g, we have also two first integrals, e.g., coefficients of charac-

teristic equation. Coefficient at A3 equal to i v;; coefficient at A equal to



v2g%. Consequently, independent are only first three integrals.
As a simple example that show distinction from zero of two magnitudes consid-
ered in R5 and Ry, let us consider determination of extremals for function

f=ko+c,c=const.
In Rs, setting n = kl_lkg,
g =cty + k1(1 — n*)ts + 0ty + nkats,
and V has following distinct from zero coordinates with j > i:
via = nka, v15 = 0, va3 = =1 ks,

Vo5 = 77/451(1 — 772), V45 = C.

Here v = —n?ky; g% and > vfj contain (1)2, but their difference equal to
k%(]‘ - 772)3 - Vz,

consequently, three first integrals really are independent.
In R4 we have
g=cti + ki (1 =)tz +1'ty,

v="n"t; —nki(1 — n*)t2 — cta;

these vectors are distinct from zero and perpendicular.

4 ABOUT INTEGRATION OF EQUATIONS OF
EULER-LAGRANGE IN R;

Let us clarify the type of operations that are actually necessary for full solution
of problem in case

f=f(k1, k2).
To shorten the record, assuming
of of
ki =i ko =y, =2 = p =L =
1 T;R2 Y, oz b, ay q,

we have

~

q
bi2 = p,b31 = ;,bzs =q.

10



Solutions of problem satisfy equations, given by first integrals:

g% + g% + gl% = const, (25)
g1ba3 + g2b31 + g3bia = co = const.

Let z and y to be expressible as functions of p and ¢ and the last not fixed.

Then, solving system (25) with respect to g, and g3, we obtain expression of
view . (0.4 )
P =Fi(p.qq),

26

{ q" = Fa(p, ¢, q)- (26)

Taking ¢ as independent variable and introducing new unknown z = ¢’, system

(26) may be transformed in canonical system of second order:

dp 1

— = _F

dq > 1(p7ZaQ)7
dz 1

— = _F .
dq > 2(pazaq)

As a result of the solution of this system, s is received as a function of ¢ by use

of quadrature
I
§=50+ —.
q0 Z

Solving corresponding equations, we obtain ¢, p, * and y as functions of s,
and complete determination of solution by use of quadrature, as notified in the
previous paragraph.

Considered technique is not suitable in case p and ¢ are not independent, i.e.,
expression below holds

O%f 02 f 2f N\
MW_(axay) 0. (27)

In the latter case surface, to be determined by equation

f=17F(zy) (28)

in cartesian coordinates x,y, f, is unfolding. If ¢ is not fixed, then at indepen-
dent variables x and ¢ (28) allow following representation

f=(p—qp)z+¢ —qy,
yzixgpiwv
P=¢

where ¢ and ¢ — suitable functions of 1 (g), but point is denoting differentiation
with respect to ¢. Excluding g3 from system (25), we obtain equation

. 2
0> w2+<¢(1> | +

2

N2
¢Q+¢(i) —02] =0,

T

11



that gives

/

z=i1(q)d,

with certain/determined function ¢;(g). Substituting this value z in any (e.g.,
second) equation (25), we obtain expression containing only ¢’ and known func-
tions of q. After representing ¢’ of view

q =11(q),

s is received by quadrature, and solution is completed as higher.
If ¢ = g9 = const., i.e.,
f=ay+ (),
we have ) ) _
g1 =% — x990 = —px’, g3 = xqo — Yy,
bio = 1, b31 = 0,ba3 = qo;

excluding g3, we obtain equation, giving ' having view as a known function of
x. As before, s is obtained by quadrature, but y is determined by any equations
of (25). Functions f of that type at gy = 0 are considered in [1].
It should be noted that as opposed to the usual parametric variation tasks in
our case solutions

T = const.,y = const.

are allowed.

In this case, the constancy of the first integrals (25) is not yet a sufficient
condition for the solution. Returning to differential equations (17), (18) and
(21), we see that there must be a relationship

(2* — y*)p + 2zyp — af = 0. (29)

For arbitrary functions f, this condition sets relationship between x and v, i.e.,
it defines a one-parameter family of natural equations of ordinary screw curves,

which are extremals. If f(x,y) looks like
22 4 g2
+ Y fl ( Y ) ’

y? " Vi +y? -z xyr? 4y
( /22 + y2)2 Yy 32 /22 + Y2 y

(30)
where ¢y — constant, but f; — arbitrary function of its argument, then left part

of (29) identically equal to 2cq. If ¢g = 0, any ordinary screw curve is extremal.
But if ¢y # 0, among extremals there is no such line.

f=co

1 VI 1957

Department of Mathematical Analysis
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Abstract _ _
PAR KADU GEOMETRISKU VARIACIJU PROBLEMU
Raksta aplukota problema: n dimensiju Eiklida telpa R, noteikt Iiknes, kam

integrala
J = / fds

pirma variacija ir nulle; s ir iknes loka garums, f — dota liekumu k1, ko, ..., kn_1
un to atvasinajumu pec s funkcija.

Nemot varietas Iiknes radijvektoru veida (2), sakari (5) un (6) dod loka difer-
enciala un pieskares vienibas vektora variacijas: ar (9) un (10) ir nosakamas
lieckumu k; variacijas ;. Liekumu atvasinajumu variacijas dod (12).
Noteikumi, lai J pirma variacija katriem u; ir nulle, ir izsakami sekojosa veida:
ar sakariem (14), (15), (17), (18) aprekina lielumus g;, kam japilda noteikumi
(21) (pirmais no tiem ir identitate). Ja ir zinams 8o vienadojumu atrisinajums,
telpas R3, R4 un Rj5 atbilstoSas liknes vienadojumi ir nosakami ar kvadraturam;
reize ieguti dazi pirmintegrali.

Telpa Rs, ja f ir dota lickuma z un verpes y funkcija, pilns problemas
atrisinajums ir reducejams uz kanonisku otras kartas diferencialvienadojumu
sistemu, pec kuras atrisinasanas jaizdara vel kvadraturas. Ja pastav noteikums
(27), viss atrisinajums ir iegustams ar kvadraturam. Ekstremalu starpa ir
parastas skruves linijas, kam = un y saista (29). Ja f ir ar veidu (30), gadijjuma
co = 0 katra parasta skruves linija ir ekstremale, bet gadijuma ¢y # 0 — neviena.
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