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Must a quantum mechanical particle sometimes be in two places at once? 
 

John Hemp (Wolfson College, Oxford, OX2 6UD, UK) 

 

In this short paper, we point out that the interference of probabilities in the double slit 

experiment, or in a particle interferometer, should not necessarily lead us to think that 

a quantum mechanical particle’s position is a meaningless concept or that continuous 

motion of a quantum mechanical particle is an impossibility. We do not need to 

conclude that a particle must sometimes be in two places at once, or that nature 

herself does not know exactly where a particle is etc. We show that the argument 

leading to that kind of conclusion, based on the interference of probabilities, is 

illogical when probability is viewed in a rational Bayesian fashion i.e. as accounting 

for rational degree of belief in an occurrence rather than the relative frequency of that 

occurrence in many trials. We lend support to the view that much progress may be 

made in the interpretation of the quantum formalism and in the formation of physical 

pictures of processes in quantum mechanics by viewing probability in a rational 

Bayesian manner. 
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We start by sketching the typical argument leading to the conclusion that particles cannot be 

moving in definite orbits and can be in two places at once. We take the particle interferometer 

(Figure 1) as our experimental set up since the argument is clearer when the possible paths of 

the particle are well separated. 

  

 
  

Figure 1. A simple particle interferometer. The incoming wave packet is split into packets 1 and 2 by the first 

beam splitter. These are reflected by mirrors M and are each partly transmitted and reflected at the final beam 

splitter to form out-going packets 3 and 4. Under fine-tuning packet 4 may be cancelled out. 

 

 With reference to Figure 1, the argument goes through 6 steps as follows. (i) The 

particle’s initial motion has associated with it a certain time dependent normalised wave 

function   in fact spread all over space but highly concentrated in a small packet which after 

passage through the first beam splitter divides into two (half-normalised) wave functions, say 

1  and 2 , setting off in different ways (way 1 and way 2) from the first beam splitter, each 

wave function evolving according to the Schrödinger equation. (ii) In time, these waves 

interfere (like real waves would) so that the probability density for the particle being at some 
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point (i.e. 
2

21  ) is not the same as 
2

2

2

1  in regions where 1  and 2  overlap (as 

in packets 3 and 4 in Figure 1). (iii) If the particle moves continuously through space it must 

set off from the first beam splitter either in way 1 or way 2. (iv) If it sets off in way 1 the 

probability density for the particle being at any point thereafter is 
2

12  and if it sets off in 

way 2 it is 
2

22  and (v) as the probabilities for the particle to set off one way or the other 

are each 
2

1 , (vi) the net probability density should be 
2

2

2

1

2

22

12

12

1
22   not 

2

21  . Hence we have a contradiction. The claim of continuous particle motion along one 

or other path must be false, and the particle must instead travel both ways at once around the 

interferometer. 

 Steps (i), (ii), (iii) and (v) of this argument are fine. Under the assumption of 

continuous motion the particle is expected, with equal probability, to set off one way or the 

other from the first beam splitter, and the probability density calculated by quantum 

mechanics is 
2

21   thereafter. The problem lies in step (iv). For when adopting the 

rational Bayesian approach to probability, we cannot speak of the probability of an event 

supposing the particle sets off in way 1 (or way 2) from the first beam splitter. We can only 

speak of the probability of an event supposing we knew the particle set off in way 1 (or way 

2). This is because we are taking probabilities to be determined by knowledge not by physical 

conditions. But the acquisition of knowledge of which way the particle sets off is expected to 

change the particle motion thereafter on account of the uncertainty principle, so only when 

we actually acquire the necessary knowledge would it be rational to condition our probability 

distribution from 
2

21   to 
2

12  (or from 
2

21   to 
2

22 ). In the above argument, 

however, it is in no way supposed that we actually get to know which way the particle set out 

from the first beam splitter, so we have every reason to doubt the validity of step (iv) of the 

argument. 

 Inside the interferometer, where the wave packets are moving in separate paths, we 

are close to a classical limit, the de Broglie wavelength being very small compared to the 

packet dimensions. Under the assumption of continuous motion, we expect the particle to be 

moving inside one of the packets. We can find out which packet it chooses by placing a 

particle detector in one path. If this particle detector finds no particle, then we know (or fully 

expect that) the particle went the other way. We can then use our new knowledge to collapse 

our wave function from 21   to 
12  (or from 21   to 

22 ). There is no 

contradiction, and position measurements conducted in many trials following null-detection 

will confirm the correctness of our reasoning. 

 Note that collapse of the wave function may therefore be viewed as resulting from 

new knowledge, not from some unknown physical process as is commonly assumed. This is a 

great simplification in interpretation. 

 Now suppose the interferometer is fine-tuned so that (when no null-detection is 

performed inside the interferometer) the particle is found always to exit one way out of it. It 

might then seem strange that an observation, a null-detection (on one path inside the 
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interferometer) which might be thought to cause virtually no disturbance, can result in the 

particle sometimes exiting the interferometer in a way it would seem never to do without that 

observation. This is evidently due to a change in the balance of the forces (whatever they are) 

governing the particle motion through the final beam splitter. After null detection and while 

the particle remains in the interferometer, the result of our acquisition of further knowledge 

results in our probability distribution over particle position sharpening (reducing to one wave 

packet rather than two), but becoming less sharp (two wave packets rather than one) after the 

particle has left the interferometer. Hence use of Bayesian reasoning to interpret the quantum 

mechanical formalism can lead to results of a kind not replicated in applications of Bayesian 

probability to classical mechanical processes, but that does not imply there is something 

wrong with Bayesian reasoning or with the assumption of continuous motion of a particle. 

  

Having argued that a Bayesian approach to probability can help in the interpretation of 

quantum mechanics by removing the need for a particle to be in two places at once, we now 

note that the rules of Bayesian probability for use in pure state quantum theory must in some 

ways be different from the rules of Bayesian probability in ordinary life or in classical 

physics. The reason for this lies in the uncertainty principle, which greatly restricts the 

knowledge we can hold -the knowledge on which our probabilities are based.  

 Simultaneous knowledge of properties incompatible on account of the uncertainty 

principle is impossible. For example, we cannot know both the momentum and position of a 

particle to arbitrarily great precision. Neither can we know (or predict) in advance (to 

arbitrary precision) the position of a particle at two times during its motion. The position of a 

particle at one time and its position at a later time are incompatible properties. If we measure 

just the second we leave the first unknown, and if we measure the first we affect the second.  

 A consequence of these facts is that joint probabilities of incompatible properties are 

non-existent. Since we clearly cannot, for example, directly measure the z  component and 

the x  component of a particle’s spin at one time in order to test (in repeated trials) any 

supposed joint probability distribution ),( xzp   over those variables, there is no need for 

that joint distribution. Use of the product rule )()(),( zxzxz ppp   to derive 

),( xzp   is not possible either, for, under our rational Bayesian interpretation, )( zxp   is 

the probability of x  having acquired knowledge of the value of z  (rather than under the 

mere supposition that z  has a particular value). Acquisition of knowledge of the value of 

z  generally changes value of x  rendering the formula )()(),( zxzxz ppp   

inappropriate. So joint probabilities over incompatible variables are both untestable and 

incalculable, and are therefore rightly regarded as non-existent. 

 As a result, the usual sum and product rules of probability and hence the rule for 

conditional probabilities, or Bayes’ rule, apply only in a sample space whose propositions 

refer to the possible values of a particular basic property. Suppose (only for simplicity of 

formulation) that our Hilbert space is of finite dimension N . Suppose, also, that ix  

( Ni ,...1 ) are the (mutually exclusive) propositions claiming the possible values ix  of the 
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property x  employed in a particular representation. Then, if )( Yxi  is our wave function 

under a pure-state of knowledge Y  (acquired before the process in question starts), the 

probability of ix  is 
2

)()( YxYxP ii  . The probability of the attribute claimed by the 

disjunction ‘ 3x  or 5x  …etc.’ is  

 

...)()()...( 5353  YxPYxPYxxP      (1) 

 

 Also, for any system attribute claimed by a disjunction A  of the ix  ( Ni ,...1 ), we 

have, for the probability of the conjunction of ix  and A  the product rule 

 

)()()( YAxPYAPYAxP ii        (2) 

 

YA  being the conjunction of propositions A  and Y .  

 In the product rule (2) we take it that knowledge of the truth of A  can be acquired in 

such a way that YA  is, like Y , a pure-state of knowledge so that  )( YAxP i  

2

)( YAxi  . Only then can the product rule apply.  

 We can of course deduce from (1) and (2) the more general sum and product rules: 

 

)()()()( YBAPYBPYAPYBAP  , 

)()()( YABPYAPYABP  , 

 

where A  and B  are any disjunctions of the ix  ( Ni ,...1 ) and the same requirement 

regarding YA  applies. 

 Hence the ordinary probability rules apply to the sample space whose atomistic 

propositions are the propositions ix  ( Ni ,...1 ) of any one representation referring to any one 

particular time. The only difference lies in the limitations imposed on conditioning (from Y  

to YA ) as noted. An example of conditioning has been given above in connection with null 

detection in one branch of an interferometer, the ix  ( Ni ,...1 ) there standing for the possible 

positions of the particle at the time the null measurement is performed. Dropping the wave 

function in one branch of the interferometer and renormalizing the wave function in the other 

is to follow a procedure consistent with the posterior probability at the time of the null 

measurement being given by 
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as follows from (2), where, when Aix , we have )()( YxPYAxP ii  . Here A  stands for 

the set of propositions claiming the particle is at one or other point in the wave packet in the 

branch of the interferometer different from the branch where null-detection was performed, 

and A  stands for the disjunction of the propositions in the set A . 

 What is the analytic reason for the ‘interference of probabilities’ characteristic of the 

double slit experiment and the particle interferometer? Well this is evidently to do with the 

relation the quantum formalism provides between the wave functions (or probability 

amplitudes) relating to different representations. If ),...1( Nixi   and ),...1( Nixi   are the 

atomistic propositions in the sample spaces of different representations, then the formalism 

gives the relation 

 





N

j

jjii YxxxYx
1

)()()(       (3) 

 

between the wave functions )( Yxi  and )( Yx j
  under the same pure state of knowledge 

Y . The coefficients )( ji xx   (themselves wave functions) are the ‘transformation functions’ 

from one representation to the other. We should call relation (3) ‘Feynman’s law’ because 

Feynman seems to have been the first to see it as a law of probability rather than a law of 

physics. In particular, if the ix  ( Ni ,...1 ) are standing for the possible positions of a particle 

at time t  and ),...1( Nixi   are standing for the possible positions of the particle at the earlier 

time t , then the above relation gives us the wave function at one time in terms of the wave 

function at another. In the double slit experiment, for example, with t  being a time the 

particle has arrived at the screen, and t  the time the particle passes through the slits, 

)( Yx j
  is non-zero only at the slits, and Feynman’s law (3) reduces to 

 

)()()()()( 2211 YxxxYxxxYx iii
  

 

for the wave function over the screen, 1x and 2x denoting the positions of the slits, while 

)( 1 Yx  and )( 2 Yx  are equal constants. The ‘interference of probabilities’ is here (and 

elsewhere) arising from Feynman’s law understood as a law of rational Bayesian probability 

in pure-state quantum mechanics. 

 

We are therefore arguing that by adopting a rational Bayesian approach to probability, and by 

interpreting the (non-relativistic) quantum formalism as a set of rules for calculating 

probabilities given our knowledge (always limited because of the uncertainty principle) we 

can avoid the need for a particle to be in two places at once and view it as being in continuous 

motion along a single path. Particle positions, and by extension, any basic property (such as a 

particle’s momentum or a particle’s spin component in a particular direction at any one time, 
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etc.), can be taken to be actually possessed by a system, not just potentially possessed by it 

awaiting measurement. 

 

Finally, attention is drawn to the connection between probability and frequency. This is vital 

because predicted probabilities are of course checked by observations in repeated trials. 

When a quantum mechanical process is repeated we assume the processes in each trial (or 

rather the propositions referring to them) are logically independent. This means knowledge of 

the outcome of one trial has no effect on the probabilities we should adopt for the outcomes 

of other trials. Under this condition a simple product rule correctly gives the joint probability 

distribution over the possible outcomes of all the trials. For example, in a single trial of the 

double slit experiment, the probability of arriving at point ix  on the screen is 

2

)()( YxYxP ii   and the joint probability of arriving at point )1(

ix  in the first trial, at point 

)2(

jx  in the second trial, … and at point )(m

sx  in the final trial is  )...( )()2()1( YxxxP m

sji  

)()...()( )()2()1( YxPYxPYxP m

sji . It then follows, in the usual way, that the expected number of 

cases in which the particle arrives at a particular place ix  on the screen is m  times the 

probability )( YxP i . That is, the fraction of times the particle arrives at ix  has a mean value 

)( YxP i  and the standard deviation of this fraction from that mean value tends to zero as the 

number of trials tends to infinity. The algebraic proof of this is the same as in ordinary 

probability theory because the uncertainty principle does not restrict knowledge of the 

outcomes of different trials. The sample space in which the atomistic propositions are the 

conjunctions )()2()1( ... m

sji xxx   for all sji ...,  is one in which the usual sum and product rules 

of probability apply. On the basis of our proposed Bayesian probability theory for quantum 

mechanics, there is, therefore, a way to check the probability distribution )( YxP i , that 

quantum mechanics predicts, by conducting observations in many trials. 

 Note that, with the advent of quantum theory, the nature of science has changed. We 

no longer claim we can get to accurately measure all the dynamical properties of a system 

even in principle, nor get to know all the deterministic laws governing them. Instead, on the 

basis of the quantum formalism and any limited knowledge we may hold of a system’s 

dynamical properties, we calculate the degrees of expectation we should rationally adopt for 

other dynamical properties. This includes the calculation of our expectations for the relative 

frequencies of observable outcomes in repeated trials of a process. We do not claim those 

frequencies are fixed by law. Violations of them might occur. They are not physically 

determined but only expected. Yet they can be relied upon, well enough, to confirm the 

correctness of the quantum formalism as a way of calculating degrees of expectation.  

 By restoring belief in the actual possession of properties by quantum mechanical 

systems, we open up the possibility of claiming some dynamical laws governing them; laws 

that can be safely claimed without violating the expectations calculated using the quantum 

formalism. For example, it seems possible to claim that the momentum of a free electron 

remains constant during its motion and that its spin component in any one direction remains 
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constant so long as the electron experiences no magnetic field. In this way our understanding 

of the nature of quantum mechanical processes and the pictures we form of them might be 

improved. 

 

We end by providing references to work developing ideas similar to those expressed here.  

 The idea that the wave function represents our knowledge of the dynamical properties 

of a quantum system is quite old. It was the view taken, for example, by Peierls [1]. 

 The idea that Bayesian probability is better suited than conventional probability when 

it comes to understanding quantum theory has been argued by several authors. They include 

Appleby [2], Fuchs, Mermin and Schack [3], Benavoli, Facchini and Zaffalon [4], Marlow 

[5] and Jaynes [6]. In [7] Jaynes has made a convincing case for adopting a rational Bayesian 

approach to quantum statistical mechanics in which he sees the theory of mixed states (and 

density matrices) as providing new rules of Bayesian probability theory. It is true that these 

authors differ in their view as to what Bayesian probabilities refer to in quantum theory. 

Fuchs, Mermin and Schack, for example, follow the subjective Bayesian approach taking 

probabilities to refer to personal (measurement) experiences. They call their theory QBism. 

This contrasts with the view taken, for example, by Jaynes and the present author; that 

probabilities refer to physical attributes possessed by a quantum mechanical system and are 

rational degrees of expectation of those attributes given knowledge of certain dynamical 

properties of the system.  

 Some authors (including the author of this paper) are trying out new rules of Bayesian 

probability in which probabilities take complex values rather than real values, so wave 

functions themselves (rather than their squared moduli) are taken to be the probability 

distributions. See for example Youssef [8] and Hemp [9]; and in [10] Youssef provides a list 

of works by himself and by others taking the same path.  

 There are, of course, other arguments advanced (in addition to the one based on the 

‘interference of probabilities’) for rejecting the reality of definite particle orbits or the 

possession of any quantum mechanical properties before their measurement. These include 

arguments leading to (violated) Bell type inequalities and to the Kochen Specker paradox. 

However, a Bayesian approach to probability leads one to doubt the validity of these 

arguments too. Jaynes [11] has raised questions regarding the validity of Bell type arguments 

from a Bayesian perspective, Youssef [12] has argued that Bell type arguments only confirm 

the need for a new approach to probability, and in [9] the present author has put forward 

reasons for thinking that Bayesian reasoning incorporating the uncertainty principle blocks 

the derivation of both Bell type inequalities and the Kochen Specker paradox.  
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