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In the Euclidean space Rn of n dimensions, let us consider integral∫
fds,

taken along some real curve (M) with arc s; f – given function with curvatures
ki(i = 1, 2, ..., n − 1) of curve and their derivatives against s up to order r
including. It is required to determine extremal curves for which first variation
of integral is equal to zero.
For curves of R3 following results are known. Radon [1] has found that for
f = f(ki) finite equations of extremals may be found by quadratures. De
Castro Brzezicki [2] has shown that at

f = f

(
k1,

dk1
ds

)
finite equations may be get by quadrature, if natural equations of curve are
found.
In this work, general expressions for variation of all ki and their derivatives are
found (§ 1); equations of Euler-Lagrange are found (§ 2); some considerations
are given on integration these equations, and it is shown that results of de
Castro Brzezicki work for arbitrary f in R3, R4 and R5 (§ 3). Finally, some
particular cases in R3 are considered, in addition result of Radon is generalized
to functions f(k1, k2) that satisfy some differential equations.
In what follows it is assumed that all derivatives, which are encountered in
the calculations, exist and are continuous. Derivatives against s are indicated
by strokes and indicators in brackets; summations always are explicit. Border
conditions are assumed to be satisfied.
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1 VARIATIONS OF CURVATURES AND THEIR
DERIVATIVES

Let M(s) – radius vector of curve (M) to be considered, ti(i = 1, ..., n) – unit
vectors of orthonormal frame, tij(j = 1, ..., n) – coordinates ti in some fixed
orthonormal system of coordinates.
Using orthogonal matrix

T = ∥tij∥n1
and antisymmetric matrix of Frenet

K = ∥kij∥n1 ,

where
kij = kjδi,j−1 − ki−1δi,j+1, k0 = kn = 0,

and δij – symbol of Kronecker, formulae of Frenet may be written in the form

T ′′ = KT. (1)

Supposedly, all ki(i = 1, ..., n− 1) are different from zero.
We take radius vector of curve (N) to be varied in the form

N =M(s) + ϵ

n∑
i=1

uiti, (2)

where ϵ – parameter, ui - arbitrary functions of s.
In what follows, magnitudes we are interested in, that characterize curve (N),
decompose in increasing powers of ϵ, where powers higher that first are dropped.
Coefficient at ϵ we name variation of corresponding magnitude, and denote by
δ.
By differentiation of (2) with respect to s, we get

dN

ds
= [1 + ϵ(u′1 − k1u2)]t1 + ϵ

n∑
i=2

(ki−1ui−1 + u′i − kiui+1) ti. (3)

Module of this vector gives derivative of arc σ of curve (N) against s:

dσ

ds
= 1 + ϵa, (4)

where
a = u′1 − k1u2, (5)

but unit vector p1 tangent to (N) is equal to

dN

dσ
= t1 + ϵ

n∑
i=2

a1iti,
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where
a1i = ki−1ui−1 + u′i − kiui+1, i = 2, 3, ..., n. (6)

Let pi be unit vectors of accompanied orthonormal frame of curve (N), and

P = ∥Pij∥n1

for matrix of their coordinates. Latter is connected with matrix T by expression

P = T + ϵAT. (7)

Due to orthogonality P and T , matrix A = ∥aij∥n1 is antisymmetric. Expressions
(6) give elements of first row (and first column) of matrix A. Remaining elements
of A, as well as variations κi of curvatures ki, may be received in the following
way: for curve (N), Frenet matrix is equal to

K + ϵL,

where antisymmetric matrix L = ∥κij∥n1 is composed from magnitudes κi in the
same way as K is composed from ki:

κij = κiδi,j−1 − κi−1δi,j+1, κ0 = κn = 0.

Consequently, for P relationship holds

dP

dσ
= (K + ϵL)P.

Substituting for P expression (7), and taking into account (1) and by equating
coefficients at ϵ, we get

L+ aK = A′ +AK −KA. (8)

Due to the fact that in both parts of equation (8) are present antisymmetric
matrices, it is equivalent to system of n(n−1)

n scalar independent equations, to
be received by equating elements above the main diagonal:

κi + aki = a′i,i+1 + ki−1ai−1,i+1 − ki+1ai,i+2, (9)

where i = 1, 2, ..., n− 1, and

kiai+1,j = a′ij + ki−1,ai−1,j + kj−1ai,j−1 − kjai,j+1, (10)

where
i = 1, 2, ..., n− 2; j = i+ 2, i+ 3, ..., n.

Equation (10) allows to determine all elements of i+1-st row of matrix A by use
of elements of previous rows and curvatures. Due to fact that (6) determines all
a1j , it is possible to express all aij – and by their use all κi too – as functions of
curvature ki, variations ui and their derivatives against s. Explicit expressions,
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received in this way, in what follows are but not necessary.
If variations

δ(ds) = ads,

δ(ki) = κi,

are known, then, using expression (φ – arbitrary function of s)

δ(φ′) = lim
ϵ→0

1

ϵ

(
d(φ+ ϵδφ)

(1 + ϵa)ds
− dφ

ds

)
,

i.e.
δ(φ′) = (dφ)′ − aφ′, (11)

we have
δ(k′i) = κ′i − ak′i,

and, repeatedly applying (11), we get

δ
(
k
(h)
i )
)
= κ

(h)
i − (ak′i)

(h−1) − (ak′′i )
(h−2) − ...− ak

(h)
i , (12)

for derivatives of order h, or, compressing,

δ
(
k
(h)
i

)
= κ

(h)
i −

h−1∑
j=0

(
j + 1

h

)
a(j)k

(h−j)
i ,

where a(0) = a, s(j) = dja
dsj .

2 EQUATIONS OF EULER-LAGRANGE

For the integral along curve (M) in Rn

J =

∫
fds,

where f – given function of ki (i = 1, ..., n − 1) and their derivatives against s
up to order r including, variation is equal to

δJ =

∫ [
af +

n−1∑
i=1

r∑
h=0

∂f

∂k
(h)
i

δ(k
(h)
i )

]
ds.

Substituting expression (11) for variations of derivatives against curvatures and
removing by integration in parts from function in integral derivatives against κi
and a, we receive this function in this form

F = ab+

n−1∑
i=1

(κi + aki)bi,i+1, (13)
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where

bi,i+1 =

r∑
h=0

(−1)hfhih, (14)

b = f −
n−1∑
i=1

[
kibi,i+1 +

r∑
h=1

k
(h)
i

r−h∑
g=0

(−1)gfgi,h+g

]
, (15)

and where

fgih =
dg

dsg

[
∂f

∂k
(h)
i

]
.

Further transformation of F by integration in parts turns into selection from F
full derivations against s of suitable functions in order to remove all derivatives
of initial variations ui. As a result we should receive linear homogeneous form of
all ui. By equating all coefficients of this form to zero we should receive desired
equations of Euler-Lagrange.
In order to perform specified transformation, let us consider matrix B = ∥bij∥n1 ,
determined by the following features:
B – antisymmetric; elements of first over-diagonal have values (14); the following
relationship holds

B′ +BK −KB = −G, (16)

where G = ∥gij∥n1 – matrix with elements distinct from zero only these

g1j = gj ; gj1 = −gj(j = 2, 3, ..., n).

These features determine matrices B and G unambiguously. Truly, we have
n(n−1)

2 scalar equations, expressing equality of elements of antisymmetric ma-
trices of both parts of (16):

b′ij + ki−1bi−1,j − kibi+1,j + kj−1bi,j−1 − kjbi,j+1 = −δ1jgi,

where
i = 1, 2, ..., n− 1; j = i+ 1, i+ 2, ..., n.

Taking into account
bii = 0, kn = 0,

we get following order of determination of desired values, based on known ele-
ments (14) of first over-diagonal of matrix B.

kn−2bn−2,n = −b′n−1,n,
ki−1bi−1,i+1 = −b′i,i+1 + ki+1bi,i+2

(i = n− 2, n− 3, ..., 2),
kibij = −b′i+1,j + ki+1bi+2,j − kj−1bi+1,j−1 + kjbi+1,j+1

(i = n− 3, n− 4, ..., 1; j = i+ 3, i+ 4, , .., n).

(17)

At last 
g2 = −b′12 + k2b13,

gi = −b′1j + k1b2j − kj−1b1,j−1 + kjb1,j+1

(j = 3, 4, ..., n).
(18)
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At j = n last members of right part drop, containing multiple kn = 0.
Let us determine product of two matrices, e.g., A and B by use of expression

A×B =
1

2

n∑
i=1

n∑
j=1

aijbij .

Because each of multiples is linear and homogeneous with respect to its elements,
this product is additive with respect to each multiple. Due to this, we get by
differentiation

(A×B)′ = A′ ×B +A×B′. (19)

Using explicit expression for scalar product, it is easy to check that because of
antisymmetry of K

(AK)×B +A× (BK) = 0,

(KA)×B +A× (KB) = 0, (20)

where brackets contain ordinary product of matrices. By substitution in the
right part of (19) values of derivatives A′ and B′ from expressions (8) and (16),
and taking into account distributivity of scalar product and expressions (20),
we get

(L+ aK)×B = (A×B)′ +A×G,

or
n−1∑
i=1

(κi + aki)bi,i+1 = (A×B)′ +

n∑
i=2

a1igi.

Then (13) gives

F = (A×B)′ + ab+

n∑
i=2

a1igi,

or, taking into account values (5) and (6) and assuming

g1 = b,

F = (A×B)′ +

n∑
i=1

(uigi)
′ −

n∑
i=1

ui(g
′
i + ki−1gi−1 − kigi+1).

As it was notified higher, equations of Euler-Lagrange are received by equating
to zero coefficients of individual ui in the last sum of right side, that gives

g′1 = k1g2,
g′i = −ki−1gi−1 + kigi+1

(i = 2, 3, ..., n− 1),
g′n = −kn−1gn−1.

(21)

Due to the fact that u1 characterize movement along curve (M), that can’t
cause variation of integral J , first of the equations (21) should hold identically,
what is the case. Really, by differentiating values (15) at g1 = b, we get

g′1 = −
n−1∑
i=1

kib
′
i,i+1.
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On the other hand, multiplying from equations (17) and (18) these that contain
bi,i+1 (i = 1, 2, ..., n−1) with corresponding ki and summing, after simplification
we get

k1g2 = −
n−1∑
i=1

kib
′
i,i+1 = g′1.

Remaining n−1 equations (21) comprise system of Euler-Lagrange, determining
n− 1 curvatures of extremals that was sought for.

3 ABOUT INTEGRATION OF EQUATIONS OF THE
PROBLEM

Let us assume that there exists solution of the system (21); in this case set of
values ki, bijand gi, satisfying set of equations (17), (18) and (21), exists. Along
with consideration of finding of finite equations of curve (M), we will find first
integrals of equations (21) too. These expressions must contain ki, bij and gi,
but their values will not depend from s.
Integration of natural equations of curve in Rn with curvatures k1, k2, ..., kn−1

reduces to finding of n independent systems of solutions x1, x2, ..., xn of equa-
tions of Frenet

x′i = −ki−1xi−1 + kixi+1

(i = 1, 2, ..., n; k0 = kn = 0)
(22)

If vector using such system of values xi is built

x =

n∑
i=1

xiti, (23)

then this vector must be fixed, i.e., its derivative must be equal to zero. Back-
wards, if representation (23) exists for a fixed nonzero vector x, then xi – system
of solutions of equations of Frenet (22). x1, x2, ..., xn may be called relative co-
ordinates of vector x, while its length – first integral of system (22). Such fixed
vector is g.
Taking n fixed vectors corresponding to n linear independent solutions of the
system (22), we may build orthonormal system of fixed vectors

t1 =

n∑
i=1

ξi1Zi,

and by integration we get radius vector of curve (M) in the system Zi.
If functions xi are known at which vector (23) is not fixed, but are in some fixed
plane (π), then by one quadrature we get two linear independent fixed vectors
in this plane.
Vector x may be normalized. In plane (π) we find unit vector y orthogonal to
x. Then expressions hold

x′ = αy,
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y′ = −αx,

where α = x′y is known. We compute function

φ = φ0 −
∫ s

s0

αds,

where φ0 = const. Then vectors

z1 = xcosφ+ ysinφ,

z2 = −xsinφ+ ycosφ

are fixed and orthonormal.
In order to find vectors that are fixed or are in the fixed plane, "fixed" tensors
may be used, i.e., tensors with constant coordinates in fixed system of coordi-
nates. Vectors and planes, uniquely determined by such tensors, will be fixed
too. But, if relative coordinates of tensor are known, i.e., its coordinates with
respect to orthonormal frame of the desired curve, by use of them relative co-
ordinates of desired vector may be found, consequently, one or two systems of
solutions (22) may be found.
Considering tenson of second order B to be obtained by general product of two
fixed vectors, we may get condition of "immobility" or Frenet’s formulae for
tensors. In matrix notation, these formulae have view of (16), where G = 0, but
in coordinate denotation – view of last equation of (17), taken for all i, j.
Obviously, matrix or tensor B, considered in previous paragraph, is not fixed,
because G must differ from zero. But, combining tensor B with any fixed vector
x in way of maltiplication and alternation, as a result we will get fixed tensor of
third order D, if the used operation applied to tensors D′ and D is the same as
in case of combination of fixed tensor with vector x, consequently, corresponding
formulae of Frenet will be satisfied.
As x we takeg, and alternate it with respect to all indices. Dropping denomi-
nator 3, we get expression for elements of D

dijk = gibjk + gjbki + gkbij , (24)

and tensor G by this turns into zero tenson.
The obtained antisymmetric tensor D in general case is not zero tensor. We
will show that in R3, R4 and R5 with the solution of system (21) known deter-
mination of curve (M) is completed by quadratures.

3.1 Curve in R3.
First integrals (21) – length of vector g and pseudoscalar – the only significant
coordinate of D. After normalization of g, as vectors x and y in the fixed plane
perpendicular to g may be taken

x =
(
g22 + g23

)− 1
2 (g3t2 − g2t3) ,
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y =
(
g22 + g23

)− 1
2
[
−
(
g22 + g23

)
t1 + g1g2t2 + g1g3t3

]
.

Then
α =

k1g3
g22 + g23

and by use of one quadrature we get orthonormal system of fixed vectors g, z1,
z2.

3.2 Curve in R4.
Tensor V , additional to D [comp. 3] – of first order, consequently, equivalent
to pseudovector. So, fixed will be vector v with coordinates

vh = gibjk + gjbki + gkbij ,

where h, i, j, k – even permutation of indices 1, 2, 3, 4. In general, v isn’t zero
vector; its length - second first integral.
Obviously, v and g are orthogonal. Any vector x, perpendicular both to v and
g, is parallel to fixed plane and, in accordance with argued higher, allow to
determine two fixed orthogonal vectors z1 and z2. The last two, together with
normalized g and v, are giving fixed frame.
As in the case of R3, determination of t1 requires one quadrature.

3.3 Curve in R5.
We have fixed antisymmetric tensor V of second order, additional at D, with
coordinates

vhm = gibjk + gjbki + gkbij ,

where h,m, i, j, k – even permutation of indices 1, 2, 3, 4, 5. Vector g – charac-
teristic vector of this tensor, corresponding to zero characteristic number. Re-
maining characteristic numbers pure imaginar and pairwise conjugate, in general
distinct and differing from zero. Each pair of conjugate characteristic numbers
has some two dimensional plane in correspondence, and besides, these planes
are perpendicular both between themselves and to vector g [comp. 4]. By de-
termining in each of these planes pair of fixed orthonormal vectors, we by use
of two quadratures get representation of t1 in fixed frame.
Product of tensor vhm to itself, alternate against three indices, gives antisym-
metric tensor of forth order, consequently, pseudovector too. However, the last
is collinear to g, so that in place of new fixed vector we get only first integral –
ratio of coordinates of both vectors. We receive that by use of expression

ν =
v12v34 − v13v24 + v14v23

g5
,

or expressions, received by any even permutation of indices in the right side.
Besides length of g, we have also two first integrals, e.g., coefficients of charac-
teristic equation. Coefficient at λ3 equal to

∑
j>i v

2
ij ; coefficient at λ equal to
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ν2g2. Consequently, independent are only first three integrals.
As a simple example that show distinction from zero of two magnitudes consid-
ered in R5 and R4, let us consider determination of extremals for function

f = k2 + c, c = const.

In R5, setting η = k−1
1 k3,

g = ct1 + k1(1− η2)t3 + η′t4 + ηk4t5,

and V has following distinct from zero coordinates with j > i:

v14 = ηk4, v15 = η′, v23 = −η2k4,

v25 = ηk1(1− η2), v45 = c.

Here ν = −η2k4; g2 and
∑
v2ij contain (η′)2, but their difference equal to

k21(1− η2)3 − ν2,

consequently, three first integrals really are independent.
In R4 we have

g = ct1 + k1(1− η2)t3 + η′t4,

v = η′t1 − ηk1(1− η2)t2 − ct4;

these vectors are distinct from zero and perpendicular.

4 ABOUT INTEGRATION OF EQUATIONS OF
EULER-LAGRANGE IN R3

Let us clarify the type of operations that are actually necessary for full solution
of problem in case

f = f(k1, k2).

To shorten the record, assuming

k1 = x; k2 = y,
∂f

∂x
= p,

∂f

∂y
= q,

we have
g1 = f − xp− yq,

g2 = −p′ − y

x
q′,

g3 = −
(
q′

x

)′

+ xq − yp,

b12 = p, b31 =
q′

x
, b23 = q.
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Solutions of problem satisfy equations, given by first integrals:{
g21 + g22 + g23 = const,

g1b23 + g2b31 + g3b12 = c2 = const.
(25)

Let x and y to be expressible as functions of p and q and the last not fixed.
Then, solving system (25) with respect to g2 and g3, we obtain expression of
view {

p′ = F1(p, q
′, q),

q′′ = F2(p, q
′, q).

(26)

Taking q as independent variable and introducing new unknown z = q′, system
(26) may be transformed in canonical system of second order:

dp

dq
=

1

z
F1(p, z, q),

dz

dq
=

1

z
F2(p, z, q).

As a result of the solution of this system, s is received as a function of q by use
of quadrature

s = s0 +

∫ q

q0

dq

z
.

Solving corresponding equations, we obtain q, p, x and y as functions of s,
and complete determination of solution by use of quadrature, as notified in the
previous paragraph.
Considered technique is not suitable in case p and q are not independent, i.e.,
expression below holds

∂2f

∂x2
∂2f

∂y2
−
(
∂2f

∂x∂y

)2

= 0. (27)

In the latter case surface, to be determined by equation

f = f(x, y) (28)

in cartesian coordinates x, y, f , is unfolding. If q is not fixed, then at indepen-
dent variables x and q (28) allow following representation f = (φ− qφ̇)x+ ψ − qψ̇,

y = −xφ̇− ψ̇,
p = φ,

where φ and ψ – suitable functions of φ1(q), but point is denoting differentiation
with respect to q. Excluding g3 from system (25), we obtain equation

φ2

ψ2 +

(
ψ̇q′

x

)2

− c1

+

[
ψq + ψ̇

(
q′

x

)2

− c2

]2
= 0,
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that gives
x = φ1(q)q

′,

with certain/determined function φ1(q). Substituting this value x in any (e.g.,
second) equation (25), we obtain expression containing only q′ and known func-
tions of q. After representing q′ of view

q′ = ψ1(q),

s is received by quadrature, and solution is completed as higher.
If q = q0 = const., i.e.,

f = q0y + ψ(x),

we have
g1 = ψ − xψ̇, g2 = −ψ̈x′, g3 = xq0 − yψ̇,

b12 = ψ̇, b31 = 0, b23 = q0;

excluding g3, we obtain equation, giving x′ having view as a known function of
x. As before, s is obtained by quadrature, but y is determined by any equations
of (25). Functions f of that type at q0 = 0 are considered in [1].
It should be noted that as opposed to the usual parametric variation tasks in
our case solutions

x = const., y = const.

are allowed.
In this case, the constancy of the first integrals (25) is not yet a sufficient
condition for the solution. Returning to differential equations (17), (18) and
(21), we see that there must be a relationship

(x2 − y2)p+ 2xyp− xf = 0. (29)

For arbitrary functions f , this condition sets relationship between x and y, i.e.,
it defines a one-parameter family of natural equations of ordinary screw curves,
which are extremals. If f(x, y) looks like

f = c0
y2

(
√
x2 + y2)2

[
ln

√
x2 + y2 − x

y
− x

√
x2 + y2

y2

]
+

y√
x2 + y2

f1

(
x2 + y2

y

)
,

(30)
where c0 – constant, but f1 – arbitrary function of its argument, then left part
of (29) identically equal to 2c0. If c0 = 0, any ordinary screw curve is extremal.
But if c0 ̸= 0, among extremals there is no such line.

1 VI 1957

Department of Mathematical Analysis
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Abstract
PAR KĀDU G, EOMETRISKU VARIĀCIJU PROBLĒMU
Rakstā aplūkota problēma: n dimensiju Eikl̄ıda telpā Rn noteikt l̄ıknes, kam
integrāl,a

J =

∫
fds

pirmā variācija ir nulle; s ir l̄ıknes loka garums, f – dota liekumu k1, k2, ..., kn−1

un to atvasinājumu pēc s funkcija.
N, emot variētās l̄ıknes radijvektoru veidā (2), sakari (5) un (6) dod loka difer-
enciāl,a un pieskares vien̄ıbas vektora variācijas: ar (9) un (10) ir nosakāmas
liekumu ki variācijas κi. Liekumu atvasinājumu variācijas dod (12).
Noteikumi, lai J pirmā variācija katriem ui ir nulle, ir izsakāmi sekojošā veidā:
ar sakariem (14), (15), (17), (18) aprēk, ina lielumus gi, kam jāpilda noteikumi
(21) (pirmais no tiem ir identitāte). Ja ir zināms šo vienādojumu atrisinājums,
telpās R3, R4 un R5 atbilstošās l̄ıknes vienādojumi ir nosakāmi ar kvadratūrām;
reizē iegūti daži pirmintegrāl,i.
Telpā R3, ja f ir dota liekuma x un vērpes y funkcija, pilns problēmas
atrisinājums ir reducējams uz kanonisku otrās kārtas diferenciālvienādojumu
sistēmu, pēc kuras atrisināšanas jāizdara vēl kvadratūras. Ja pastāv noteikums
(27), viss atrisinājums ir iegūstams ar kvadratūrām. Ekstremāl,u starpā ir
parastās skrūves l̄ınijas, kam x un y saista (29). Ja f ir ar veidu (30), gad̄ıjumā
c0 = 0 katra parastā skrūves l̄ınija ir ekstremāle, bet gad̄ıjumā c0 ̸= 0 – neviena.
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