The Twin Power Conjecture

Yuly Shipilevsky

Toronto, Ontario, Canada *E-mail address*: yulysh2000@yahoo.ca

Abstract

We consider a new conjecture regarding powers of integer numbers and more specifically, we are interesting in existence and finding pairs of integers: $n \ge 2$ and $m \ge 2$, such that $n^m = m^n$.

Keywords: integers; power; exponentiation

1 Introduction

Exponentiation is a mathematical operation, written as n^m , involving two numbers, the base n and the exponent or power m. When m is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, n^m is the product of multiplying m bases.

We consider a new conjecture regarding powers of integer numbers and more specifically, we are interesting in existence and finding pairs of integers: $n \ge 2$ and $m \ge 2$, such that $n^m = m^n$.

For n = 2 and m = 4 we have: $2^4 = 4^2 = 16$. So at least one such pair of powers does exist.

Let us fix integer number $n \ge 2$. Is there at least one integer $m \ge 2$, such that $n^m = m^n$?

We conjecture that for any $n \ge 2$ it does exist.

2 The Twin Power Conjecture

Let us formulate our Conjecture(The Twin Power Conjecture).

Conjecture(The Twin Power Conjecture). For any integer $n \ge 2$ there exists at least one integer $m \ge 2$, such that $n^m = m^n$.

At least, it would be interesting to prove or disprove this conjecture and to develop general theory regarding existence and computation of such pairs of powers.

References

- [1] C. G. Denlinger. Elements of Real Analysis. Jones and Bartlett, pp. 278–283, 2011.
- [2] J. J. O'Connor, E. F. Robertson. Etymology of some common mathematical terms. MacTutor History of Mathematics archive, University of St Andrews.
- [3] W. W. Rouse Ball, A Short Account of the History of Mathematics, Mathematics, 1888.