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Abstract Repulsive gravity at large distances has been included in the universal solution 

of Einstein’s equations by introducing a cosmological constant, excluding the dark energy 

interpretation. For a new cosmological model, the big-bang singularity has been replaced by a 

granular primeval particle and expansion is controlled by the velocity of light. Subsequently, 

well known problems inherent in the standard model of cosmology do not arise.  
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1. Introduction 

Various observations indicate that the expansion of the Universe is not slowing 

with time as previously expected, but is accelerating: see Riess et al. [1], Perlmutter et 

al., [2], Riess et al.[3], Tonry et al., [4], Kirshner, [5], Kirshner et al. [6].   Thus, gravity 

has apparently become anti-gravity at very large distances, yet remains normal within 

observed clusters of galaxies. In the literature, this phenomenon has been explained by 

adding dark energy of negative pressure to Einstein’s theory of spacetime curvature. 

Herein, a cosmological constant will be incorporated into the universal solution of 

Einstein’s equations of general relativity which describes energetic graviton fields; see 

Wayte, [7]. Then graviton-graviton repulsion at large distances is due to their inner 

mechanisms. 
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 It is instructive to study static systems containing the cosmological constant 

before developing a model of the accelerating universe. Correct choice of line element 

appears to be essential for compatibility with Newtonian gravitation. 

 

2. Exterior field of a spherically-symmetric static body 

Einstein’s equations describing the spherically-symmetric static gravitational field in 

polar coordinates will be used, (see Tolman, [8], for clear notation).  For the line 

element: 
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the surviving components of the energy-momentum tensor are: 
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that is field properties analogous to electromagnetic theory. Then normal gravitational 

potential is described by the metric tensor component: 

   ( ) ( )r/r1rc/GM1 0

2 −=−=  ,    (2.3a) 

which ranges from zero at gravitational radius (r0 = GM/c2), to unity at )( =r . The 

gravitational field strength is then: 

( ) 22 r/GMdr/dcF −=−=  .    (2.3b) 

 Evidently, anti-gravity could be produced by adding a term which would change 

the negative sign in Eq.(2.3a) to positive over a range of r, however, such variation in  

would incur un-realistic negative energy in 4
4T . Alternatively, Einstein’s cosmological 

constant  can be introduced by adding it to the right side of Eqs.(2.2a,b,c), see [8, p 

242]. Then partial solution gives 
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Now, 4
4T will keep the same positive value given for zero cosmological constant: 
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and the metric tensor component has a new form, remaining less than unity:  
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Coefficient  is understood here to represent the inherent capacity for repulsion, by a 

modification of graviton behaviour at large radii, without changing the field 

energy/momentum density. It is remarkable that Einstein’s equations should include 

long-range repulsion so efficiently. Recall reference [7, Eqs.(8) – (13)] wherein 

gravitons are shown to be circularly polarised and to have tangential momentum. In 

contrast, the interpretation of  as being due to dark energy growing spontaneously 

throughout an infinite open universe appears excessive.   

From Eq.(2.6),  the field strength in the weak field case is derivable as:  
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Clearly, this field changes from attractive to repulsive at a particular radius,  

    ( ) ( )3/1
a /r3r 0     .     (2.8) 

However, as radius r increases to infinity, there is no theoretical limit to the repulsive 

force in Eq.(2.7) even though the field energy density 4
4T  falls towards zero. A precise 

reach of gravitons to a maximum radius rm would be more realistic. For overall 

consistency, this will be chosen so as to set the total gravitational field energy at 

(½Mc2), as in [7, Eq.(13)] but now by only integrating 4
4T  from r0 to rm . Such field 

energy conservation and limitation could be achieved by steadily strengthening each 

graviton prior to rm. To implement this, 2 will be modified to: 
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Intuitively, ra  in Eq.(2.8) should be related to maximum radius rm ; for example, (ra = 

rm/2) in Eq.(6.9).  Upon introducing this latest expression for 2 into Eq.(2.4a), we find 

that the field energy density is more complicated than the simple form of Eq.(2.5), but 

remains independent of , namely: 



 4 

   













+

−
+=










4

3

33

2

4

2
4
44 r

r

r

2

)rr(

r

r

r
T

c

G
8 0

0

00

m

 .            (2.10a) 

At the maximum radius (r = rm) this will approximate to: 
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The exact field strength is derived from Eq.(2.9) as: 
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which will approximate to Eq.(2.7). 

Thus,  describes how the graviton field inherently changes its force character 

smoothly from attractive to repulsive, as revealed by introducing Eq.(2.8) into Eq.(2.7), 

with (r0 = GM/c2): 
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The first term on the right represents the flux density of gravitons through a spherical 

surface. Then the negative term suggests that there is an internal mechanism for each 

individual graviton, which determines the strength of repulsion at any radius from ro 

through ra to rm . Graviton propagation velocity is maintained at the velocity of light 

throughout, since ( 4
4

1
1 TT = ) always.  And for compatibility, we will presume that  is 

always proportional to ro , then ra is constant and the gravitational force is proportional 

to mass. If this were not so, then the force in Eq.(2.7) could change sign simply by 

making ro  very small. The viable choice is ( = 3r0 /ra
3 ) from Eq.(2.8),  see Eq.(6.12). 

 

3.   Interior field of a static spherically-symmetric body 

3.1      Solid static spherical body 

Einstein’s equations (2.4) may be solved to get the interior gravitational field for 

a solid sphere of uniform material density  and zero pressure. Given the essential 

requirement of compatibility with Newtonian gravitation, then Eq.(2.4a) has to yield the 

metric tensor component: 
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so that field strength is given by: 
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These require )/2cT( 24
4 ρ−= , which represents the energy density of an attractive field. 

According to Eq.(3.1), gravitational potential increases outwards from the centre, and 

density  could apparently be decreased to make the field repulsive for an arbitrary  . 

However, the constant  represents a repulsive modification to the existing attractive 

field as in Eq.(2.8) and will be proposed to depend on the total body mass Mx ,thus: 
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using (r0 = GMx /c
2). Then, for )rρ)3/4(M(

3
xx =  in general, we have from Eq.(3.2) 

the field at any radius r within maximum radius rx : 
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which is compatible with Eq.(2.12) for (r = rx). Zero field occurs everywhere in the bulk 

when the sphere radius rx is increased to ra . If rx is increased further, the whole field 

becomes repulsive, with strength dependent on position r within the body. 

 Now, compatibility with Newtonian gravitation only resulted from the use of 

line element Eq.(2.1) in Eq.(2.4) by putting 
T  in terms of the field energy/momentum 

density (- c2/2). Had we used the mechanical density and pressure expressions, 
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1 cρTand,pTTT =−=== ) with Eq.(2.1) in Einstein’s equations, then we 

would have had the incompatible result [8, p246]: 

 

    22
oo2

r
3

rρ
c3

G8
1e


−


−=−  ,    (3.5) 

which describes increase in potential upon climbing towards the centre, that is anti-

gravity. A cosmological model cannot be built upon this foundation. 
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3.2   Fluid static spherical body 

When pressure is not negligible, the material needs to be considered as a 

“perfect fluid”.  Then in view of the isotropic nature of hydrostatic pressure, the line 

element for a spherically-symmetric body is expressed in isotropic form [8, p 244]: 

  ( ) 22222222 dtedsinrdrdreds  +++−= .  (3.6a) 

The previous line element Eq.(2.1) will not lead to sensible physical results compatible 

with Newtonian theory, nor approximate to Eq.(3.1) in the weak field.  For the energy-

momentum tensor components we take the local hydrostatic pressure and constant local 

mass density, 
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Solution of Eq.(3.7c) produces the metric tensor component: 
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which is compatible with Eq.(3.1) in the weak field if the arbitrary -term here is 

negative and doubled in size. The field strength is also compatible with Eq.(3.2), when 

given by: 
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Therefore, this isotropic form of solution could be suitable for describing an isotropic 

universe with effective pressure. 
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4.  Standard cosmology model  

 Now that the phenomenon of gravitational repulsion has been explained as an 

inherent property of the gravitons from all mass particles, it is possible to manage the 

observed universal acceleration. First consider the Standard Model in order to identify 

its numerous problems prior to developing an improved model in Section 5. Commonly, 

the Robertson-Walker metric is employed: 
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yet according to the analysis above leading to Eq.(3.5), problems could arise regarding 

compatibility with Newtonian gravitation. We shall therefore use the metric proposed 

by Tolman [8, Eq.(150.2)], explicitly for isotropic coordinates. In more practical units 

this can be written: 
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where a(t) is a universal scale factor, and t is local/cosmic time. Constant k may be 

negative, positive, or zero for an open, closed, or critical universe, respectively. The 

components of the energy-momentum tensor are to be in terms of local pressure and 

material density: 
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Upon applying these expressions to Einstein’s field equations [8, Eq.(98.6)], we obtain: 

   2
2

2

2

2
c

a

a

a

a
2

a

kc
p

c

G8
−








+








+=


−


,   (4.4) 

          
3

c

a

a

a

kc

3

G8 22

2

2 
−








+=

 
   .    (4.5) 

Manipulation of these gives the Friedmann- Lemaître equations;  
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where H is the Hubble-Lemaître parameter. These three expressions happen to be the 

same as they would have been for Eq.(4.1), but Eq.(4.2) ensures consistency with 

Newtonian gravitation. 

 To realise these expressions in physical terms, we will now let a(t) in Eq.(4.2) 

take units of length, and leave r dimensionless. In addition, a nominal mass (MU = 

(4/3)a3 = 1.085x1052 kg) for the whole universe and the observed values in Eq.(4.10) 

will be used. Then Figure 1 depicts the expansion outer radius, velocity and acceleration 

as a function of time; ( ‘a’ is explicitly taken to represent the radius of the material 

universe, and  is governed by MU as in Eqs.(3.3) and (4.16)). Clearly, ‘a’ appears 

feasible but super-luminal expansion velocity can exist in this model universe, albeit 

Einstein's equations are valid up to the velocity of light; see Davis & Lineweaver [9]. 

 

Figure 1.   Friedmann- Lemaître model: variation of expansion velocity relative to the 

velocity of light /c)a( , radius (a, Gly), and acceleration (ä) with universal time (t, 

Gyr). Universal mass has been set at (MU = (4/3)a3 = 1.085x1052 kg), with the 

change from deceleration to accelerated expansion occurring at radius (az = 6.08Gly) 

corresponding to epoch (tz = 7.15Gyr) from the big-bang. The present age of the 

universe is (t0 = 13.7Gyr) and its radius is (au = 10.6Gly). 
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 In a review article by Coles [10], it is shown how Eq.(4.6) can be conveniently 

expressed as: 

    ++ km1    ,     (4.9) 

where these components can take the (WMAP + BAO + SN Mean) observed values as 

representative, from Komatsu et al [11]: 
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Consequently, we can evaluate  and  using the Hubble-Lemaître parameter value (H0 

~ 70.5kms-1Mpc-1): 
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Given these values, Eq.(4.6) may be solved to get the expansion age of the universe, t0. 

For negligible pressure and a universal mass (MU = (4/3) a3), we have: 
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It is also possible to calculate the time when universal deceleration changed 

smoothly to acceleration. The general time /radius relationship is given by: 
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and from Eq.(4.7), when (ä = 0) at radius (a = az ), and (p ≈ 0), we have: 
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Therefore by substitution, the zero-field time is governed by the Hubble-Lemaître 

parameter and cosmological constant: 
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In Eq.(4.16), the value of MU depends on radius (az) which will be set equal to 

the proposed value, 6.082Gly in Section 6.2. Thus the universal mass is (MU = 

1.085x1052 kg), then given the present density from Eq.(4.12), the current universal 

outer radius must be (au = 10.60Gly). 

It is possible to calculate the observed redshift of any supernova which occurred 

at the time of zero-field, (tz = 7.15Gyr). From Eq.(4.10) we have: 
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which with the introduction of Eq.(4.16) yields a redshift: 
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This redshift is independent of our (az) value chosen from Eq.(6.9) because MU and (au) 

compensate for variation of (az).  

In conclusion, the standard big-bang model of the early universe has always had 

non-Einsteinian super-luminal expansion of the spacetime manifold, but now the 

expansion has to be super-luminal at large radii. The ethereal nature of spacetime 

originating at the big-bang singularity with inflation phase is inexplicable given that 

there was no empty space around the primeval singularity before the big-bang, yet 

infinite space and enough material were instantaneously created to produce the observed 

flat universe. There has been a problem with energy conservation, and inherent flatness- 

and horizon-problems; now continuous creation of dark energy throughout infinite 

space is required. All these serious problems need to be precluded by deriving an 

accurate model. 
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5 External coordinate observer cosmology: the ECO-model 

The above standard cosmology model has not included the possibility that our local 

observer's time might be dilated by the universal expansion velocity. Such time dilation 

could make sub-luminal velocities appear super-luminal. We shall now consider the 

universal expansion from the point of view of an external coordinate observer located at 

rest outside of the material universe, in field-free Minkowski spacetime. In order to 

satisfy Einstein’s most basic relativity principles and eliminate the problems, this model 

will be controlled by the velocity of light while excluding the cosmological principle. 

The big-bang phenomenon is regarded here as an explosion of a primeval particle 

into pre-existing empty space, at some arbitrary origin of coordinates.  Before exploding 

at the velocity of light, this particle of finite mass and complex internal structure was in 

stable equilibrium. Thus the horizon-problem has been removed by prescribing a 

granular primeval particle in equilibrium, which disintegrated to produce a viscous 

fireball. The current material universe now occupies a spherical volume which is still 

expanding into free space on the coordinate-frame time scale and location referred to 

the big-bang event. This obviously differs from the interior local universal time scale 

used in the previous section. Our own position within this material volume is 

unspecified and not clearly within sight of the material surface. Other regions of space 

beyond ours may be empty or occupied by separate material structures at various 

distances in a multiverse scheme. Such a simple model appears compatible with the real 

world, being supported by a variety of observations and describable by Einstein’s 

general relativity theory. 

 

5.1 The metric 

        The metric for the ECO-model is to be: 
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As in Section 4, a(t) is initially a scale factor, but it will now take real units of radial 

length from r and represent the maximum radius of the expanding material universe: 
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for radius ))t(RR(  , and )0vc(  . The primeval particle radius R will be 

defined in Section 6. Coordinate-frame time t is that measured by an external observer 

situated at rest in field-free space far outside of the expanding universal material. Local 

time  for a co-moving observer is therefore dilated, due to the velocity of expansion, as 

[d = dt(1-v2/c2)1/2 ]. Upon introducing metric Eq.(5.1) into Einstein’s field equations  

[8, Eq.(98.6)], we get Friedmann-Lemaître-ECO equations for an external observer: 
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And we shall specify a conserved universal mass for the expanding sphere of maximum 

radius R: 
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where  is the average matter density in the matter dominated universe, and the pressure 

is relatively small (3p <<  c2). The expansion velocity and deceleration are controlled 

by the velocity of light, see Figure 2, where the general coordinate time versus radius 

relationship has been calculated numerically (for negligible p and k ): 
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If d  is substituted into Eqs.(5.3)-(5.5) in place of dt, then they look like Eqs.(4.6)-

(4.8), and it follows that  , k and  must take the same local values as previously. 

 The Hubble-Lemaître parameter should now be defined as: 
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so the left side of Eq.(5.3) may be written as H
2 . Then  and m will take the same 

numerical values as previously, simply by changing H0 to H0 in Eqs.(4.10)-(4.12). 

Local time   measured by a co-moving observer is analogous to Eq.(4.15) as: 
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and the corresponding local age of the universe is now analogous to Eq.(4.14): 
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Figure 2.   ECO-model: the variation of expansion velocity relative to the velocity of 

light )c/R(  , radius (R, Gly), and acceleration )R(  with coordinate-frame time (t, Gyr). 

Universal mass is (MU = 1.085x1052 kg), with the change from deceleration to 

accelerated expansion occurring at radius 6.08Gly corresponding to 9.59Gyr from the 

big-bang. The present coordinate age of the universe is 17.5Gyr, and its radius is 

10.6Gly. For comparison, the effect of a finite k value (±0.1) is also shown. 
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It is time   which has governed all atomic processes including star and galaxy 

evolution rate. Consequently, the graphs and velocities shown in Figure 1 represent 

transformations of the real fundamental values in Figure 2, due to time-dilation. That is, 

the 13.7Gyr quantity of evolution, which we observers have experienced according to 

our clocks, has really taken 17.5Gyr to perform. Evolution rate began low at t ~ 0 and 

grew to a maximum rate at t ~ 9.59Gyr, then declined thereafter. Co-moving local 

observers cannot be conscious of rate variation but can understand why the Standard 

Model has so many problems of interpretation. 

Figure 2 shows how minimum expansion velocity, and zero acceleration in 

Eq.(5.4), occurred when 

    
3

z

2

a

GM

3

c U=


   ,     (5.10) 

where az = 6.082Gly, and MU = 1.085x1052kg,  as in Sections (4) and (6.2). The effect 

on the velocity of finite k values (−0.1, +0.1), is also demonstrated such that little 

difference occurs near the origin because the primeval particle’s internal circulation was 

at the velocity of light before the expansion began. The term kc2 in Eq.(5.3) is observed 

to be comparatively small, and if negative it could be attributed to an extra impulse of 

KE from the reactive fireball, or if positive to drag by the cohesive constituents of the 

particle which may have led to great strings of galaxies. If k really is zero, the total 

energy of the expanding matter is MUc2, after any radiation has subsided. This total 

energy is divided between the rest mass and kinetic energy because gravity is an 

inductive force field, see [7]. Consequently, kinetic energy was steadily converted into 

rest mass as far as radius az but thereafter the repulsive -term has reversed the trend 

and induced conversion of mass to kinetic energy.  

 The primeval particle described in Section (6.1) had all its material in viscous 

thermodynamic equilibrium while circulating coherently at velocity c, before exploding 

and converting to mass plus radiation which would have been mostly lost into space 

ahead of the expanding mass. No inflationary phase is necessary because the expansion 

is moderated by the velocity of light, allowing time for equalisation of the radiation 

temperature.  
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 In Eq.(5.3) the expansion velocity does not overtly depend on pressure p, but by 

substituting  from Eq.(5.6) we can see how pressure shares some of the potential 

energy: 

  ( ) ( ) 2
2

22

2

222
R

3

c
kc

R

GM2
pR

c

G8
c/v1/R U 

+−=


+−   .          (5.11a) 

In Eq.(5.4), p contributes to the gravitational force because pressure is stored energy. 

Pressure terms in these equations apply to gravitational processes in a fluid before 

separation into contactless particles. According to Figure 2, the expansion velocity 

)c/R(    at the beginning  decreases  almost linearly with radius R. Therefore, substitute 

(v = c − v) into Eq.(5.11a) with (3p <<  c2, k and   ), then separate the parts to 

get: 

    R
GM4

c

c

v

U

2




   ,             (5.11b) 

and the pressure decreases with R2 : 
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2 R

1
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c

c
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  .             (5.11c) 

Thus for small R, the pressure term in Eq.(5.11a) is reduced to a constant kinetic energy 

factor (c2), small relative to the preceding term: 

  ( ) ( ) 2
2

22222
R

3

c
kc

R

GM2
cc/v1/R U 

+−+− .           (5.11d) 

 

5.2 Cosmological redshift  

 The standard model calculation of redshift shows that measured light 

wavelengths are increased in proportion to the scale factor a(t), see Tolman [8, p389] 

and Narlikar [12, p113]. We need to see what an external coordinate observer in the 

ECO-model would calculate for the redshift. 

 According to the line element Eq.(5.1) with Eq.(5.2), for a null geodesic we get: 

   ( )
)4/kr1(

dr)t(R
c/v1cdt

2

2/122

+
=−    .    (5.12) 
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This leads to the redshift equation: 

   z1
)t(R

)t(R

)c/v1(tc

)c/v1(tc

1

0

2/122
11

2/122
00 +==

−

−
 ,   (5.13) 

where (t1) is the coordinate time of photon emission, and (t0) the coordinate time of 

detection. The first quotient in Eq.(5.13) is also equal to local redshift )/( 10    and 

the second term is the ratio of scale factors seen by a coordinate or local observer. Thus 

the theoretical coordinate redshift defined as )t/t( 10  involves (v0, v1) and differs from 

the local redshift. However, we observe local redshift )/( 10   as for the standard 

model; for example, a supernova which occurred at the time of zero-field has redshift 

given by the ratio of (R(t0) = 10.6Gly), and (R(t1) = 6.08Gly), as in Eq.(4.19). Regarding 

photon energy, the decrease during its travel from source at R(t1)  to detection at R(t0) 

may be due to interaction with the universal copious graviton field; but this interaction 

cannot cause much photon scattering because distant galaxies are still discernible. 

5.3    Luminosity distance 

 The luminosity distance dL derived by Carroll, Press & Turner [13] for the 

standard model may be adapted for the present model, wherein Hτ0 ≡ H0. When k = 0, 

and M +  = 1, and Z = 1+z, we can get from [13, Eqs.25+23]: 

   

( )
+

=

Z

1
2/13

L

M
0 Z

dZ

H

cZ
d    .    (5.14) 

Then for dL in megaparsecs, the predicted distance modulus is: 

   25dlog5 Lp +=    .      (5.16) 

Given H0 = 70.5km-1Mpc-1 , these equations will produce the same fit to the data 

gathered by Riess et al. [14, Figure 7]. 

5.4 Flatness problem 

 This problem has effectively been removed for the new model because the 

primeval particle is well specified in mass and internal mechanism. Let the density 
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parameter be given as usual by )ρ/ρ( cM = , where critical density c exists for (k =  

= 0). Then from Eq.(5.3), we can derive: 

   ( )1v/ck)1( 22
M −=−+     .    (5.17) 

According to Figure 2, (c/v) is always between 1.0 and 2.0 and therefore (M − 1) 

approaches zero in a steady manner as ( 0and0R →→  ). There is no problem 

with this because mass is conserved in Eq.(5.6), and kc2 is a constant amount of energy 

which becomes relatively unimportant as ( → RR ) . The gradient of Eq.(5.17) 

remains finite: 

   k2
v

c
k2

)c/v(

)1(

)cv(

3
M −→








−=



−

→
  .    (5.18) 

This contrasts with the standard model, wherein (c/v) approaches zero asymptotically as 

( 0R → ), thereby requiring great accuracy of ( 1M → ) for an un-specified singularity. 

6. Properties of the primeval particle and gravitons 

6.1 Primeval particle   

 The size of R in Section 5.1 can be specified if the primeval particle was of 

mass (Mu ≈ 7.748 x 1052 kg), such that a gravitational strength factor may be 

expressed as: 

   







=





























=

G

E

137

1

Gm

e

c

e

c

mGM

2

22
u


    ,   (6.1) 

where (m = mp/9) is the proton-pearl mass [15],   is Planck’s constant/2π, 

( 137/1c/e2  ) is the fine structure constant or electromagnetic strength factor, (e/m = 

E1/2) is the electronic charge/mass ratio, and (E/G = 4.1659x1042). The primeval mass 

relative to a proton-pearl mass is then: 

   80
22

u 10169.4
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E
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m

m
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=



 .   (6.2) 

This primeval mass Mu exploded to yield free radiation plus the residual universal 

mass, (MU = 1.085x1052kg) used in Sections 4, 5, such that (MU/ m = 5.838 x 1079).  
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A pearl classical electromagnetic radius would be given by 

   m103812.1cm/er 1722
o

−==     ,   (6.3a) 

whereas a gravitational radius for mass Mu may be defined as 

   Gly082.6c/GMR 2
uu ==     .    (6.3b) 

These characteristic parameters are connected by 

   )G/E(rR ou =     ,      (6.4) 

therefore we will postulate that the primeval particle of mass Mu was like a 

supermassive-pearl of radius ( orR = ), although its charge and structure were not 

those of the proton-pearl. Such a particle with its surrounding gravitational field 

required coordinate space to contain it and whatever else existed, such as its twin anti-

matter particle or other primeval particles in a multiverse. This is different from 

Lemaître's hypothesis of the 'primeval atom', which proposed that space and time only 

came into being following disintegration; see Godart & Heller [16]. 

 According to our proton model [15], the supermassive-pearl might have 

consisted of helical loops of matter comprised of many smaller spinning elemental 

seeds, all tied together by a strong viscous gluon field. During disintegration, the seeds 

started decaying into radiation plus lesser particles but the pressure generated between 

seeds by deflagration caused segregation and prevented total conversion during the 

fireball expansion and cooling stage. Therefore, separate matter volumes remaining 

from decaying seeds survived the fireball. The viscous gluon material first helped 

equalise overall density, but then to initiate great strings and super-clusters of galaxies 

with large-scale velocity flow, plus low density voids. Consequently, observed great 

structures did not have to form entirely from accreted homogeneous matter. Early 

structure formation was thereby amplified above the standard model; see 

Perivolaropoulas [17]. Indeed, such great structures did not occur in the Millennium 

Simulation produced by Springel et al. [24].  

 Low-order multipole maps derived by Bielewicz et al. [18], Eriksen et al. [19], 

and Tegmark et al. [20], may be interpreted in terms of the hot-spots due directly to the 

surviving matter volumes. Some evidence of vorticity and toroidal field might 

eventually be detected in the cosmic microwave background anisotropy maps from 

WMAP; see Jaffe et al. [21] and de Oliveira-Costa et al. [22]. Fine granularity in the 
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form of minor seeds and gluons would help account for some correlation between the 

CMB anisotropy and galaxy clusters; see Cole et al. [23]. The observed small degree of 

anisotropy is all that remains of granular structure, so thermalisation of the cosmic 

microwave background radiation involved multiple scattering of the radiation by 

photons, matter, and dark matter. In the next section we will show how 86% of the 

primeval particle mass must have been completely lost from the fireball as radiation into 

surrounding free space. 

The above segregation of seed structure could account for dark matter which 

survived the fireball without conversion into normal matter; but even now, dark matter 

falling into stars might convert to normal matter, or simply convert to kinetic energy 

then radiation. 

 

6.2 Evaluation of rm , ra and Λ 

For simple interpretation of Eqs.(2.4) to (2.12), the cosmological constant  

should depend on the central mass M through r0 as in Eq.(2.8); but rm and ra should be 

properties of the fundamental particles constituting M. An estimate of graviton 

maximum radius rm may be derived from proton theory [15] to satisfy astronomical 

observations. 

First of all, for an electron, the electric field strength relative to the gravitational 

field is given by: 

(e2/Gm2) = (E /G) ≈ 4.1659x1042 .    (6.6) 

An application of this ratio is possible if the electromagnetic field from an electron also 

ends at radius rm , rather then extending to infinity.  Then the electric field energy saved 

beyond rm is given by: 
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  .    (6.7a) 

This saving could conveniently provide the total gravitational field energy for the 

electron, which is emitted from an effective internal source radius rs . Namely from 

Eq.(2.10a) we integrate field energy density 4
4T and propose: 
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    .    (6.7b)  

Consequently, by equating Eqs.(6.7a) and (6.7b), the ratio in Eq.(6.6) may be expressed 

as (rm /rs = E/G) for the electron. 

Now if most of the universal mass comprises proton-pearls in matter and dark 

matter, we will relate rs and rm to pearl dimensions. Thus our proton model [15] consists 

of 9 'pearls' of mass (m = mp /9); and a pearl electromagnetic radius has been given in 

Eq.(6.3a). Then a pearl graviton is proposed to have a wavelength )r2( oG  = , which 

will be taken as rs the characteristic source dimension. The graviton’s maximum extent 

is therefore to be equal to (E/G) wavelengths: 

( ) Gly21.38G/Er2)G/E(r om G ===  .  (6.8) 

Further, the radius at zero acceleration will be proposed arbitrarily as: 

( ) Gly082.6G/Er2/rr oma ===  ,    (6.9) 

which is also the theoretical gravitational radius Ru of the primeval particle Eq.(6.3b). 

This radius has also been employed previously as (az) in Eqs.(4.16) and (5.10) such that 

the current universal mass (MU = 1.085x1052kg) follows from the measured value for  

in Eq.(4.11). If the original primeval mass was (Mu ~ 7.748x1052kg) as in Eq.(6.1), 

then 86% of the mass must have been lost from the fireball material as radiation. This 

leaves a 14% portion of surviving mass, which is not a specified value for the future of 

the universe. For example, the expansion velocity at the lowest point az is not sensitive 

to variation of (MU / Mu), thus from Eq.(5.3) with Eq.(5.10) we can derive: 
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.     (6.10) 

 It is interesting to calculate a real value of the repulsive field. The universal 

cosmic repulsion field term at radius az is from Eq.(5.4): 

( ) 2102
zz

2 ms10173.2a/GMa3/cF U

−−
 == .          (6.11a) 
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For comparison, the gravitational field in a spherical galaxy, of included mass 1011
M  

within a 10kpc radius, is of the same order: 

   210

2
ms10x4.1

r

M10G
F

11
−− 


= .             (6.11b) 

 Overall, according to these different solutions, the cosmological constant is 

proportional to the source mass which generates it, as given by: 

   
3

ao
3

a
2 r/r3rc/GM3 ==    ,    (6.12) 

where ra depends upon the type of source particle (eg. proton-pearl, electron). The 

change in graviton behaviour from attraction to repulsion may be understood as a 

change of helicity within its structure due to longitudinal stress, see Figure 3. 

 

                          

 

  Figure 3.   Pictorial representation of a graviton's reversal of 

  helicity/attraction due to internal stress; cf. tendril of passiflora. 

 

Gravitons emitted by electrons are proposed to have a wavelength 

)r2( oeGe = , where )mc/er( 22
oe =  is the classical electromagnetic radius of an 

electron. This will be taken as effective source radius for the gravitational field, so the 

maximum extent is equal to (E/G) wavelengths: 

Gly7796)G/E(r Geme == .     (6.13) 

The corresponding radius at zero acceleration will be: 

Gly12412/ra meze == .     (6.14)  

Clearly these dimensions might allow gravitational interaction between members of a 

multiverse; although the main component of the gravitational field from our primeval 

particle Mu of radius ( orR = ) was probably limited in range by Eq.(6.8). 
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7.   Cosmic flow and variation of the fine structure constant 

7.1 Cosmic flow 

 Cosmic flow, dark flow, has recently been observed and looks real, see [25] [26] 

[27]. Its magnitude implies that it must be due to a distant mass attracting large clusters 

of galaxies in a particular direction. This mass appears to be beyond our own universal 

material and is not visible to us. 

 Our model only describes a single primeval supermassive-pearl having complex 

circulating structure, which would account for early seeding and large-scale structure in 

this universe. On the other hand, there could have existed a neighbouring pearl or anti-

pearl to produce an extra (anti-)universe not yet visible to us. The gravitational field of 

our supermassive-pearl existed before it disintegrated into the Big Bang, so any other 

universes will also have attracted gravitationally to affect our expansion throughout. 

Today this process might reveal itself as flow of galaxy clusters against the general 

cosmic expansion. Given the proposed complex primeval particle structure [15], the 

cosmic flow may be branched into several directions, appearing as rings or arcs in the 

cosmic microwave background [28]. 

 

7.2   Variation of alpha () 

 The apparent variation of the fine structure constant reported by Webb et al [29] 

might be attributed to the various absorption lines originating from inhomogeneous 

clouds with different turbulence and radial velocities. In addition, the spectrograph is 

sensitive to variable illumination of the slit by the QSO scintillating image position, 

plus variable vignetting, see Suzuki et al [30]. This problem could be attenuated by 

using a light-pipe image diffuser to mix the QSO light, and reference source, into a 

uniform source on the slit, see Wayte et al [31] [32]. Intuitively, the tiny apparent 

variation in  over 5Gyr is indicative of zero actual variation. One specific derivation of 

natural  makes it a constant [33], which can only be increased in high pressure 

environments like e+e− collisions, [34]. 
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8.   Conclusion 

 Repulsive gravity at large distances has been accommodated within the universal 

solution of Einstein’s equations by introducing a cosmological constant  which 

represents inherent graviton-graviton repulsion at large radii, rather than dark energy. A 

cosmological model for the external coordinate observer was then developed to replace 

Friedmann-Lemaître cosmology with its theoretical problems. It was logically necessary 

to limit the graviton field extent from matter to a definite maximum radius.  This radius 

was related to proton structure and led to an estimated onset of universal repulsion at 

7.15Gyr (local time) after the big-bang, or 9.59Gyr in the coordinate-frame, when the 

universe radius was 6.08Gly. The present age of the universe is 13.7Gyr (local time), 

corresponding to 17.5Gyr coordinate time. Evolution of stars and galaxies is governed 

by the local time rate so cosmological redshift and luminosity distance take the values 

found for the standard model. The horizon-problem has been removed by prescribing a 

granular primeval particle in equilibrium, which disintegrated at the velocity of light to 

produce a viscous fireball. The singularity problem is thereby redundant, and the 

flatness problem is no more. Observations of the Hercules–Corona Borealis Great GRB 

Wall and Huge-LQG plus other massive structures helped justify abandoning the 

cosmological principle. 
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