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Abstract: In this work we will discuss the possibility that if a quantum particle possesses a 

fluid state, as shown in our work on the fluid state of Dirac quantum particles, then the 

motion of the physical particle in an ambient space may be directly related to its fluid state 

and therefore it can be explained in terms of the wave motion of physical objects that move in 

a substrate space with the mechanism similar to that of peristaltic locomotion. In particular, 

we will also discuss the possibility that the so-called inertial mass of a particle in classical 

physics may be identified as a form of gripping connection between the particle and the 

substrate, which is the ambient space itself, that is needed for a particle to move in space. 

This is similar to a tight grip that is needed for a physical object to move on a surface. 

 

In physics, normally, an analytical dynamics of a physical particle is formulated relying on 

the perception and examination of the motion of the particle in space under the influence of 

physical fields. And it has been shown that the dynamics is determined not only by the 

external physical fields but also by the physical properties associated with the particle itself, 

such as an inertial mass   and a charge  . An inertial mass   given to a physical object is 

considered as a physical quantity that manifests the inertial resistance to the acceleration   of 

the object under the net action of applied forces   acting on it. This is represented 

mathematically by Newton’s second law of motion as     . Consider the case of an 

elementary particle of an inertial mass  . If the elementary particle is regarded as a mass-

point with no substructures then the inertial mass   is no more than a proportional constant 

that connects a physical entity to a mathematical object. However, if the elementary particle 

in fact possesses substructures, such as it is constructed by actual mass points that join 

together to form a physical object that has the mathematical structure of a differentiable 

manifold, then it is possible to speculate that the inertial mass of the elementary particle is the 

result that arises from a mechanism that determines the way how a physical object moves in 

space [1-5]. Since different physical fields have different influences on the motion of a 

physical object but they all assume the same inertial mass for the object when it moves in 

space, this leads to the reasonable conclusion that if there is a mechanism that can give an 

explanation to the inertial mass of an object then such mechanism must be related directly to 

some form of interaction between the object and the ambient space itself. For example, if a 

particle has an inertial mass   and a charge   is placed in a region of space with an electric 

field   then it has been established from experimental observations that the relationship 

between the quantities  ,   and   is given by the equation      . We may suggest that 

the quantity    provides a mechanism for the charged particle to move in space. As shown in 



our previous work on the fluid state of the electromagnetic field that the electric field   can 

be identified with the velocity of a fluid flow and as a consequence the electrical interaction 

can be explained mechanically using the Stokes’ law in fluid dynamics. Furthermore, from a 

dimensional analysis, the new dimension of the charge   is        . Therefore the charge 

  is a change of mass with respect to time. If the charge is constant then the particle which 

possesses the charge changes an equal amount of mass per unit time [6]. In this case the 

motion of the particle may be directly related to its fluid state and therefore it can be 

explained in terms of the wave motion of physical objects that move in space with the 

mechanism in the form of peristaltic locomotion. In this work we will discuss how the 

peristaltic locomotion can be applied to Dirac quantum particles. We first give a brief account 

on how the motion of a physical object can be mathematically formulated in physics.  

In classical physics, the action of a physical field on the motion of a physical object in space 

is represented by a mathematical expression that is used to determine the acceleration and 

velocity so that the path of the particle can be established. Furthermore, except for physical 

constants that are associated with a particular elementary particle and whose values are 

determined by experiments, the mathematical analysis of the motion of a particle normally 

assumes that the particle is a mass-point which has no substructures that may have direct 

effect on its motion in space. It should be emphasised here that mass-point is a relative 

concept that depends on the scale of the physical system under consideration. For example, 

the Earth can be considered as a mass-point when its motion is investigated in the solar 

system and an electron as a mass-point in the Bohr model of the hydrogen atom. However, 

even though the physical structure of the Earth must be taken into account when we 

investigate the motion of physical objects within its scale, at the present state of physical 

development the investigation of physical behaviour on the scale of an electron is a question 

that needs to be investigated. On the other hand, since experiments have shown that a 

quantum particle such as an electron can behave like a wave, which, according to classical 

physics, is the motion of a medium, therefore it is reasonable to suggest that an electron is not 

a mass-point but rather a physical compound which is formed by mass points, and, as shown 

in our work on the fluid state of Dirac quantum particles, it may be in a fluid state [7]. 

Mathematically, the motion of physical objects in an ambient space can be described by 

geometric transformations under which the properties of the configuration of the objects 

remain unchanged, such as isometric transformations that preserve the distance from a 

configuration space onto itself. This purely mathematical description can be applied into 

classical dynamics in which the motion of solid objects can be described by the Poincaré 

group. On the other hand, in our previous works on the quantum structures of elementary 

particles we suggested that instead of viewing elementary particles as mass-points we may 

consider elementary particles as three-dimensional differentiable manifolds, therefore we 

would need to extend the description of the dynamics of elementary particles in classical 

physics as mass-points to the dynamics of elementary particles as three-dimensional 

differentiable manifolds in an ambient space. In particular, we may describe the evolution of 

elementary particles as a change of their geometric structures through evolution processes, 

such as the Ricci flow, rather than their motion in an ambient space, and in this case we may 

assume that the motion of elementary particles is an isometric transformation, which is a 



continuous isometric embedding into spacetime. The continuous isometric embedding of 

three-dimensional Riemannian manifolds can also be viewed as geometric solitons which are 

formed by a continuous process of materialising spacetime structures rather than the motion 

of a solid physical object through space with respect to time as described in classical physics. 

The dynamics of an elementary particle described as a soliton can be formulated by a 

covariant Ricci flow using the Lie differentiation given by the equation           , 

where   is a dimensional constant,     is a covariant metric tensor and     is the Ricci 

curvature tensor. The fundamental problem that emerges from the consideration on how a 

three-dimensional Riemannian manifold can be isometrically embedded in an ambient 

Euclidean space can be outlined as follows [8]. Let        and        be two Riemannian 

manifolds. It is shown in differential geometry that the manifolds    and    are isometric if 

there exists a diffeomorphism   which preserves the distances. Let              be the 

local coordinates on the manifold    with the Riemannian metric          
     and 

                   be the local coordinates in the manifold    with the 

Riemannian metric          
    , then the two manifolds    and    are said to be 

locally isometric if the following condition holds                          . In 

topology, a topological embedding between topological spaces is a homeomorphism, which 

is an injective continuous transformation. If the topological spaces are smooth manifolds then 

the topological embedding is a diffeomorphism and the image is a submanifold of the 

codomain manifold. According to the Whitney embedding theorem, a manifold of dimension 

  can be smoothly embedded in the Euclidean space of dimension   . Consider a smooth 

embedding   of a Riemannian manifold        in the Euclidean space    whose Euclidean 

metric is given by           
  

   . Then we obtain                         
   . 

This is a system of          non-linear partial differential equations in   unknown 

functions. It is also conjectured in differential geometry that any Riemannian manifold of 

dimension   can be isometrically embedded in a Euclidean space of dimension         . 

If we consider elementary particles as Riemannian manifolds of dimension three then the 

required ambient Euclidean space must have a dimension six. As discussed in our previous 

works, a six-dimensional Euclidean space can be formulated as the union of a three-

dimensional spatial manifold and a three-dimensional temporal manifold. However, there are 

two possibilities that can be considered when we attempt to formulate such a unified 

spacetime, because a spacetime may be endowed either with a Euclidean metric or a pseudo-

Euclidean metric. If the ambient Euclidean space is a pseudo-Euclidean spacetime of 

signature       then there remains the question of whether it is possible to embed three-

dimensional quantum particles with positive definite metric in such ambient space. It is 

interesting to note that if a three-dimensional Riemannian spatial manifold can be embedded 

in a six-dimensional pseudo-Euclidean spacetime of signature       then there would also 

exist three-dimensional temporal manifolds that could also be embedded and these temporal 

manifolds could also exist as physical objects [9-10]. On the other hand, if the ambient 

Euclidean space is a Euclidean spacetime then we also showed that it is possible  to formulate 

a Euclidean relativity so that spacetime has a positive definite Euclidean metric instead of a 

pseudo-Euclidean metric so that the Whitney embedding theorem can be applied [11]. 



Even though the above purely mathematical description of the motion of quantum particles is 

satisfactory with regard to the metric of the mathematical structure of a quantum particle, it 

does not specify a physical mechanism for the motion of a quantum particle in space. We 

may ask the question of how a quantum particle is displaced from one position to the next in 

space. If we assume quantum particles are formed from mass points by contact forces then 

these quantum particles can be connected to space by some form of physical grips also by the 

contact forces. From this physical mechanism then we may infer that the physical grip of a 

quantum particle into the ambient space determines its inertial mass. Furthermore, we may 

also conclude that all physical objects that can move in space must have a composite 

structure. In the following we will discuss a possible mechanism for the motion of a quantum 

particle that also manifests the feature of the wave-particle duality based on our previous 

suggestion that Dirac quantum particles possess a fluid state. It is well-known that physical 

objects that have a hydrostatic structure can move in space with the mechanism in the form of 

peristaltic locomotion. In order to perform a peristaltic locomotion a quantum particle that 

possesses a fluid state must grip the substrate, which is the ambient space, to increase sliding 

resistance on the contact area. This could be the source of the so-called inertial mass defined 

in classical physics. In one form of peristaltic locomotion, the object moves forwards when 

the peristaltic wave also travels forwards, and in another different form of peristaltic 

locomotion, the object moves forwards when the peristaltic wave travels backwards. This 

could be related to the charge of an elementary particle. We would like to mention here one 

particular work that provides a simple mechanical model for peristaltic locomotion [12]. The 

authors of the paper discuss the simple but instructive problem of peristalsis-like locomotion 

driven by elongation-contraction waves that propagate along the body axis of the physical 

object under investigation. They showed that the basic equation that describes the peristaltic 

locomotion is a one-dimensional linear diffusion equation whose coefficient and source term 

express the biological action that drives the motion. Furthermore, they also showed that a 

perturbation analysis of a more general equation reveals that adequate control of friction with 

the substrate on which locomotion occurs is required for a translation of the internal motion 

into directional migration of a body. They arrived at a differential equation of the form 

                                   , which gives rise to a series of diffusion 

equations of the form                , whose formal solution can be expressed in an 

integral form as                   
 

                         
 

  
, where        

                        is the Gaussian Green’s function. It is interesting to note that 

using a diffusion equation to describe the dynamics of peristaltic locomotion is similar our 

formulation of quantum physics in terms of differential geometry and topology. For example, 

we showed that the Ricci scalar curvature that describes the geometrical structure of a 

quantum particle satisfies a three-dimensional diffusion equation         , whose 

solutions can be found as                     
 

      
            , which determines 

the probabilistic distribution of an amount of geometrical substance   which manifests as 

observable matter. We would like to mention that the geometric and topological structures of 

quantum particles can also be expressed in terms of wavefunctions for the case of one and 

two dimensions. We showed that in one dimension, the geometric structure of a 1D 



differentiable manifold that is represented by the curvature   can be expressed in terms of a 

wavefunction   as                            , and in two dimensions the Ricci 

scalar curvature   of a 2D differentiable manifold can be expressed in terms of a 

wavefunction   as               
        

    
    , where           and  

              . The question now is how to express the motion of quantum particles as 

peristaltic locomotion which is a continuous process of the internal propagation of the 

elongation-contraction wave along the direction of migration. 

We have shown in our work on the fluid state of Dirac quantum particles that Dirac 

equation can be used to describe the state of fluid flow formulated in the theory of classical 

fluids. For free particles, Dirac equation is given as 

                                                                                                                                                

with the matrices    are given as 

    

    
    
     
     

         

    
    
     
     

          

     
    
    
     

          

    
     
     
    

                    

By expansion, we obtain 

 
   

  
       

 

  
  

 

  
    

   

  
                                                                                            

 
   

  
       

 

  
  

 

  
    

   

  
                                                                                            

   

  
        

 

  
  

 

  
    

   

  
                                                                                            

   

  
        

 

  
  

 

  
    

   

  
                                                                                            

It is observed from the field equations given in Equations (3-6) that the change of the field 

        with respect to time generates the field        , and the change of the field 

        with respect to time generates the field        . This is similar to the case of 

Maxwell field equations of the electromagnetic field in which the change of the electric field 

generates the magnetic field, and vice versa. Then it may be suggested that Dirac field of 

qunatum particles may also be viewed as being composed of two different physical fields, 

namely the field         and the field        . Furthermore, Dirac field equations given in 

Equations (3-6) can be rewritten as a system of real equations as follows 

 
   

  
 

   

  
 
   

  
                                                                                                                                

  
   

  
 

   

  
 
   

  
                                                                                                                               



 
   

  
 

   

  
 

   

  
                                                                                                                                

 
   

  
 

   

  
 

   

  
                                                                                                                               

   

  
                                                                                                                                                    

   

  
                                                                                                                                                 

   

  
                                                                                                                                                 

 
   

  
                                                                                                                                                   

From Equations (7-14), we derive the following system of equations for all components of 

the Dirac field 

    

   
                                                                                                                                            

    

   
 
    

   
 
    

   
                                                                                                                         

Solutions to Equation (15) can be written as 

              
              

                                                                                                 

where     and     are undetermined functions of        . The solutions given in Equation 

(17) give a distribution of a physical quantity along the y-axis. On the other hand, Equation 

(16) can be used to describe the dynamics, for example, of a vibrating membrane in the 

     -plane. If the membrane is a circular membrane of radius   then the domain   is given 

as             . In the polar coordinates given in terms of the Cartesian coordinates 

      as        ,        , the two-dimensional wave equation given in Equation (16) 

becomes 

 

  
   

   
 
   

   
 

 

 

  

  
 

 

  
   

   
                                                                                                    

The general solution to Equation (18) for the vibrating circular membrane with the condition 

    on the boundary of   can be found as  



                                              

 

   

                    

 

     

                                                                               

where           is the Bessel function of order   and the quantities    ,    ,     and 

    can be specified by the initial and boundary conditions. As has been mentioned above, at 

each moment of time the vibrating membrane appears as a 2D differentiable manifold which 

is a geometric object whose geometric structure can be constructed using the wavefunction 

given in Equation (19). Even though elementary particles may have the geometric and 

topological structures of a 3D differentiable manifold, it is seen from the above descriptions 

via Dirac equation that they also appear as 3D physical objects that embedded in three-

dimensional Euclidean space. For steady states, the field         and the field         

satisfy the Cauchy-Riemann equations in the      -plane and therefore it is possible to 

consider Dirac quantum particles as physical systems which exist in a fluid state as defined in 

the classical fluid dynamics as substances that retain a definite volume, have the ability to 

flow and deform continually, hence they can exhibit a wave motion in which the field 

        may also be identified as the stream function and the velocity potential of one fluid 

flow and the field         with another fluid flow. We now show that the two fields 

        and         are connected and, most importantly, how such connection would lead 

to the prospect of using them to describe the motion of a Dirac quantum particle in an 

ambient space as a peristaltic locomotion. If the physical quantity  , which is identified with 

the inertial mass of a quantum particle, is assumed to be positive,    , then it is observed 

that it is possible to describe the physical structure of a Dirac quantum particle as a spinning 

top if we consider solutions to Equation (15) as hybrid functions of the form 

    
           

                             

           
                             

                                                                                       

Solutions given in Equation (20) can be rewritten in the following forms 

              
                             

                                                                            

              
                               

                                                                          

Using the equations given in Equations (11-14), we further obtain the conditions          

and        . If we write              and              then we have 

                                                                                                                         

                                                                                                                      

From the above forms of solutions given to the components    of the wavefunction   we can 

show how a standing wave can be established from the superposition of a wave associated 



with the field         and a wave associated with the field        . Let 

                be identified with the velocity potential and                 with 

the stream function of one fluid flow. Now we have two different descriptions that can be 

given to the field        . If we identify the component                 with the 

velocity potential and                  with the stream function of another fluid flow 

then we have the stream function of the first flow equals the velocity potential of the second 

flow, and the stream function of the second flow is a reflection of the velocity of the first 

flow. Even though this kind of identification may be used to describe a particular type of 

fluid flow of Dirac quantum particles, it does not give rise to the physical structure that we 

are looking for, that is a standing wave. However, if we now identify the component    

             with the stream function and                  with the velocity 

potential of the second flow then the two flows that are identical except for their flow 

directions, which are opposite to each other, and in this case they can form a required 

standing wave. If a Dirac quantum particle is formed from mass points by contact forces then 

the particle can also be connected to an ambient space and performs a peristaltic locomotion, 

which then manifests the feature of the wave-particle duality.  
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