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The usual no-cloning theorem implies that two quantum states are identical or orthogonal if we
allow a cloning to be on the two quantum states. Here, we investigate a relation between the
no-cloning theorem and the projective measurement theory that the results of measurements are
either +1 or −1. We introduce the Kochen-Specker (KS) theorem with the projective measurement
theory. We result in the fact that the two quantum states under consideration cannot be orthogonal
if we avoid the KS contradiction. Thus the no-cloning theorem implies that the two quantum states
under consideration are identical in the case. It turns out that the KS theorem with the projective
measurement theory says a new version of the no-cloning theorem. Next, we investigate a relation
between the no-cloning theorem and the measurement theory based on the truth values that the
results of measurements are either +1 or 0. We return to the usual no-cloning theorem that the two
quantum states are identical or orthogonal in the case.
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I. INTRODUCTION

Einstein, Podolsky, and Rosen say that a hidden-
variable interpretation of quantum mechanics is essential
[1]. The hidden-variable interpretation is a topic of re-
search [2, 3]. One is the Bell theorem [4]. The other is the
Kochen-Specker theorem (the KS theorem) [5]. Green-
berger, Horne, and Zeilinger discover [6, 7] the GHZ the-
orem. The Bell theorem and the KS theorem become a
simple form (see also Refs. [8—12]).

A new type of the KS theorem (or the KS contradic-
tion) is reported [13]. The results of measurements are
either +1 or −1. The KS theorem is a precondition for
various quantum information theories. The theorem as a
precondition for secure quantum key distribution is dis-
cussed [14]. The theorem as a precondition for quantum
computing is studied [15]. Therefore it is interesting to
study the relation between the KS theorem and various
quantum information theories. Here we derive a new ver-
sion of the no-cloning theorem based on the KS theorem
that the results of measurements are either +1 or −1.
On the other hand, the measurement theory based on
the truth values is studied [16]. The results of measure-
ments are either +1 or 0. We discuss the KS theorem
with the measurement theory does not change the no-
cloning theorem.

The no-cloning theorem was stated by Wootters and
Zurek [17] and Dieks [18] in 1982. It has profound im-
plications in quantum computing and related fields. Ac-
cording to Asher Peres and David Kaiser, the publication
of the no-cloning theorem is prompted by a proposal of
Nick Herbert [19] for a superluminal communication de-

vice using quantum entanglement. The literature con-
cerning quantum cloning topic can be seen in Ref. [20].
Our discussion may provide a new insight for the good

security of quantum cryptography when we use the pro-
jective measurement theory. The no-cloning theorem in
the case implies that the two quantum states under con-
sideration are identical even though an eavesdropper al-
lows a cloning to be on the two quantum states. A proba-
bility that the eavesdropper selects an unknown and iden-
tical quantum state is very small.
In this paper, we investigate a relation between the

no-cloning theorem and the projective measurement the-
ory that the results of measurements are either +1 or
−1. We introduce the Kochen-Specker (KS) theorem
with the projective measurement theory. We result in
the fact that the two quantum states under consideration
cannot be orthogonal if we avoid the KS contradiction.
Thus the no-cloning theorem implies that the two quan-
tum states under consideration are identical in the case.
It turns out that the KS theorem with the projective
measurement theory says a new version of the no-cloning
theorem. Next, we investigate a relation between the no-
cloning theorem and the measurement theory based on
the truth values that the results of measurements are ei-
ther +1 or 0. We return to the usual no-cloning theorem
that the two quantum states are identical or orthogonal
in the case.
The paper is organized as follows:
In Section II, we review the no-cloning theorem.
In Section III, we discuss the projective measurement

theory improves the no-cloning theorem.
In Section IV, we discuss the measurement theory

based on the truth values does not change the no-cloning
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theorem.
Section V concludes the paper.

II. REVIEW OF THE NO-CLONING

THEOREM

We review the no-cloning theorem as follows:

U |φ�A|e�B = |φ�A|φ�B . (1)

U is the time evolution operator. Alice has a quantum
state |φ�A. Bob has a quantum state |e�B . Bob’s state
changes into |φ�B by using the time evolution operator.
Thereby Alice’s state is cloned into Bob’s state. Let us
consider the inner product of them. The inner product
is explained as follows: A generalization of the scalar
product. Any product �u, v� of vectors which satisfies
the following conditions. It must be distributive over
addition, i.e. �u, v1 + v2� = �u, v1�+ �u, v2�, be reflexive,
i.e. �v, u� = �u, v�∗, 1 1

2
-linear, i.e. �au, bv� = a∗b�u, v�

and strictly positive, i.e. if �v, v� = 0 then v = 0, where
the star means the complex conjugation [21]. Then we
have

�e|B�φ|A|ψ�A|e�B = �e|B�φ|AU
†U |ψ�A|e�B

= �φ|B�φ|A|ψ�A|ψ�B . (2)

Thus,

�φ|ψ�A = �φ|ψ�A�φ|ψ�B . (3)

By omitting subscripts A and B, we have

�φ|ψ� = �φ|ψ�2. (4)

We derive the following proposition

�φ|ψ� = 0 ∨ �φ|ψ� = 1. (5)

Therefore, the no-cloning theorem implies that the two
quantum states are identical or orthogonal if we allow a
cloning to be on the two quantum states. We derive the
following proposition

�φ|ψ�2 = 0 ∨ �φ|ψ�2 = 1. (6)

From each a proposition, we have

�φ|ψ�4 = 0 ∨ �φ|ψ�4 = 1. (7)

Squaring the both side of Eqn (5) we have (6) and (7).
We cannot assume the two quantum states are orthog-

onal

�φ|ψ� = 0, (8)

because we encounter the KS contradiction with the pro-
jective measurement theory. This means that we can-
not assume �φ|ψ� = 0. Hence we have �φ|ψ� = 1. The
no-cloning theorem implies that the two quantum states
under consideration are identical when we consider the
KS theorem with the projective measurement theory in
the discussion below.

On the other hand, we can assume the two quantum
states are orthogonal if we use the measurement theory
based on the truth value. We do not encounter the KS
contradiction in the case. This means that we can as-
sume �φ|ψ� = 0, 1. We return to the usual no-cloning
theorem that the two quantum states under considera-
tion are identical or orthogonal.

III. THE PROJECTIVE MEASUREMENT

THEORY IMPROVES THE NO-CLONING

THEOREM

A. The orthogonal case

We consider a quantum expected value as

�φ|ψ�2 = 0. (9)

The above quantum expected value is zero if the two
quantum states under consideration |φ� and |ψ� are or-
thogonal.
We derive a necessary condition for the quantum ex-

pected value given in (9). From the proposition (9) by
squaring the both sides, we derive the following proposi-
tion concerning quantum mechanics

�φ|ψ�4 = 0. (10)

Therefore, we have

(�φ|ψ�4)min = 0 ∧ (�φ|ψ�4)max = 0. (11)

B. The identical case

We consider a quantum expected value as

�φ|ψ�2 = 1. (12)

The above quantum expected value is +1 if the two quan-
tum states under consideration |φ� and |ψ� are identical.
We derive a necessary condition for the quantum ex-

pected value given in (12). From the proposition (12) by
squaring the both sides, we derive the following proposi-
tion concerning quantum mechanics

�φ|ψ�4 = 1. (13)

Therefore, we have

(�φ|ψ�4)min = 1 ∧ (�φ|ψ�4)max = 1. (14)

C. The orthogonal case is forbidden by the KS

theorem with the projective measurement theory

A mean value E satisfies a hidden-variable model if it
can be written as

E =

�m

l=1 rl(�φ|ψ�
2)

m
, (15)
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where l denotes a label and r is the “hidden” result of
quantum measurements. The notation rl(�φ|ψ�

2) means
the lth “hidden” outcome of quantum measurements
when we would measure the expected value �φ|ψ�2 = 0
in a thoughtful experiment. We can assume the value of
r is ±1.
In what follows, we assume the two quantum states

are orthogonal, that is, �φ|ψ� = 0. And we derive the
KS contradiction when we introduce the hidden-variable
model.
Assume the quantum mean value admits the hidden-

variable model given in (15). One has the following
proposition concerning the hidden-variable model

�φ|ψ�2(m) =

�m

l=1 rl(�φ|ψ�
2)

m
. (16)

We can assume as follows by Strong Law of Large Num-
bers [22],

�φ|ψ�2(+∞) = �φ|ψ�2. (17)

Assume the proposition (16) is true. By changing the
label l into l′, we have the same quantum mean value as
follows:

�φ|ψ�2(m) =

�m

l′=1 rl′(�φ|ψ�
2)

m
. (18)

An important note here is that the value of the right-
hand-side of (16) is equal to the value of the right-hand-
side of (18) because we only change the label l into l′.
We introduce an assumption that Sum rule and Prod-

uct rule commute with each other. We have

�φ|ψ�2(m)× �φ|ψ�2(m)

=

�m

l=1 rl(�φ|ψ�
2)

m
×

�m

l′=1 rl′(�φ|ψ�
2)

m

≤

�m

l=1

m
×

�m

l′=1

m
|(rl(�φ|ψ�

2)rl′(�φ|ψ�
2)|

=

�m

l=1

m

�m

l′=1

m
(rl(�φ|ψ�

2))2

= 1. (19)

We use the following fact for the number of elements with
property

�{l|rl(�φ|ψ�
2) = 1}� = �{l′|rl′(�φ|ψ�

2) = 1}�,

�{l|rl(�φ|ψ�
2) = −1}� = �{l′|rl′(�φ|ψ�

2) = −1}�,(20)

and

(rl(�φ|ψ�
2))2 = 1. (21)

We see that the inequality (19) is saturated. We have

�φ|ψ�2(m)× �φ|ψ�2(m)

=

�m

l=1 rl(�φ|ψ�
2)

m
×

�m

l′=1 rl′(�φ|ψ�
2)

m

≥

�m

l=1

m
×

�m

l′=1

m
(−1)

= (−1)

�m

l=1

m

�m

l′=1

m
= −1. (22)

We use the following fact for the number of elements with
property

�{l|rl(�φ|ψ�
2) = 1}� = �{l′|rl′(�φ|ψ�

2) = −1}�,

�{l|rl(�φ|ψ�
2) = −1}� = �{l′|rl′(�φ|ψ�

2) = 1}�, (23)

and

(rl(�φ|ψ�
2)rl′(�φ|ψ�

2) ≥ −1. (24)

We see that the inequality (22) is saturated.
Thus we derive propositions concerning the hidden-

variable model, that is,

(�φ|ψ�2(m)× �φ|ψ�2(m))min = −1,

(�φ|ψ�2(m)× �φ|ψ�2(m))max = 1. (25)

From Strong Law of Large Numbers, we have

(�φ|ψ�2 × �φ|ψ�2)min = −1,

(�φ|ψ�2 × �φ|ψ�2)max = 1. (26)

Hence we derive the following proposition concerning the
hidden-variable model

(�φ|ψ�4)min = −1 ∧ (�φ|ψ�4)max = 1. (27)

We cannot assign the truth value “1” for the proposition
(11) and the proposition (27), simultaneously. We are
thus in the KS contradiction.
Therefore, we cannot assume the two quantum states

under consideration are orthogonal

�φ|ψ� = 0, (28)

when we consider the KS theorem with the projective
measurement theory.

D. The identical case avoids the KS contradiction

A mean value E satisfies a hidden-variable model if it
can be written as

E =

�m

l=1 rl(�φ|ψ�
2)

m
, (29)

where the notation rl(�φ|ψ�
2) means the lth “hidden”

outcome of quantum measurements when we would mea-
sure the expected value �φ|ψ�2 = 1 in a thoughtful ex-
periment. We can assume the value of r takes only +1
because the expected value is +1.
In what follows, we assume the two quantum states are

identical, that is, �φ|ψ� = 1. And we show that the KS
contradiction is avoided when we introduce the hidden-
variable model.
Assume the quantum mean value admits the hidden-

variable model given in (29). One has the following
proposition concerning the hidden-variable model

�φ|ψ�2(m) =

�m

l=1 rl(�φ|ψ�
2)

m
. (30)
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Assume the proposition (30) is true. By changing the
label l into l′, we have the same quantum mean value as
follows:

�φ|ψ�2(m) =

�m

l′=1 rl′(�φ|ψ�
2)

m
. (31)

An important note here is that the value of the right-
hand-side of (30) is equal to the value of the right-hand-
side of (31) because we only change the label l into l′.
We have

�φ|ψ�2(m)× �φ|ψ�2(m)

=

�m

l=1 rl(�φ|ψ�
2)

m
×

�m

l′=1 rl′(�φ|ψ�
2)

m

= +1. (32)

We use the fact that rl(�φ|ψ�
2) = +1 and rl′(�φ|ψ�

2) =
+1.
Thus we derive propositions concerning the hidden-

variable model, that is,

(�φ|ψ�2(m)× �φ|ψ�2(m))min = 1,

(�φ|ψ�2(m)× �φ|ψ�2(m))max = 1. (33)

From Strong Law of Large Numbers, we have

(�φ|ψ�2 × �φ|ψ�2)min = 1,

(�φ|ψ�2 × �φ|ψ�2)max = 1. (34)

Hence we derive the following proposition concerning the
hidden-variable model

(�φ|ψ�4)min = 1 ∧ (�φ|ψ�4)max = 1. (35)

We can assign the truth value “1” for the proposition
(14) and the proposition (35), simultaneously. We thus
avoid the KS contradiction.
Therefore, we assume that the two quantum states un-

der consideration are identical

�φ|ψ� = 1. (36)

Hence we assume the following case

|φ� = |ψ�. (37)

The no-cloning theorem implies that the two quantum
states under consideration are identical if we consider
the KS theorem in the case.

IV. THE MEASUREMENT THEORY BASED

ON THE TRUTH VALUES DOES NOT CHANGE

THE NO-CLONING THEOREM

A. The orthogonal case avoids the KS

contradiction

A mean value E satisfies a hidden-variable model if it
can be written as

E =

�m

l=1 rl(�φ|ψ�
2)

m
, (38)

where the notation rl(�φ|ψ�
2) means the lth “hidden”

outcome of quantum measurements when we would mea-
sure the expected value �φ|ψ�2 = 0 in a thoughtful ex-
periment. We can assume the value of r takes only 0
because the expected value is 0.
In what follows, we assume the two quantum states

are orthogonal, that is, �φ|ψ� = 0. And we show that
the KS contradiction is avoided when we introduce the
hidden-variable model.
Assume the quantum mean value admits the hidden-

variable model given in (38). One has the following
proposition concerning the hidden-variable model

�φ|ψ�2(m) =

�m

l=1 rl(�φ|ψ�
2)

m
. (39)

Assume the proposition (39) is true. By changing the
label l into l′, we have the same quantum mean value as
follows:

�φ|ψ�2(m) =

�m

l′=1 rl′(�φ|ψ�
2)

m
. (40)

An important note here is that the value of the right-
hand-side of (39) is equal to the value of the right-hand-
side of (40) because we only change the label l into l′.
We have

�φ|ψ�2(m)× �φ|ψ�2(m)

=

�m

l=1 rl(�φ|ψ�
2)

m
×

�m

l′=1 rl′(�φ|ψ�
2)

m

= 0. (41)

We use the fact that rl(�φ|ψ�
2) = 0 and rl′(�φ|ψ�

2) = 0.
Thus we derive propositions concerning the hidden-

variable model, that is,

(�φ|ψ�2(m)× �φ|ψ�2(m))min = 0,

(�φ|ψ�2(m)× �φ|ψ�2(m))max = 0. (42)

From Strong Law of Large Numbers, we have

(�φ|ψ�2 × �φ|ψ�2)min = 0,

(�φ|ψ�2 × �φ|ψ�2)max = 0. (43)

Hence we derive the following proposition concerning the
hidden-variable model

(�φ|ψ�4)min = 0 ∧ (�φ|ψ�4)max = 0. (44)

We can assign the truth value “1” for the proposition
(11) and the proposition (44), simultaneously. We thus
avoid the KS contradiction.

B. The identical case avoids the KS contradiction

A mean value E satisfies a hidden-variable model if it
can be written as

E =

�m

l=1 rl(�φ|ψ�
2)

m
, (45)
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where the notation rl(�φ|ψ�
2) means the lth “hidden”

outcome of quantum measurements when we would mea-
sure the expected value �φ|ψ�2 = 1 in a thoughtful ex-
periment. We can assume the value of r takes only +1
because the expected value is +1.

In what follows, we assume the two quantum states are
identical, that is, �φ|ψ� = 1. And we show that the KS
contradiction is avoided when we introduce the hidden-
variable model.

Assume the quantum mean value admits the hidden-
variable model given in (45). One has the following
proposition concerning the hidden-variable model

�φ|ψ�2(m) =

�m

l=1 rl(�φ|ψ�
2)

m
. (46)

Assume the proposition (46) is true. By changing the
label l into l′, we have the same quantum mean value as
follows:

�φ|ψ�2(m) =

�m

l′=1 rl′(�φ|ψ�
2)

m
. (47)

An important note here is that the value of the right-
hand-side of (46) is equal to the value of the right-hand-
side of (47) because we only change the label l into l′.

We have

�φ|ψ�2(m)× �φ|ψ�2(m)

=

�m

l=1 rl(�φ|ψ�
2)

m
×

�m

l′=1 rl′(�φ|ψ�
2)

m

= +1. (48)

We use the fact that rl(�φ|ψ�
2) = +1 and rl′(�φ|ψ�

2) =
+1.

Thus we derive propositions concerning the hidden-
variable model, that is,

(�φ|ψ�2(m)× �φ|ψ�2(m))min = 1,

(�φ|ψ�2(m)× �φ|ψ�2(m))max = 1. (49)

From Strong Law of Large Numbers, we have

(�φ|ψ�2 × �φ|ψ�2)min = 1,

(�φ|ψ�2 × �φ|ψ�2)max = 1. (50)

Hence we derive the following proposition concerning the
hidden-variable model

(�φ|ψ�4)min = 1 ∧ (�φ|ψ�4)max = 1. (51)

We can assign the truth value “1” for the proposition
(14) and the proposition (51), simultaneously. We thus
avoid the KS contradiction.

V. CONCLUSIONS

In conclusion, we have investigated a relation between
the no-cloning theorem and the projective measurement
theory that the results of measurements are either +1
or −1. We have introduced the Kochen-Specker (KS)
theorem with the projective measurement theory. We
have resulted in the fact that the two quantum states
under consideration cannot be orthogonal if we avoid the
KS contradiction. Thus the no-cloning theorem has im-
plied that the two quantum states under consideration
are identical in the case. It has turned out that the KS
theorem with the projective measurement theory says a
new version of the no-cloning theorem. Next, we have in-
vestigated a relation between the no-cloning theorem and
the measurement theory based on the truth values that
the results of measurements are either +1 or 0. We have
returned to the usual no-cloning theorem that the two
quantum states are identical or orthogonal in the case.
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