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Abstract.     We introduce a special class of complex numbers, wherein their  

absolute values and arguments given in a polar coordinate system are intege-  

rs and we introduce the corresponding class of the    Optimization Problems:   

"Polar Complex Integer Optimization". 
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1.  Introduction 

                     

     Its well-known in number theory a complex number whose real and  ima-  

ginary parts are both integers: Gaussian Integer.  The Gaussian integers   are 

the set:  Z[i] := { a +  bi  |   a, b ∈ Z }, where i
2
 = - 1.   Gaussian integers are 

closed under addition and multiplication and form commutative ring,  which 

is a subring of the field of complex numbers.      When considered within the 

complex plane the Gaussian integers constitute the 2-dimensional integer lat- 

tice.  The Gaussian integers form unique factorization domain:  it is irreduci- 

ble if and only if it is a prime(Gaussian primes).  The field of Gaussian ratio- 

nals consists of the complex numbers whose real and imaginary part are both 

rational(see, e.g., [5]).  

 

     Another well-known integral subclass of complex numbers are Eisenshte- 

in integers:  complex numbers of the form:  z = a + bω, where a and b are in- 

tegers and  ω =  e
u
, u = 2πi/3.   The Eisenshtein integers form a triangular la- 

ttice in the complex plane, in contrast with Gaussian integers,   which form a 

square lattice in the complex plane.  The Eisenstein integers form a commut- 

ative ring as well and similar to Gaussian integers form a Euclidean domain, 

which supposes unique factorization of Eisenshtein integers into Eisenshtein 

primes. 
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       Similar integral subclasses can be defined for quaternions: Lipschitz and 

Hurwitz Integers(quaternions). 

 

      Quaternions are generally represented in the form:   q =  a + bi + cj + dk, 

where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, and i, j and k are the fundamental quate- 

rnion units and are  a number system that extends the  complex numbers(see, 

e.g., [2], [3]).     

 

      The set of all quaternions H is a normed algebra, where the norm is mul- 

tiplicative:   || pq || = || p || || q ||, p ∈ H, q ∈ H, || q ||
2
  =  a

2
 + b

2 
+ c

2
 + d

2
.  

 

      This norm makes it possible to define the distance d(p, q) = ||p - q||,  whi- 

ch makes H into a metric space. 

 

       Lipschitz Integer(quaternion) is defined as: 

 

        L  :=  { q:  q =  a + bi + cj + dk  |  a ∈ Z,  b ∈ Z, c ∈ Z,  d ∈ Z }. 

 

       Lipschitz  Integer(quaternion) is a quaternion, whose components are all 

integers. 

 

       Hurwitz Integer(quaternion) is defined as: 

 

       H  :=  { q:  q =  a + bi + cj + dk  |  a, b,  c,  d ∈ Z + 1/2}. 

 

       Thus,     Hurwitz Integer(quaternion) is a quaternion, whose components  

are either all integers or all half-integers. 

 

2.  Polar Complex Integers      
 

     Let us introduce a new subclass of complex numbers and a new  approa-     

ch for their definition accordingly:   Polar Complex Integers.   
 

     Its well-known for a complex number  z =  Re(z) + Im(z)i = a + ib,   a ∈ 

R, b ∈ R, i
2
 = -1, to use an alternative option for coordinates in the  complex 

plane:      polar coordinate system that uses the distant of the point z from the   

origin and the angle,      subtended between the positive real axis and the line   

segment in a counterclockwise  sense(see, e.g., [6], [7]).                
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       The absolute value of the complex number:   r =  |z| is the distance to the 

origin of the point, representing the complex number z in the complex plane. 

 

        The argument of  z:  ϕ, is the angle of the radius with the    positive real  

axis. Note that there are two notations of angle ϕ: in degree and in radian. 

 

        Together, r and ϕ gives another way of representing complex  numbers, 

the polar form.   Recovering the original rectangular co-ordinates     from the 

polar form is done by the formula called trigonometric form: 

 

         z = r(cos ϕ + isin ϕ). 

 

         Recall that addition of two complex numbers can be done geometrical-

ly by constructing  the corresponding parallelogram. 

 

          Given two complex numbers: 

 

          z1 = r1 (cos ϕ1 + i sin ϕ1) and z2 = r2 (cos ϕ2 + i sin ϕ2), multiplication     

          of z1 and z2 in polar form is given by:  

           z1z2  = r1 r2 ( cos (ϕ1 + ϕ1) + i sin (ϕ1 + ϕ1) ). 

           Similarly, division is given by: 

           z1 / z2  =  = r1 / r2 ( cos (ϕ1 - ϕ1) + i sin (ϕ1 -  ϕ1) ). 

           Using polar form, let us introduce the following new subclass of com- 

plex numbers : Polar Complex Integers: 

            P := {z:  z = r(cos ϕ + i sin ϕ) | z ∈ C,  r ∈ Z, ϕ ∈ Z }. 

Theorem 1.  Polar Complex Integers are closed under multiplication. 

Proof.  It follows from the formula:   

            z1z2  = r1 r2 ( cos (ϕ1 + ϕ1) + i sin (ϕ1 + ϕ1) ).                                       

Theorem 2.  Polar Complex Integers are not closed under addition. 

Proof.  Let us consider  z1 = 0 + 1i and z2 = 1 + 0i.  
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             Even for degree notation, where  z1 = 1(cos 90
°
 + i sin 90

° 
)  and 

z2 = 1(cos 0
°
  + i sin 0

° 
), absolute value of  z1 + z2  is an irrational number.   

Theorem 3.  Polar Complex Integers are not closed under division. 

Proof.  It follows from the formula: 

            z1 / z2  =  = r1 / r2 ( cos (ϕ1 - ϕ1) + i sin (ϕ1 -  ϕ1) ).                               

Corollary 1.  Polar Complex Integers are mutually primes if and only if 

their absolute values are mutually primes.  

           Similar to aforementioned Hurwitz integers let us introduce Polar Co-

mplex Hurwitz-like Integers: 

            PH := {z:  z = r(cos ϕ + i sin ϕ) | z ∈ C,  r ∈ Z + 1/2 , ϕ ∈ Z + 1/2 }, 

and similar to aforementioned Gaussian Rationals,    the corresponding set of 

Polar Complex Rationals can be introduced as well.  

3.  Optimization over subsets of Polar Complex Integers      

    It is well-known  that an optimization problem can be represented in the  

following way:  

            given: a function f: G → R    from some set G to the real numbers, 

sought: an element  x0∈ G such that f(x0)  ≤  f(x) for all  x∈ G 

("minimization") or such that f(x0)  ≥  f(x) for all x∈ G   ("maximizati-

on").   

     

    Let us introduce a new class of Optimization problems, where  G  is some 

subset of the Polar Complex Integers P and P
n
   and target functions   f:  P → 

R   and f:  P
n 

 → R  are real-valued complex variable function:  "Polar Compl- 

ex Integer Optimization". 
     

3.1. Polynomial Polar Complex Integer Optimization 

 

pcop1 = { maximize  | cn z
n
+ ...  + c1z  |  subject to 

 

               | a1nz
n
 + ...  + a11z |  ≤  b1, 

                 ...             ...              ... 
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               | amnz
n 
+ ... + am1z |  ≤  bm,  

 

               z ∈ P,  aij ∈ C,  bi ∈ R, cj ∈ C,  

 

               1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

 (More sophisticated examples would contain rational meromorphic complex 

functions).  

 

3.2.  Linear Polar Complex Integer Optimization 

 

pcop2a = { maximize | c1z1 + ...  + cnzn |  subject to 

 

                 | a11z1  + ... + a1nzn |  ≤ b1, 

                   ...             ...              ... 

                 | am1z1  + ... + amnzn |  ≤ bm,  

 

                 zj∈ P,  aij∈ C,  bi ∈ R, cj ∈ C,  

 

                 1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

pcop2b = { maximize | c1z1 + ...  + cnzn |  subject to 

 

                 a11z1  + ... + a1nzn   =  b1, 

                 ...             ...              ... 

                 am1z1  + ... + amnzn  =  bm,  

 

                 zj∈ P,  aij∈ C,  bi ∈ C, cj ∈ C,  

 

                 (Az = b), 

 

                 1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

 

3.3. Quadratic Polar Complex Integer Optimization  

 

pcop3 = { maximize | z1
2
 + ...  + zn

2
 - iz1z2 |  subject to 

 

               | a11z1  + ... + a1nzn |  ≤ b1, 
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               ...             ...                ... 

               | am1z1  + ... + amnzn |  ≤ bm,  

 

               zj∈ P,  aij ∈ C,  bi ∈ R,  

 

               1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

3.4.  Non-Linear Polar Complex Integer Optimization 

 

pcop4 = { maximize | e
z
  - sin(πz) |  subject to 

 

               | cos(πz) |  ≤ a, 0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤ 1,  

 

               z ∈ P, a ∈ R }. 

 

3.5.  Mixed-Real-Integer Polar Complex Optimization (MRIPCOP). 

(Similarly for the Polar Complex Hurwitz-like Integers and Polar Complex 

Rationals). 

 

pcop5 =     { minimize  | iz1
4
 + z2

2 
| - x

2
 + y

3
t
2
   subject to 

 

                  xy ≥ N,  

 

                  a1  ≤  | z1 |  ≤  b1, 

 

                  a2  ≤  | z2 |  ≤  b2, 

 

                  a3  ≤    x   ≤    b3, 

 

                  a4  ≤    y   ≤    b4, 

 

                  a5  ≤    t   ≤    b5, 

 

                            z1 ∈ C, z2 ∈ P,   

 

                            x ∈ Z, ,  y ∈ Z, t ∈ R, 

   

                  ai ∈ R, bi ∈ R, N ∈ N,  ai > 0, 
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                  1  ≤  i  ≤  5 }.                  

 

     Note that in addition, each such example may comprise  complex conjug- 

ations as well. 

 

4.  Conclusions 

 

We unveiled a special class of complex numbers, wherein their absolute val-   

ues and arguments,     given in a polar coordinate system are integers and we  

unveiled the corresponding class of the   Optimization Problems:  "Polar Co- 

mplex Integer Optimization". 
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