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Abstract

A bi-metric formalism is introduced to describe two bodies gravita-
tional interaction using Whitehead’s version of Schwarzschhild’s orig-
inal solution

1 Schwarzschild solution

It is well-known that Schwarzschild’s solution of Einstein’s field equations to
describe a spherical static gravitational field can be be written using a great
variety of coordinate systems including that proposed by Whitehead who did
it unconscious of the fact that instead of a new theory he was proposing a
very drastic simplification of Schwarzschild’s original solution:

gµν = ηµν +
2m̂

r3
LµLν (1)

where ηµν is Minkowsky’s metric with η44 = −1 and:

L4 = r, Li = xi i, j = 1, 2, 3 (2)

with:

r = (x21 + x22 + x23)
1/2 (3)

x̂ being the space location of the point source and m̂ is its passive mass.
Therefore:
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ηµνL
µLν = 0 (4)

It has been assumed also that the point mass m̂, source of the gravi-
tational field, is at rest at the origin of coordinates x̂i = 0. Besides the
simplicity of Whitehead potentials two notorious facts follow follow from
them:

1) The single value of r where every potential becomes infinite is r = 0
i.e at the location of the passive mass m̂: there are no ”blackholes”.

2) The time-component of L,L4/c = r can very well be interpreted as the
time that gravitation takes to go from the the location of the passive mass
m̂ to the point where test mass point is located at distance r, emphasizing
the fact that gravitation is an interaction propagating at the speed of light.

If two masses are interacting and we want to describe the motion resulting
from this interaction the question is: who is observing them. Is there only
one observer or many? If there is one, who is it. And if there are many as
it should , how are related to one another?. The observers that I have in
mind are those observers that Special relativity considers. Namely observers
with a common unit of length and who are able a synchronize their clocks.
Then while we deal with the dynamics of two interacting objects is a problem
of general relativity to make sense out of it we need embody it in a frame
description of Special relativity.

gµν = ηµν +
2m̂

(Lσuσ)3
LµLν (5)

where uρ is a time-like vector of Minkowski space-time identifying the class
of objects using the same time . The usual Whitehead solution corresponds
u4 = 1, ui = 0.

g44 = −1 +
2m̂

r
, g14 =

2m̂x1
r2

(6)

g24 =
2m̂x2
r2

, g34 =
2m̂x3
r2

(7)

g11 =
2m̂x21
r3

, g22 =
2m̂x22
r3

(8)

g33 =
2m̂x23
r3

, g12 =
2m̂x1x2
r3

(9)

g23 =
2m̂x3
r3

, g31 =
2m̂x3x1
r3

(10)
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Let us start from the simplest case where a test mass is orbiting an object
of mass m̂ that is located at a point with coordinates x̂i = 0. Using t as
parameter the geodesic principle tells us that the orbit of the test particle
will be a solution of the system of differential equations:

d2xi

dt2
+ Γi44 + 2Γi4jv

j + Γijkv
jvk = bvi (11)

b = Γ4
44 + 2Γ4

4jv
j + Γ4

jkv
jvk (12)

where the Christoffel symbols corresponding to Whitehead’s metric are:

Γiii =
2m̂2x3i − 2m̂r3xi + 3m̂rx3i

r6
(13)

Γijj =
−2m̂2xix

2
j + 2m̂r3xi − 3m̂rxix

2
j

r6
(14)

Γijk =
(2m̂+ 3r)m̂xixjxk

r6
, Γijk =

(2m̂+ 3r)m̂xixjxk
r6

(15)

Γiij =
(2m̂+ 3r)m̂x2ixj

r6
, Γi4i = −2cx2i m̂

2

r5
(16)

Γi4j = −2cxixjm̂
2

r5
, Γi44 =

(−2m̂+ r)m̂xic
2

r4
(17)

Γ4
ii =

2m̂(m̂x2i − r3 + 2rx2i )

r5c
, Γ4

ij =
2(m̂+ 2r)m̂xixj

r5c
(18)

Γ4
i4 =

(2m̂+ r)m̂xi
r4

, Γ4
4,4 =

2m̂2c

r3
(19)

In these formulas i, j, k run from 1 to 3 but i 6= j, i 6= k and j 6= k

2 Two bodies geodesic equations

In this paper I consider an important generalization of ([1]) problem, con-
sidering two point objects with non negligible masses m and m̂ describing
orbits xi(t) and x̂i(t) as functions of a common time parameter t. This idea
can be very simply implemented rewriting the Whitehead model as a two
body bi-metric model introducing both:

gµν = ηµν +
2m̂

r3
LµLν (20)
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where xi has been replaced by xi − x̂i, in (??)) and:

ĝµν = ηµν +
2m

r3
L̂µL̂ν (21)

where xi has been replaced by x̂i−xi and m̂ by m. as well as in the formulae
corresponding to the Christoffel symbols of the preceeding section.

The resulting system of differential equations to be considered is then the
following:

d2xi

dt2
+ Γi44 + 2Γi4jv

j + Γijkv
jvk = bvi (22)

d2x̂i

dt2
+ Γ̂i44 + 2Γ̂i4j v̂

j + Γ̂ijkv̂
j v̂k = b̂v̂i (23)

(24)

with:

b = Γ4
44 + 2Γ4

4jv
j + Γ4

jkv
jvk (25)

b̂ = Γ̂4
44 + 2Γ̂4

4j v̂
j + Γ̂4

jkv̂
j v̂k (26)

Notice that the x substitutions made can be understood as linear coordi-
nate transformations and therefore they are indeed tensor transformations.

3 A head-on collision

I consider here the case of a head-on collision along a radial trajectory x2 =
x3 = x̂2 = x̂3 = 0 of two point particles with masses m and m̂. The relevant
non zero Christoffel symbols to take into account now, dropping the suffix 1
of x1 are the following:

(27)

Γ1
11 =

2m̂2(x− x̂)3 − 2m̂r3(x−̂x) + 3m̂r(x− x̂)3

r6
(28)

Γ1
44 =

(−2m̂+ r)m̂(x− m̂)

r4
(29)

Γ1
14 =

2m̂2(x− x̂)2

r5
(30)
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Γ4
44 =

2m̂2

r3
(31)

Γ4
14 =

(2m̂+ r)m̂(x− x̂)

r4
(32)

Γ4
11 =

(2m̂+ r)m̂(x− x̂)2 − r3 + 2r(x− x̂)2)m̂

r5
(33)

Γ4
44 =

2m̂2

r3
(34)

as well as the result of exchanging Γ′s by Γ̂′s, m̂ by m and x− x̂ by x̂− x
The system of equations to solve is the following:

d2x

dt2
=

(2v3 + 4v2 + 6v + 2)

(x− x̂)3
m̂2 +

(v3 + 2v2 − 1)

(x− x̂)2
m̂ (35)

d2x̂

dt2
=

(2v̂3 + 4v̂2 + 6v̂ + 2)

(x̂− x)3
m2 +

(v̂3 + 2v̂2 − 1)

(x̂− x)2
m (36)

where v = dx/dt, and v̂ = dx̂/dt.

4 radiation reaction terms

In the model described up to now the retarded interaction is described by a
null vector Lα whose space components Li = xi − x̂i have its origin at the
mass m̂ of the source and its end point at the point where its gravitational
field is felt, and its time component is its length r, or since I have assumed
c = 1, the travel time duration of the. Since this means the two events at
xi and x̂i have been considered simultaneous This suggests that to describe
the radiation reaction terms of the interaction the model can be improved
by considering a null vector with space components:

L̂i = xi − x̂i − rv̂i (37)

in first approximation, or:

L̂i = xi − x̂i − r(v̂i − râi) (38)

as well as that obtained exchanging un-headed x, v by headed ones x̂, v̂.
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The graphs at the end of the paper show that the improvement of the
model is real. Initial conditions are x(0) = 2m, x̂(0) = −m̂, with m = m̂
= 1 solar mass. Without radiation reaction the numerical integration stops
when v(t) ≈ 1 without reaching x = x̂ = 0. Including first order radiation
reaction term extends somewhat the approach to r=0. But this limit is only
reached when second order reaction terms are included and correspond to a
value of |v| that is very approximately 1.
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5 Appendix

Coulomb electrostatics can also be cast as a whitehead-like model introducing
a potential vector such that:

Aα =
e

(uρLρ)2
Lα, or A4 =

e

r
, Ai =

exi
r2

(39)

The corresponding field components being:

Ei = Fi4 = −exi
r3
, Bij = ∂iAj − ∂jAi = 0 (40)

and the corresponding force-like equation becomes :

m
d2xi

dt2
+ F i

4 + F i
jv

j = 0, or m
d2xi

dt2
=
exi
r3

(41)
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From this point of view magnetism does not appears as a proper field but
as a modification of Coulomb’s law when considering moving charges..
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