
Ultimate algorithm for quantum computers

Koji Nagata1 and Tadao Nakamura2

1Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea

E-mail: ko−mi−na@yahoo.co.jp
2Department of Information and Computer Science, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

(Dated: October 3, 2019)

We first propose herein a novel parallel computation, even though today’s algorithm methodology
for quantum computing, for all of the combinations of values in variables of a logical function.
Our concern so far has been to obtain an attribute of some function. In fact such a task is only
for one task problem solving. However, we could treat positively the plural evaluations of some
logic function in parallel instead of testing the function for finding out its attribute. In fact, these
evaluations of the function are naturally included and evaluated, in parallel, in normal quantum
computing discussing a function in a Boolean algebra stemmed from atoms in it. As is naturally
understandable with mathematics, quantum computing with qubit systems naturally is included
and exemplified by a Boolean algebra, which treats only both 0 and 1. Namely, the theory in this
paper is quite natural in logical sense even though physics domain. Therefore, quantum computing
has an ability to solve some mathematical problems described in a Boolean algebra. The reason
why we positively introduce a Boolean algebra here is because we have multiple evaluations of a
function in quantum computing general.

PACS numbers: 03.67.Ac, 03.67.Lx, 03.65.Ca

Keywords: Quantum algorithms, Quantum computation, Formalism

2

I. INTRODUCTION

Articles on the history of research into quantum computing [1] are mentioned as follows: An implementation of a
quantum algorithm to solve Deutsch’s problem [2—4] on a nuclear magnetic resonance quantum computer is reported
[5]. An implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum computer is reported [6]. Oliveira
et al. implements Deutsch’s algorithm with polarization and transverse spatial modes of the electromagnetic field
as qubits [7]. Single-photon Bell states are prepared and measured [8]. The decoherence-free implementation of
Deutsch’s algorithm is introduced by using such a single-photon and by using two logical qubits [9]. A one-way based
experimental implementation of Deutsch’s algorithm is reported [10].
In 1993, the Bernstein-Vazirani algorithm was published [11, 12]. In 1994, Simon’s algorithm [13] and Shor’s algo-

rithm [14] were discussed. In 1996, Grover [15] provided the motivation for exploring the computational possibilities
offered by quantum mechanics. An implementation of a quantum algorithm to solve the Bernstein-Vazirani parity
problem without entanglement in an ensemble quantum computer is mentioned [16]. Fiber-optics implementation
of the Deutsch-Jozsa and Bernstein-Vazirani quantum algorithms with three qubits is discussed [17]. The question
whether or not quantum learning is robust against noise is a subject of a study [18].
A quantum algorithm for approximating the influences of Boolean functions and its applications are studied [19].

Quantum computation with coherent spin states and the close Hadamard problem are reported [20]. Transport im-
plementation of the Bernstein-Vazirani algorithm with ion qubits is studied [21]. Quantum Gauss-Jordan elimination
and simulation of accounting principles on quantum computers are discussed [22]. The dynamical analysis of Grover’s
search algorithm in arbitrarily high-dimensional search spaces is studied [23]. The relation between quantum computer
and secret sharing with the use of quantum principles is discussed [24]. An application of quantum Gauss-Jordan
elimination code to quantum secret sharing code is studied [25]. Quantum circuit by one step method and similarity
with neural network are discussed [26].
There are many researches concerning quantum computing, quantum algorithm, and their experiments. However,

a complete understanding of a fundamental structure of quantum computing is not given. The key of this paper
is to develop the algorithms of quantum computers toward the ultimate parallel processing on them. The way to
do is to find out the very true ultimate parallelism, thinking of the physical quantum phenomena. The algorithm
developed here is toward the full uses of the features of quantum computers. The algorithm implies the ability of such
computation based upon the concept of a Boolean algebra. Finally we have the ultimate computation for today’s
quantum computers.
In this contribution, we first propose herein a novel parallel computation, even though today’s algorithm method-

ology for quantum computing, for all of the combinations of values in variables of a logical function. Our concern
so far has been to obtain an attribute of some function. In fact such a task is only for one task problem solving.
However, we could treat positively the plural evaluations of some logic function in parallel instead of testing the
function for finding out its attribute. In fact, these evaluations of the function are naturally included and evaluated,
in parallel, in normal quantum computing discussing a function in a Boolean algebra stemmed from atoms in it. As is
naturally understandable with mathematics, quantum computing naturally meets the category of a Boolean algebra.
The reason why we positively introduce a Boolean algebra here is because we have multiple evaluations of a function
in quantum computing general.

II. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE 21 MAPPINGS OF A
FUNCTION

Our discussion is based on Nielsen and Chuang [27]. Quantum superposition is a fundamental feature of many
quantum algorithms. It allows quantum computers to evaluate the mappings of a function f(x) for many different x
simultaneously. Suppose

f : {0, 1} → {0, 1} (1)

is a function with a one-bit domain and range. A convenient way of computing the function on a quantum computer
is to consider a two-qubit quantum computer that starts with the state |x, y�, where x and y are variables used in
mapping f . The abbreviation |x, y� stands for |x� ⊗ |y�.
Like the Deutsch-Jozsa problem, we are given a black box quantum computer known as an oracle that implements

some function f : {0, 1}2 → {0, 1}. For the quantum algorithms to work, the oracle computing f(x) from x has to be
a quantum oracle which doesn’t decohere x. It also mustn’t leave any copy of x lying around at the end of the oracle
call. We have the function f implemented as a quantum oracle. The oracle maps the state |x�⊗ |y� to |x�⊗ |y⊕f(x)�,
where ⊕ is addition modulo 2.

3

It is possible to transform the state |x, y� into
|x, y ⊕ f(x)�, (2)

by applying the quantum oracle, where ⊕ indicates addition modulo 2. We denote the transformation Uf defined by
the map

Uf : |x, y� = |x, y ⊕ f(x)�. (3)

Here (2) and (3) meet the category of a Boolean algebra. Later we see the fact by having the result of Section III using
(2) and (3). Namely, the result meets the category of a Boolean algebra. Quantum computing meets the category of
a Boolean algebra.
From the usual phase kick-back formation and the map Uf , we insert an imaginary number i and we can define the

following formulas:

Uf |0�(|0� − i|1�)/
√
2 = +|0�(|f(0)� − i|f(0)�)/

√
2

=

�
(−i)f(0)|0�(|0� − i|1�)/

√
2 if f(0) = 0,

(−i)f(0)|0�(|0�+ i|1�)/
√
2 if f(0) = 1.

(4)

Uf |1�(|0� − |1�)/
√
2 = +|1�(|f(1)� − |f(1)�)/

√
2

=

�
(−1)f(1)|1�(|0� − |1�)/

√
2 if f(1) = 0,

(−1)f(1)|1�(|0� − |1�)/
√
2 if f(1) = 1,

(5)

where |1� = |0� and |0� = |1�. We use a combination between a unitary transformation theory and logic theory. In
other words, we use a combination between a Pauli operator σx and NOT operation.
The phase of the result of (4) is different from the phase of the result of (5). Let us take a summation, that is,

(4) pluses (5). Then we have (6). Therefore, we can solve the problem if we define the input state as (6) because
we define the map Uf . Here we use a phase effect, which is a quantum phenomenon. We define the input state as
follows, using an imaginary number i:

|ψ0� = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
,

ψ0|ψ0� = 1⇐ |α|2 + |β|2 = 1, α �= 0, β �= 0. (6)

Applying Ufi , (i = 0, 1, 2, 3) to |ψ0�, Ufi |ψ0� = |ψ1�i, therefore leaves us with one of 22
1

cases, where the power 1 of

22
1

means the case of one qubit:

|ψ1�0 = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�

then f0(0) = 0, f0(1) = 0,

|ψ1�1 = −iα|0�
� |0�+ i|1�√

2

�
− β|1�

� |0� − |1�√
2

�

then f1(0) = 1, f1(1) = 1,

|ψ1�2 = α|0�
� |0� − i|1�√

2

�
− β|1�

� |0� − |1�√
2

�

then f2(0) = 0, f2(1) = 1,

|ψ1�3 = −iα|0�
� |0�+ i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�

then f3(0) = 1, f3(1) = 0, (7)

where these equations have a property that the relation between each equation and the condition after “then” is re-
garded as a “if and only if” condition since we herein process all of the operations only under a unitary transformation.
So, the conditions after “then” are regarded as the results.
We want to develop the algorithms of quantum computers toward the ultimate parallel processing on them. The

way to do is to find out the very true ultimate parallelism, thinking of the physical quantum phenomena. If we have
(7), we know both f(0) and f(1) by measuring the single output state, simultaneously. How do we have (7)? Note
that we cannot solve it by using only the usual phase kick-back formation. It changes only the global phase and we
cannot distinguish between them. We want to avoid this situation.

4

So, by measuring |ψ1�i, we may determine all the 21 mappings of fi(x) for all x simultaneously. This is very
interesting indeed: the quantum algorithm gives us the ability to determine a perfect property of fi(x), namely, fi(x)
itself. This is faster than a classical apparatus, which would require at least 21 evaluations.
Our algorithm is as follows:

• Select a function fi.

• Operate Ufi to |ψ0� in giving |ψ1�i.

• From |ψ1�i, obtain all the mappings concerning the function fi.

III. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE 22 MAPPINGS OF A
FUNCTION

We propose a quantum algorithm for determining the 22 mappings of a function.
Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to

evaluate the mappings of a function f(x) for many different x simultaneously. Suppose newly

f : {0, 1}2 → {0, 1} (8)

is a function. We want to know the 22 mappings f(0, 0), f(0, 1), f(1, 0), and f(1, 1), simultaneously. Later we see a
complete matching between our result and Table 1 (a Boolean algebra F2). In the Boolean algebra F2, the function is
a two-valuable function. For example, f(x, y) is the function where x and y are variables used in mapping f . In what
follows, the abbreviation f(xy) stands for f(x, y). We see a combination between a unitary transformation theory
and logic theory.
We define the input state as follows, using an application of (6):

|ψ0� = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�
,

ψ0|ψ0� = 1⇐ |a1|2 + |a2|2 + |a3|2 + |a4|2 = 1, a1 �= 0, a2 �= 0, a3 �= 0, a4 �= 0. (9)

From the map Uf , we can define the following formulas:

Uf |00�(|0� − i|1�)/
√
2 = +|00�(|f(00)� − i|f(00)�)/

√
2

=

�
(−i)f(00)|00�(|0� − i|1�)/

√
2 if f(00) = 0,

(−i)f(00)|00�(|0�+ i|1�)/
√
2 if f(00) = 1.

(10)

Uf |01�(|0� − i|1�)/
√
2 = +|01�(|f(01)� − i|f(01)�)/

√
2

=

�
(−i)f(01)|01�(|0� − i|1�)/

√
2 if f(01) = 0,

(−i)f(01)|01�(|0�+ i|1�)/
√
2 if f(01) = 1.

(11)

Uf |10�(|0� − |1�)/
√
2 = +|10�(|f(10)� − |f(10)�)/

√
2

=

�
(−1)f(10)|10�(|0� − |1�)/

√
2 if f(10) = 0,

(−1)f(10)|10�(|0� − |1�)/
√
2 if f(10) = 1.

(12)

Uf |11�(|0� − |1�)/
√
2 = +|11�(|f(11)� − |f(11)�)/

√
2

=

�
(−1)f(11)|11�(|0� − |1�)/

√
2 if f(11) = 0,

(−1)f(11)|11�(|0� − |1�)/
√
2 if f(11) = 1,

(13)

where |1� = |0� and |0� = |1�. We use a combination between a unitary transformation theory and logic theory.

5

Applying Ufi , (i = 0, 1, 2, ..., 15) to |ψ0�, Ufi |ψ0� = |ψ1�i, therefore leaves us with one of 22
2

cases:

|ψ1�0 = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f0(00) = 0, f0(01) = 0, f0(10) = 0, f0(11) = 0, (14)

|ψ1�1 = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f1(00) = 0, f1(01) = 0, f1(10) = 0, f1(11) = 1, (15)

|ψ1�2 = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f2(00) = 0, f2(01) = 0, f2(10) = 1, f2(11) = 0, (16)

|ψ1�3 = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f3(00) = 0, f3(01) = 0, f3(10) = 1, f3(11) = 1, (17)

|ψ1�4 = a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f4(00) = 0, f4(01) = 1, f4(10) = 0, f4(11) = 0, (18)

|ψ1�5 = a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f5(00) = 0, f5(01) = 1, f5(10) = 0, f5(11) = 1, (19)

|ψ1�6 = a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f6(00) = 0, f6(01) = 1, f6(10) = 1, f6(11) = 0, (20)

|ψ1�7 = a1|00�
� |0� − i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f7(00) = 0, f7(01) = 1, f7(10) = 1, f7(11) = 1, (21)

6

|ψ1�8 = −ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f8(00) = 1, f8(01) = 0, f8(10) = 0, f8(11) = 0, (22)

|ψ1�9 = −ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f9(00) = 1, f9(01) = 0, f9(10) = 0, f9(11) = 1, (23)

|ψ1�10 = −ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f10(00) = 1, f10(01) = 0, f10(10) = 1, f10(11) = 0, (24)

|ψ1�11 = −ia1|00�
� |0�+ i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f11(00) = 1, f11(01) = 0, f11(10) = 1, f11(11) = 1, (25)

|ψ1�12 = −ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f12(00) = 1, f12(01) = 1, f12(10) = 0, f12(11) = 0, (26)

|ψ1�13 = −ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f13(00) = 1, f13(01) = 1, f13(10) = 0, f13(11) = 1, (27)

|ψ1�14 = −ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�

then f14(00) = 1, f14(01) = 1, f14(10) = 1, f14(11) = 0, (28)

|ψ1�15 = −ia1|00�
� |0�+ i|1�√

2

�
− ia2|01�

� |0�+ i|1�√
2

�
− a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�

then f15(00) = 1, f15(01) = 1, f15(10) = 1, f15(11) = 1. (29)

So, by measuring |ψ1�i, we may determine all the 22 mappings of fi(x, y) for all x and y simultaneously. This is very
interesting indeed: the quantum algorithm gives us the ability to determine a perfect property of fi(x, y), namely,
fi(x, y) itself. This is faster than a classical apparatus, which would require at least 22 evaluations.
Later we discuss the relation between Set theory based upon atoms and our result in terms of a Boolean algebra.

Especially the result reveals a complete matching between quantum computing and a Boolean algebra (See Table 1).
As is naturally understandable with mathematics, quantum computing belongs to the category of a Boolean algebra.
We positively mention that the fundamental structures of quantum computing and Von Neumann architecture are
the same in terms of the category of a Boolean algebra. However, the main different is based on parallelism for
determining all the mappings used especially in quantum computing.

A. Example

Two level systems are included and exemplified by a Boolean algebra, which treats only both 0 and 1. Namely, the
theory in this paper is quite natural in logical sense even though physics domain. Therefore, quantum computing has
an ability to solve some mathematical problems described in a Boolean algebra.
Let us consider the case where i = 1. The logical function is as follows:

f1(x, y) = A ∧B. (30)

where x and y are variables used in mapping f . x(= 0, 1) is variable for A. y(= 0, 1) is variable for B. We want to
know all the mappings

f1(0, 0), f1(0, 1), f1(1, 0), f1(1, 1). (31)

7

In the classical case we require 22 evaluations. In the quantum case we require just one query.
The input state is as folows:

|ψ0� = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
+ a4|11�

� |0� − |1�√
2

�
. (32)

Applying Uf1 to |ψ0�, Uf1 |ψ0� = |ψ1�1, we have the following output state:

|ψ1�1 = a1|00�
� |0� − i|1�√

2

�
+ a2|01�

� |0� − i|1�√
2

�
+ a3|10�

� |0� − |1�√
2

�
− a4|11�

� |0� − |1�√
2

�
. (33)

Therefore we obtain all the mappings of f1(x, y) simultaneously:

f1(0, 0) = 0, f1(0, 1) = 0, f1(1, 0) = 0, f1(1, 1) = 1. (34)

This is faster than a classical apparatus, which would require at least 22 evaluations. Likewise, we can evaluate 16
functions in a Boolean algebra F2.

IV. A NEW TYPE OF QUANTUM ALGORITHM FOR DETERMINING THE 2N MAPPINGS OF A
FUNCTION

We propose a quantum algorithm for determining the 2N mappings of a function. N means the number of qubits
for our algorithm.
Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to

evaluate the mappings of a function f(x1, x2, ..., xN) for many different x1, x2, ..., xN simultaneously. Suppose newly

f : {0, 1}N → {0, 1} (35)

is a function.
We define the input state as follows, using an application of (6):

|ψ0� =
2(N−1)

−1�

j=0

aj |j�
� |0� − i|1�√

2

�
+

2N−1�

k=2(N−1)

ak|k�
� |0� − |1�√

2

�
,

ψ0|ψ0� = 1⇐ |a0|2 + |a1|2 + ...+ |a2N−1|2 = 1, a0 �= 0, a1 �= 0, ..., a2N−1 �= 0. (36)

Applying Ufi , (i = 0, 1, 2, ..., 22
N − 1) to |ψ0�, Ufi |ψ0� = |ψ1�i, therefore leaves us with one of 22

N

cases:

|ψ1�i =
2(N−1)

−1�

j=0

(−i)fi(j)aj |j�
� |0� − (−1)fi(j)i|1�√

2

�
+

2N−1�

k=2(N−1)

(−1)fi(k)ak|k�
� |0� − |1�√

2

�
. (37)

So, by measuring |ψ1�i, we may determine all the 2N mappings of fi(x1, x2, ..., xN) for all x1, x2, ..., xN simultaneously.
This is very interesting indeed: the quantum algorithm gives us the ability to determine a perfect property of
fi(x1, x2, ..., xN), namely, fi(x1, x2, ..., xN) itself. This is faster than a classical apparatus, which would require
at least 2N evaluations.

V. THE RELATION BETWEEN THE ATOMS (SET THEORY) AND THE RESULT IN SECTION III

Let us discuss the relation between the atoms [28] (Set theory) and the result in Section III. These A and B are
subsets which are constructed using the atoms f1 through f4 that are disjoint one another. For example, newly using
fi as an element of a Boolean algebra F2,

A = f1 ∨ f3 = {f1, f3},
B = f1 ∨ f2 = {f1, f2}, (38)

where,

f1 = A ∧B,
f2 = A′ ∧B,
f3 = A ∧B′,
f4 = A′ ∧B′. (39)

8

See FIG. 1 (Venn diagram for F2).
We can introduce a Boolean algebra F2 as a Power set of the atoms. See FIG. 2.
F2 is based on the value “1” of the two-variable switching functions. An atom is a function including only one “1”

as its mapped value, in the four combinations of the values of A and B for the two-variable function. See Table 1.
Clearly we notice a complete matching between Table 1 (the Boolean algebra F2) and our result in Section III. In

fact we can see that Eqs. (15), (16), (18), and (22) are regarded as the four atoms of the Boolean algebra F2. For
example, we notice (15) OR operation with (16) is equal to (17) and all elements are derived from the four atoms.
(See FIG. 2).
We see that the relation between Set theory based upon atoms and our result in terms of a Boolean algebra.
The important point is that we obtain all the elements of F2 by means of a Power set of atoms when we get the

four atoms. (See FIG. 2).
So we can say that next our aim is of getting (15), (16), (18), and (22) simultaneously. That means we get (14)-(29)

simultaneously (all 16 patterns!)
We positively stress that the fundamental structures of quantum computing and Von Neumann architecture are

the same in terms of the category of a Boolean algebra. However, the main different is based on parallelism for
determining all the mappings used especially in quantum computing. We hope our discussions conclude the very true
ultimate importance of the quantum parallelism to construct quantum computers beyond Von Neumann architecture.

VI. CONCLUSIONS

In conclusion, we have first proposed herein a novel parallel computation, even though today’s algorithm method-
ology for quantum computing, for all of the combinations of values in variables of a logical function. Our concern so
far has been to obtain an attribute of some function. In fact such a task has been only for one task problem solving.
However, we could have treated positively the plural evaluations of some logic function in parallel instead of testing
the function for finding out its attribute. In fact, these evaluations of the function have been naturally included and
evaluated, in parallel, in normal quantum computing discussing a function in a Boolean algebra stemmed from atoms
in it. As is naturally understandable with mathematics, quantum computing naturally has met the category of a
Boolean algebra. The reason why we positively introduce a Boolean algebra here has been because we have multiple
evaluations of a function in quantum computing general.

ACKNOWLEDGMENTS

We thank Professor Do Ngoc Diep, Professor Shahrokh Heidari, Professor Germano Resconi, Professor Jaewook
Ahn, and Professor Han Geurdes for valuable comments.

NOTE

On behalf of all authors, the corresponding author states that there is no conflict of interest.

[1] R. Rennie (Editor), Oxford dictionary of physics (Oxford University Press, 2015), Seventh ed.
[2] D. Deutsch, Proc. Roy. Soc. London Ser. A 400, 97 (1985).
[3] D. Deutsch and R. Jozsa, Proc. Roy. Soc. London Ser. A 439, 553 (1992).
[4] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. Roy. Soc. London Ser. A 454, 339 (1998).
[5] J. A. Jones and M. Mosca, J. Chem. Phys. 109, 1648 (1998).
[6] S. Gulde, M. Riebe, G. P. T. Lancaster, C. Becher, J. Eschner, H. Häffner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt,

Nature (London) 421, 48 (2003).
[7] A. N. de Oliveira, S. P. Walborn, and C. H. Monken, J. Opt. B: Quantum Semiclass. Opt. 7, 288-292 (2005).
[8] Y.-H. Kim, Phys. Rev. A 67, 040301(R) (2003).
[9] M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, Phys. Rev. Lett. 91, 187903 (2003).
[10] M. S. Tame, R. Prevedel, M. Paternostro, P. Böhi, M. S. Kim, and A. Zeilinger, Phys. Rev. Lett. 98, 140501 (2007).
[11] E. Bernstein and U. Vazirani, Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC

’93), pp. 11-20 (1993).
[12] E. Bernstein and U. Vazirani, SIAM J. Comput. 26-5, pp. 1411-1473 (1997).

9

[13] D. R. Simon, Foundations of Computer Science, (1994) Proceedings., 35th Annual Symposium on: 116-123, retrieved
2011-06-06.

[14] P. W. Shor, Proceedings of the 35th IEEE Symposium on Foundations of Computer Science. 124 (1994).
[15] L. K. Grover, Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. 212 (1996).
[16] J. Du, M. Shi, X. Zhou, Y. Fan, B. J. Ye, R. Han, and J. Wu, Phys. Rev. A 64, 042306 (2001).
[17] E. Brainis, L.-P. Lamoureux, N. J. Cerf, Ph. Emplit, M. Haelterman, and S. Massar, Phys. Rev. Lett. 90, 157902 (2003).
[18] A. W. Cross, G. Smith, and J. A. Smolin, Phys. Rev. A 92, 012327 (2015).
[19] H. Li and L. Yang, Quantum Inf. Process. 14, 1787 (2015).
[20] M. R. A. Adcock, P. Hoyer, and B. C. Sanders, Quantum Inf. Process. 15, 1361 (2016).
[21] S. D. Fallek, C. D. Herold, B. J. McMahon, K. M. Maller, K. R. Brown, and J. M. Amini, New J. Phys. 18, 083030 (2016).
[22] D. N. Diep, D. H. Giang, and N. Van Minh, Int. J. Theor. Phys. 56, 1948 (2017).
[23] W. Jin, Quantum Inf. Process. 15, 65 (2016).
[24] D. N. Diep and D. H. Giang, Int. J. Theor. Phys. 56, 2797 (2017).
[25] D. N. Diep, D. H. Giang, and P. H. Phu, Int. J. Theor. Phys. 57, 841 (2018).
[26] G. Resconi and K. Nagata, International Journal of General Engineering and Technology, Vol. 7, Issue 1 (2018) Page 1 —

20.
[27] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
[28] W. J. Gilbert and W. K. Nicholson, Modern algebra with applications (John Wiley and Sons, Inc. Second edition, 2004).

Table 1: A Boolean algebra ��

A
B

0 0 1 1
0 1 0 1

Expressions A and B
Representing the Function

f0 0 0 0 0 0

f1 0 0 0 1
A∧B

f2 0 0 1 0
A∧B’ or A⇏B

f3 0 0 1 1 A

f4 0 1 0 0
A’∧B or A⇍B

f5 0 1 0 1 B

f6 0 1 1 0
A△B or Exclusive OR (A,B)

＝(A∧B’) ∨ (A’∧B）

f7 0 1 1 1
A∨B

f8 1 0 0 0
A’∧B’ or NOR(A,B)

f9 1 0 0 1
A’△B’ or A⇔B

f10 1 0 1 0 B’

f11 1 0 1 1
A∨B’ or A⇐B

f12 1 1 0 0 A’

f13 1 1 0 1
A’∨B or A⇒B

f14 1 1 1 0
A’∨B’ or NAND(A,B)

f15 1 1 1 1 1

Venn diagram for F2

A^B A’^BA^B’

A’^B’

FIG. 1 NOTICE: F2 is formed based on the value “1” in the domain

and codomain of all the 16 two-variable A, B switching functions,

where all atoms divide perfectly and independently the Venn

diagram without overlapping.

A B

Two-variable switching functions

f1

f2

f4

Universal set of atoms

Power set of atoms P(Xa)

= F2

Set F2 of two-variable switching functions fi(A, B)

F2={f0, f1, f2, . . . , f15,}

Empty set of atoms

f8

Set of atoms

Xa

f8 f8

f4f4 f2

f2 f1

f8 f4

f2f1

f8 f4

f2

f1

f8 f4 f2

f1

f8 f2

f1

f8

f4

f1

f2

f4 f1

f1

f2

f4

f8

f15 f14 f13 f12 f11 f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 f0

FIG. 2 NOTICE: F2 is based on the value “1” of the switching functions.

An atom is a function including only one “1” as its mapped

value, in the four combinations of the values of A and B

for the two-variable function.

