
Interpolating Values in Code Space

Dr. Adam Bourne

� a.bourne@physicist.net

Abstract

A method is described for interpolating un-sampled values attributed to points in code space. A
metric is used which counts the number of non-equal corresponding indices shared by two given
points.

A generalised interpolation equation is derived for values ascribed to nodes on undirected
graphs. The equation is then applied specifically to values at points in code space. This interpo-
lation equation is then solved in general for a set of given sampled values in the space.

1 Introduction

This paper lays out a clear method for predictively interpolating values associated with points in
code space given at least one sampled value for other points as a training set. Possible applications
include in AI where strings of symbols are classified into various types and then predictions are made
for untrained examples. Another application would be predicting values for unfilled cells in database
entries from the other entries.

Solving the interpolation equation analytically has two main advantages, the obvious one being the
exactitude of the solution. In addition, an iterative numerical solution using the sampled points as
seed values would be prohibitively costly. For the code space described, each iteration would create
an ever increasing ball of values around each sampled point; soaking up memory, with ever increasing
computational times for each iteration state.

The method described here reduces the solution to a simple linear problem and for N training
examples requires the computation matrix determinants of rank N .

2 Interpolating values on an undirected graph

2.1 Defining terms

We consider an undirected graph, G = G(V, E), with the set of vertices V and edges E . Each vertex
can be assigned an associated scalar value ρ = ρ(v ∈ V). The set of nearest-neighbour vertices of a
given vertex v are denoted by V(v).

A measure of how similar a vertex value is to the vertex values of its nearest neighbours can be
defined as the mean difference squared.

σ(v) =
1

V

∑
v′∈V(v)

(ρ(v′)− ρ(v))2 (1)

where V ≡
∑
v′∈V 1 is the total number of vertices. It is assumed that at least one of the vertex values

is known from sampling.

2.2 Derivation of interpolation equation

The interpolation equation is the condition arising from minimising the mean nearest neighbour mea-
sure over all the vertices which are un-sampled, V, in the graph G. Formally this can be written,

δ
∑
v∈V

σ(v) = 0 (2)

1

mailto:a.bourne@physicist.net?subject=Your%20paper%20'Interpolating%20Values%20in%20Code%20Space'&body=Dear%20Dr%20Bourne,%20


Performing this optimisation yields the following equations on G. ∂

∂ρ(v)

∑
v′′∈V

σ(v′′) ≡ 2V
∑

v′∈N(v)

(ρ(v′)− ρ(v)) = 0

 (3)

⇒ ρunsampled(v) =
1

N(v)

∑
v′∈V(v)

ρ(v′) (4)

where N(v) =
∑
v′∈V(v) 1 is the number of edges emanating from vertex v. Notice that this is simply

the statement that un-sampled vertex values are interpolated to be the mean of their nearest-neighbour
vertex values.

Of course, the sampled vertices can take arbitrary vertex values, so would not generally satisfy this
equation. In general, a set of independent values assigned to all the vertices in a graph {ρ(v)} can be
uniquely defined by assigning each vertex a value Q(v), given by the expression,∑

v′∈V(v)

(ρ(v′)− ρ(v)) = Q(v) (5)

where {Q(v)} is some set of undetermined values, which we shall call the pseudo-charge distribution
associated with the vertex values {ρ(v)}. Equation (5) is now the general interpolation equation over
the entire graph, with Q(v) = 0 for the un-sampled vertices. This can be rewritten in terms of the
adjacency matrix [3], Gv,v′ , defined by,

Gv,v′ ≡
{

0 vertices v and v′ share no edge
1 vertices v and v′ share one edge

}
(6)

in terms of which the interpolation eqution is,∑
v′

Gv,v′(ρ(v′)− ρ(v)) = Q(v) (7)

and the number of edges emanating from vertex v is N(v) =
∑
v′ Gv,v′ .

2.3 Pseudo-charge neutrality

Theorem 2.1. For any graph G, the total pseudo-charge,
∑
v∈V Q(v) = 0

Proof. Summing over the pseudo-charges associated with G,∑
v

Q(v) =
∑
v,v′

Gv,v′(ρ(v′)− ρ(v)) ≡
∑
v′

ρ(v′)N(v′)−
∑
v

ρ(v)N(v) ≡ 0

Hence all possible distributions of {ρ(v)} have vanishing overall pseudo-charge.

3 Application to code space

3.1 Description of code space

Consider the special case of the graph’s vertices forming the points in a code space (Σ, d) [1, pp.
125-133], with each vertex now being labelled by a total of D integer indices (m1,m2, · · · ,mD), such
that,

v →m = (m1,m2, · · · ,mD) , 0 ≤ mq ≤ µq − 1 (8)

We then define the set of points in the code space by, Σ : m ∈ Σ ⇐⇒ 0 ≤ mq ≤ µq−1 ∀q : 1 ≤ q ≤ D.
Notice that the number of permissible values for mq is µq, which depends on its position index, q.

Vertices in the graph, G(V, E) now map onto this D-dimensional code space. Traversing an edge
from one vertex (point) to another involves changing exactly one index mq → m′q 6= mq for a given

2



q. A metric will be used that counts the minimum number of edges that can be crossed in traversing
between two nodes, namely,

d : d(m′,m) =

D∑
q=1

δm′
q,mq

(9)

The left-hand side ‘gradient’ term in (7) can now be rewritten, with the set of all nearest neighbours
to (say) m being ∪Dq=1 ∪m′

q 6=mq {m : mq → m′q}

∆m ≡
∑
v′

Gv,v′(ρ(v′)− ρ(v)) =

D∑
q=1

µq−1∑
m=0
m 6=mq

(
ρm:mq→m − ρm

)
=

D∑
q=1

µq−1∑
α=1

(
ρm:mq→mq+αmodµq − ρm

)
(10)

where in the final expression the incremental index α sums over ‘rotations’ in each mq in succession.
NB note α 6= 0 as m : mq → mq + 0 modµq ≡m is not a nearest neighbour to m.

3.2 The rotation operator

We can define a rotation operator, R, write down its eigenfunctions and re-frame the gradient operator
in terms of it,

R : Rf(m) = f(m+ 1 modµ) (11)

which has the eigenfunctions
{
φαµ(m)

}
and corresponding eigenvalues {λα}, given by,{

φαµ(m) = e
2πiαm
µ , λα = e

2πiα
µ

}
(12)

3.3 The gradient operator

A single-index gradient term can be rewritten
∑µ−1
α=1 (ρm+αmodµ − ρm) = ∆ ρm, where we have defined

the operator,

∆ =

µ−1∑
α=1

(Rα − 1) (13)

of which the
{
φαµ(m) = e

2πiαm
µ

}
are eigenfunctions with respective eigenvalues,

Lα =

µ−1∑
β=1

(
e

2πiαβ
µ − 1

)
=

µ−1∑
β=0

e
2πiαβ
µ − 1− (µ− 1) = µ (δα,0 − 1) (14)

NB notice L0 = 0. Now we can construct a Green’s function [2] for the gradient operator. A truncated
Green’s function of ∆, centred on m = 0 is,

g(m) =
1

µ

µ−1∑
α=1

φµα(m)

Lα
(15)

where the sum is truncated and does not include the term for α = 0 as this would create a singularity.
To check this is correct one writes,

∆ g(m) =
1

µ

µ−1∑
α=1

∆φµα(m)

Lα
=

1

µ

µ−1∑
α=1

φµα(m) =
1

µ

µ−1∑
α=1

e
2πiαm
µ = δm,0 −

1

µ
(16)

which is a point pseudo-charge in a constant neutralising background, which is a result of truncating
the Green’s function. Notice the solution has a vanishing overall net charge as stipulated by theorem
2.1.

3



3.4 Multidimensional code space

Generalising to the D-dimensional code space we define the rotation operators {Rq},

{Rq : f (m = {mj}) = f(m : mq → mq + 1 modµq)} (17)

with the corresponding eigenfunctions,

φ{αj}(m) =

D∏
q=1

φαq (mq) =

D∏
q=1

e
2πiαqmq

µq (18)

Then the interpolation equation gradient is,

∆ =

D∑
q=1

∆q =

D∑
q=1

µq−1∑
β

(
Rβq − 1

)
(19)

which has the corresponding eigenvalues,

L{αj} =

D∑
q=1

Lαq =

D∑
q=1

µq
(
δαq,0 − 1

)
(20)

Noting that this expression is vanishing for {αj} = 0 ≡ {0, 0, 0, · · · }, then the truncated Green’s
function can be constructed as follows,

g(m) =
1

V

{µq−1}∑
{αq=0}
{αq}6=0

φ{αj}(m)

L{αj}
(21)

where V ≡
∑

m 1 =
∏D
j=1 µj is the total number of micro-states or in the graph model, vertices.

Checking this corresponds to a unit pseudo-charge in a uniform neutralising background,

∆ g(m) =
1

V

{µq−1}∑
{αq=0}
{αq}6=0

∆φ{αj}(m)

L{αj}
=

1

V

{µq−1}∑
{αq=0}
{αq}6=0

φ{αj}(m) =
1

V

{µq−1}∑
{αq=0}

D∏
j=1

e
2πiαjmj

µj − 1

 (22)

=

D∏
j=1

(
1

µj

µq−1∑
α=0

e
2πiαmq
µq

)
− 1

V
= δ{αq},0 −

1

V
(23)

The eigenvalues in (20) have terms in the summand that only discriminate between αq = 0 or
αq 6= 0. So the expression (21) can be simplified by separating the terms in the sum over the {αq}
into incidences such that αq = 0 and αq 6= 0 are explicitly separated out. The summation operator,

{µq−1}∑
{αq=0}
{αq}6=0

× =

D∑
n=1

D∑
j1<···<jn=0

{µq−1}∑
{αq=0}

∏
k∈j

δαk,0
∏
k/∈j

δαk,0× (24)

where n is the number of non-zero values in the micro-state indices {αq}. Notice n = 0 is not included
so as to exclude the case {αq} = 0. The factor δαk,0 ≡ 1− δαk,0 picks out the n indices with αq 6= 0,
the other factor δαk,0 ensures the remaining D − n indices are zero. The subset j = {j1, · · · , jn}. The
truncated Green’s function is then,

g(m) =
1

V

D∑
n=1

D∑
j1<···<jn=0

{µq−1}∑
{αq=0}

∏
k∈j

δαk,0
∏
k/∈j

δαk,0

∏D
q=1 φαq (mq)∑D

q=1 µq
(
δαq,0 − 1

) (25)

=
1

V

D∑
n=1

D∑
j1<···<jn=0

{µq−1}∑
{αq=0}

∏
k∈j

δαk,0
∏
k/∈j

δαk,0

∏D
q=1 φαq (mq)∑D

q=1 µq
(
δαq,0 − 1

) (26)

4



in which the following fraction becomes,∏D
q=1 φαq (mq)∑D

q=1 µq
(
δαq,0 − 1

) =

∏
q∈j e

2πiαqmq
µq ·

∏
q/∈j e

2πiαqmq
µq∑

q∈j µq
(
δαq,0 − 1

)
+
∑
q/∈j µq

(
δαq,0 − 1

) (27)

=

∏
q∈j e

2πiαqmq
µq ·

∏
q/∈j 1∑

q∈j µq (0− 1) +
∑
q/∈j µq (1− 1)

= −
∏
q∈j e

2πiαqmq
µq∑

q∈j µq
(28)

The sums over αq/∈j now all contribute a trivial factor of unity. The sums over αq/∈j exclude αq = 0
terms, giving a truncated Green’s function,

g(m) = − 1

V

D∑
n=1

∑
j1<···<jn

1∑
q∈j µq

{µq−1}∑
{αq∈j=1}

∏
k∈j

e
2πiαkmk

µk (29)

The factor,

{µq−1}∑
{αq∈j=1}

∏
k∈j

e
2πiαkmk

µk =
∏
k∈j

µk−1∑
α=1

e
2παmk
µk =

∏
k∈j

(
µk−1∑
α=0

e
2παmk
µk − 1

)
=
∏
k∈j

(µk δmk,0 − 1) (30)

which gives the truncated Green’s function,

g(m) = − 1

V

D∑
n=1

∑
j1<···<jn

1∑
q∈j µq

∏
k∈j

(µk δmk,0 − 1) (31)

3.5 Code space subspaces

We define the subset of elements from {1, 2, . . . , D},

σµ : q ∈ σµ ⇔ µq = µ (32)

We define the subspaces of (Σ, d), to be the set of spaces {(Σµ, dµ)}, where Σµ is a code space with
member points being labelled by the indices (mq∈σµ)

The corresponding metrics are, dµ ≡ ∑
k∈σµ

δm′
k,mk

 (33)

4 Projection of truncated Green’s function onto code sub-
spaces

It can be seen by inspection that in (31), the factor µk δmk,0− 1 = −(1−µk)δmk,0 . The product over a
given permutation {j1, · · · , jn} can then be separated into products over the subsets of indices {σµ},

∏
k∈j

(µk δmk,0 − 1) =

µmax∏
µ=2

∏
k∈j
k∈σµ

(−1)(1− µ)δmk,0 =

µmax∏
µ=2

(−1)nµ(j)(1− µ)nµ(j)−qµ(j) (34)

where nµ(j) ≡
∑
j∈σµ,j 1 is the number of the members of j that are also members of σµ. The

parameter qµ(j,m) ≡
∑
k∈σµ,j δmk,0 is the number of members of j ≡ {jk∈j} that are also members

of σµ AND have mk 6= 0. From this it follows that qµ(j) ≤ nµ(j) and
∑
µ nµ(j) = n. Also, the sum∑

q∈j µq ≡
∑
µ µnµ(j) and the truncated Green’s function,

g(m) = −
D∑
n=1

D∑
j1<···<jn=0

(−1)n∑
µ nµ(j)

µmax∏
µ=2

(1− µ)nµ(j)−qµ(j,m) (35)

5



The summation operator in (35) can decomposed into the independent subspace variables {nµ =
nµ(j)} and {qµ = qµ(j,m)} in the manner,

D∑
n=1

D∑
j1<···<jn=0

× ≡
∑
{nµ}

∑
{qµ}

D∑
n=1

D∑
j1<···<n=0

δn,
∑
µ nµ(j)

(∏
µ

δnµ,nµ(j)δqµ,qµ(j,m)

)
× (36)

This gives the truncated Green’s function in terms of the subspace variables,

g(m) = −
∑
{nµ,qµ}

D∑
n=1

(−1)n δn,
∑
µ nµ∑

µ µnµ

(
µmax∏
µ=2

(1− µ)nµ−qµ

)
wn,q(m) (37)

where the coefficient,

wn,q(m) ≡
D∑

j1<···jn=0

(∏
µ

δnµ,nµ(j) δqµ,qµ(j,m)

)
(38)

4.1 Calculation of coefficent

The coefficient wn,q(m) counts the number of ways of choosing nµ elements from σµ such that exactly
qµ of them have αq 6= for each of the subspaces {σµ} simultaneously. This can be split into a product
over the subspace labels,

wn,q(m) ≡
∏
µ

wnµ,qµ({mj∈σµ}) (39)

Each subspace has a total of Dµ ≡
∑
j∈σµ 1 elements, of which dµ ≡

∑
k∈σµ δmk,0 = dµ(m) have

αk 6= 0. So wnµ,qµ({mj∈σµ}) counts the number of ways of choosing qµ objects from a choice of dµ in
total AND choosing (nµ − qµ) objects from a possible total of Dµ − dµ.

wnµ,qµ({mj∈σµ}) = wnµ,qµ(dµ) =

[
dµ
qµ

] [
Dµ − dµ
nµ − qµ

]
(40)

=
dµ!

(dµ − qµ)! qµ!

(Dµ − dµ)!

(Dµ − dµ − nµ + qµ)! (nµ − qµ)!
(41)

where [
n
r

]
=

n!

(n− r)! r!
is the binomial coeeficient.

4.2 Truncated Green’s function in terms of subspace coordinates

The truncated Green’s function now becomes,

g(m) = −
∑
{nµ,qµ}

D∑
n=1

(−1)n δn,
∑
µ nµ∑

µ µnµ

∏
µ

(
(1− µ)nµ−qµ wnµ,qµ(dµ)

)
(42)

= −
∑
{nµ}
{nµ}6=0

(−1)
∑
µ nµ∑

µ µnµ

∑
{qµ}

∏
µ

(
(1− µ)nµ−qµ wnµ,qµ(dµ)

)
(43)

= −
∑
{nµ}
{nµ}6=0

1∑
µ µnµ

∏
µ

(−1)nµ
∑
qµ

(
(1− µ)nµ−qµ wnµ,qµ(dµ)

)
(44)

or more succinctly, in terms of the subspace ‘radial’ coordinates {dµ},

g({dµ}) = −
∑
{nµ}
{nµ}6=0

1∑
µ µnµ

∏
µ

ϕµ,Dµnµ (dµ) (45)

where,

ϕµ,Dµn (r) ≡ (−1)n
∑
q

(1− µ)n−q
[
r
q

] [
Dµ − r
n− q

]
(46)

6



5 General solution to interpolation equation

Given the linearity of (5), its general solution can be constructed from a linear superposition of
truncated Green’s functions, each being centred on every one of the micro-state code space points
m = (m1,m2, . . . ,mD) respectively,

ρ(m) = λ+
∑
m′

Q(m′) g ({dµ(m,m′)}) (47)

where λ is some undetermined constant and the metric measuring the minimum number of pairwise
digit changes between points m and m′ in the subspace labelled µ is,

dµ(m,m′) ≡
∑
k∈σµ

δmk,m′
k

(48)

That this is a solution is confirmed by operating on it with the gradient operator ∆,

∆ ρ(m) =
∑
m′

Q(m′) ∆ g({dµ(m,m′)}) =
∑
m′

Q(m′)

(
δm,m′ − 1

V

)
= Q(m)−

∑
m′

Q(m′) (49)

which yields the correct pseudo-charge distribution because
∑

m′ Q(m′) = 0, as required.

5.1 Determining the pseudo-charge distribution from the sampled values

Remember that the un-sampled points in code space have a vanishing pseudo-charge associated with
them. We will assume there are a total of a set of N sampled values ρ(mn) for the sample points
{mn} with 1 ≤ n ≤ N . The associated pseudo-charge distribution is then,

Q(m) =

N∑
n=1

Q(mn) δm,mn (50)

Substituting (50) into (47) gives the distribution of the sampled and interpolated values,

ρ(m) = λ+

N∑
n=1

Q(mn) g({dµ(m,mn)}) (51)

where the non-zero pseudo-charges at the sample points act as ‘sources’ for the field of un-sampled,
interpolated values. In particular, the actual sample values {ρ(mn)} are related to the pseudo-charges
by,

ρ(mn′) = λ+

N∑
n=1

Q(mn) g({dµ(mn′ ,mn)}) (52)

This N -dimensional linear equation can be written,

r = λ1 + g · q (53)

where the vectors r = ({rn = ρ(mn)}), 1 = ({1, 1, · · · , 1}), q = ({qn = Q(mn)}) and the rank N ,
symmetric matrix g, has components gn′n ≡ g({dµ(mn′ ,mn)}). In addition, the constraint of charge
neutrality is

∑
n qn ≡ 1T · q = 0. Combining this constraint with (53) gives the linear equation

describing the relationship between the sample values and the associated pseudo charges,(
r
0

)
=

(
g 1
1T 0

)(
q
λ

)
(54)

The linear equation (54) can then be solved for q and λ, for example, using Cramer’s rule.

References

[1] Fractals everywhere (Academic Press, San Diego, 1994).

[2] Green’s functions with applications (Chapman & Hall/CRC, London, 2001).

[3] Adjacency matrix (Available from: http://mathworld.wolfram.com/AdjacencyMatrix.html,
Accessed 4 April 2019).

7


	Introduction
	Interpolating values on an undirected graph
	Defining terms
	Derivation of interpolation equation
	Pseudo-charge neutrality

	Application to code space
	Description of code space
	The rotation operator
	The gradient operator
	Multidimensional code space
	Code space subspaces

	Projection of truncated Green's function onto code subspaces
	Calculation of coefficent
	Truncated Green's function in terms of subspace coordinates

	General solution to interpolation equation
	Determining the pseudo-charge distribution from the sampled values


