
Organic Network Control Systems: Challenges in
building a generic solution for network protocol

optimisation
Bloch Matthias

Universität Passau
Institute of Intelligent Systems

Innstr. 43, 94032 Passau, Germany
bloch12@gw.uni-passau.de

Abstract—In the last years many approaches for dynamic
protocol adaption in networks have been made and proposed.
Most of them deal with a particular environment, but a much
more desired approach would be to design a generic solution
for this problem. Creating an independent system regarding the
network type it operates in and therefore the protocol type that
needs to be adapted is a big issue. In this paper we want to
discuss certain problems that come with this task and why they
have to be taken into account when it comes to designing such
a generic system. At first we will see a generic architecture
approach for such a system followed by a comparison of currently
existing Organic Network Control Systems for adapting protocols
in a Mobile Ad-hoc network and a Peer-to-Peer network. After
identifying major problems we will summarize and evaluate the
achieved results.

Index Terms—Organic Network Control System, Organic
Computing, Network Protocol Optimisation

I. INTRODUCTION

Technical improvement is one of the biggest constants of
the past decades. The devices we use every day are part of
our lives and we can benefit from this improvement in many
different situations where we do not even recognise it anymore.
Not too long ago people had no access to the Internet, did not
own a PC and actually had to go to a library if they wanted to
have access to scientific literature. In our days mobile phones,
wristwatches or even refrigerators can establish a connection to
a local network, which gives them access to the omnnipresent
internet. It is a privelege, which makes knowledge, data and
services easily accessable for people all over the world. This
interconnectedness has been built up over the years and is
getting more complex with every year that passes by. Therefore
improving this system is a task that has to deal with various
components and we are reaching a point where, in some cases,
a manual approach does no longer bring the desired reward.

This process can especially be observed when it comes to
optimising processes that are already performing on a high
level. In these scenarios people take a step back and rely
on a technique that comes from nature itself. For example
the human body is a product of a permanent self-learning,
self-organising and self-optimising system, that evolved over
thousands of years. From the technical point of view we try

to apply these evolutionary processes to our environment to
make it able to manage itself and improve at the same time.

This self-management is one aspect of a field called Organic
Computing (OC)[12] and Organic Network Control (ONC) is
an approach to use this technique for network protocols. These
are used to establish a proper communication between different
devices. They contain a certain amount of parameters that give
information about different properties depending on the type
of the network.

In this paper we collected data from current research
and apply them to a generic approach of network protocol
optimisation. We discuss certain problems that come with
building a Generic Organic Network Control System and show
up possible solutions. In Sec. 2 we present an architecture
approach, show important components and give insight on the
desired functionality. For better understanding of optimisation
processes for different protocols we included two experiments
in Sec. 3. In this section we go over describing the experi-
mental setup, the protocols used and the results. After that we
go into two main problems in Sec 4. In Sec. 5 we conclude
this paper with a summary and an outlook to future tasks and
challenges.

II. STATE OF THE ART

By far OC is getting used in multiple subject areas where
wireless connections and networks in general can be found.
Different approaches have been made adapting traffic control
[1], Clustering Algorithms in mobile ad-hoc networks [10]
and since 2005 the German Research Foundation runs a
priority research program on OC [1]. When it comes to
network protocols there are always particular solutions for
certain network types. The problems emerge when it comes
to optimizing these protocols, because the performance highly
depends on the used parameter set. These differ between the
different kinds of protocols and must be adapted individually
for the current environmental needs so far. That´s the cause for
a generic solution being very desirable to be able to solve this
task a reasonable amount of time. Many different approaches
have been made to solve this issue, but a real world solution
does not exist yet.



A. Generic Architecture Approach for Organic Network Con-
trol Systems (ONC)

A fundamental thought for building and designing a generic
solution for ONC is the architecture or the contained compo-
nents of such a system and the requirements that have to be
fulfilled to be able to dynamically adapt network protocols to
various, unforseen situations. The architecture we want to set
as a basis for further discussion of this topic was presented in
[2,3] by Tomforde et al. and shown in Fig. 1.

The biggest problem with an architecture meeting this task
is the requirement for the system to respond in a short amount
of time to stay useful. Therefore the adaption needs to happen
quick and this is the first challenge to be taken. The approach
to solve this task for the presented architecture by Tomforde
et al. in [2,3] is building up a layered system, with the first
layer being a parametrisable Network Controller [2]. The
layers responsible for the adaption are inspired by a generic
Observer/Controller architecture presented by Müller-Schloer
et al in [11], where each has different responsibilites in finding
suitable solutions to environmental changes or requirements.

1) System under Observation and Control (SuOC): The
SuOC is basically the node taking part in the network and is
therefore using certain protocols to be able to communicate
with other components connected to the network. In this
architecture the SuOC takes over the role of the first layer
(Layer 0) and needs to be a parametrisable network controller
[2].

Layer 0 is responsible for processing the particular instance
of a network protocol and collect basic information about i.e.
used parameters. Further on for some networks, like Mobile
Ad-hoc, the neighborhood of nodes is important so additionally
for these the current status of the environment needs to be
locally accessible and observable [2,8]. As this layer should
always be exchangable it is never restricted to a particular
set of protocols and has to provide, depending on the current
protocol used, a set of variable parameters and a quality
criterion for the performance measurement[2]. This criterion
is also called fitness or evaluation function [8].

2) On-line adaption: The first adaptation step is situated
at Layer 1 and adapts the network controller settings[2]. This
component is able to react quickly with a solution from a
predefined pool of classifiers (rule set) using the observed
condition of Layer 0 as foundation for choosing an appropriate
action.

At Layer 1 the observer additionally collects status infor-
mations and local settings of the current network protocol
instance for further processing. The data is then made up with
a performance prediction value and historical performance
knowledge to build a classifier for a certain environment. By
transforming it into an n-dimensional vector to provide a more
normalized and abstract view of the situation, it is ready to be
passed to the controller of Layer 1.[3]

The controller then decides, based on the vector received,
if an adaption is needed[3] by a Learning Classifier System
(LCS), which maps the input from the observer to a rule base
of possible actions[2]. In particular the LCS builds a match set,

Fig. 1: Generic architecture approach of ONC [2,3]

which are all classifiers from the rule set matching the current
environmental conditions. Then the contained classifiers are
ordered and the most appropriate parameter set is applied to
Layer 0. Additionally the performance with the new parameter
set is predicted, to be able to calculate a reward by comparing
the predicted value with the actual performance measure
after the adaption. With this reward value the system is able
to learn automatically by updating the contained classifiers
appropriately to how they perform in certain situations.[3]

The System is running into an issue, if there is no suitable
solution for a given situation. In this case the action with
the most similar environmental condition is choosen by the
Covering Mechanism, because the LCS is not allowed to create
new classifiers by virtue of time restrictions[3]. If the rule set is
empty the default action is chosen. The observed information
is then passed to the observer at Layer 2, where the production
cycle for new classifiers is started.

3) Off-line optimisation: The last layers responsibility is
the optimisation of parameter sets. The Off-line optimisation
has to solve the task to find a parameter set that is as close to
the optimum as possible for a given protocol[2]. The two main
components solving this issue are an Evolutionary Algorithm
and a simulation tool, to be able to test a big amount of new
created parameter sets in a closed environment. [3] Thereby
the system is not affected and can operate simultaneously.

Additionally outsourcing this task to a new layer has a big
advantage, because time restrictions are no longer as important
and solutions can run various tests in the simulation before
they are applied to the real world for the first time. Thereby the
rate of bad performance and malfunction can be reduced [3]
and the fitness function can be applied for new solutions, too.
This leads to a more consistent performance of the protocol
and a premature assessment of how the new parameter set will
perform.

On this layer the Observer receives the system information
from the observer at Layer 1 and passes it to the controller,
where the Evolutionary Algorithm (EA) and the simulation



tool are located. After the passed vector is applied to the
simulator for the first time the EA evolves multiple parameter
sets and tests them using the simulator NS/2[2, 3]. The EA
thereby is restricted by a pre-defined number of children per
generation, because a higher number would lead to a higher
quality of sets, but also to more time spent evolving them.
The parameter sets that qualify and pass these tests are then
transferred back as new solutions to Layer 1 and are applied
to the real world on Layer 0.

B. Three major tasks of ONC

To be able to perform a precise performance measure and
appropriately adapt the network controller to the current situa-
tion three major tasks have to be fulfilled: A textitperformance
metric has to be defined [3,8] to be able to decide, by certain
parameters, if an adaption is needed. Only this way we are
able to have reliable indicators whether an adaption or a new
protocol is perfoming better or worse.

Secondly a situation description accompanied by a distance
function is required[3,8]. This is especially important for the
LCS and the included Covering Mechanism. With this function
we are able to decide if conditions are similar or not. For a
generic solution a generalization of this distance function is
required to be usable for multiple different scenarios. [8]

Thirdly a simulation model for Layer 2 needs to be devel-
oped [3,8], which includes e.g. creating different scenarios for
testing.

III. OPTIMISATION OF NETWORK PROTOCOLS:
PEER-TO-PEER VS. MOBILE AD-HOC

A. Optimisation: Peer-to-Peer protocol

At first we want to look at the performance of the introduced
system architecture when it comes to optimizing a Peer-
to-Peer protocol. Both parts, the on-line network controller
adaption and the off-line parameter set optimisation, were
tested separately in this experiment. We will start with the
experimental setup including the NS/2 configuration, the used
protocol and the used parameter set. The last part of this sec-
tion will be the evaluation of both components’ performance.
This experiment was presented by Tomforde et. al. in [2].

1) Experimental Setup: For this experiment a standard PC
(CPU: AMD Athlon 3200+, 2.00 GHz and RAM: 1.00GByte)
was used taking part in a Peer-to-Peer (P2P) network. The
”real-life”-scenario was inspired by a role model of a student
in computer science during a day, looking up information
sporadically on the internet, downloading data for university
and additionally running a P2P-Client to download a high
amount of data. The target set for this experiment was to
download the data as fast as possible without interferring
other processes or decreasing usability. In this case CPU and
RAM remained unconsidered, because the model of the course
of the day only contained upload-bandwidth and download-
bandwidth.

Tomforde et al. [2] were measuring the off-line optimisation
by comparing it with the usage of the standard parameter set
and the on-line adaption was evaluated under the assumption

that varying user behaviour can not be forseen completely,
which was simulated by the previously described scenario.

As presented in the architecture approach before a NS/2-
simulator was used as it is a standard solution for network
simulations. The scenario was used as basis for the NS/2
and was defined with the following configuration: number of
nodes: 100, number of seeds(peers initially providing the data):
3, size of files: 500MB, and number of files: 1. The maximum
possible link download-bandwidth was set to 400 KByte/sec
and 40 KByte/sec for upstream.[2]

Before we go over to the evaluation we have to take a closer
look at the used P2P-Protocol and its parameters. The used
P2P-Client was based on the BitTorrent protocol, but Tomforde
et al. [2] were using an implementation of a BitTorrent-like
protocol, with some simplifications as presented by Eger et
al. in [5]. The standard BitTorrent protocol was developed to
increase the efficiency and reduce free-riding by dividing data
into small parts called chunks. Each peer is able to download
chunks from other peers, but when the download is finished
the chunk is instantly uploaded to other peers. In difference
to the standard BitTorrent protocol the used implementation
does not implement a specific version, but it still behaves like
the standard protocol. The BitTorrent-Client offers multiple
parameters which might affect the performance, but Tomforde
et al. [2] restricted the optimisation to seven parameters, which
can be found in Table I with the used standard values.

Variable Description Standard value

NumberOfUnchokes Number of
unchoked connections 4 conn.

ChokingInterval Interval for
unchoking process 10 sec.

RequestPipe Number of
simultaneous requests 5 req.

NumberPeersPerTracker Number of requested peers 50 peers

MinPeers Min. Number of peers
for not re-requesting 20 peers

MaxInitiate Max. Number of peers
for initialisation 40 peers

MaxConnections Max. Number of open
connections 1000 conn.

Tab. I: Variable parameters of the BitTorrent protocol [2]

2) Evaluation of Off-line optimisation: The basis for this
optimisation builds the BitTorrent-based NS/2 simulation and
an Evolutionary Algorithm using the values listed in Table 1.
Tomforde et al. [2] collected average values over multiple runs
in which the fitness function always was defined as minimising
the download time for the particular node.

A big influence was identified, when the number of peers
was changed (5, 10, 50, 100), because for a higher number
of peers a much bigger performance increase was recognized
when optimizing the protocol. For a small amount of peers
only a 1.1% increase in performance was observed. In contrast
for an amount of 100 peers the performance increased by
14.67%. Looking at the optimized protocol parameter set for
100 peers (Tab. II), it gets clear that some parameters seem
to have a major influence on the performance while others
do not have changed at all. Tomforde et al. [2] explain this



behavior by the strict definition of the scenario, because it
mainly uses constant connections, which e.g. lead to a rare
usage of the un-choking process. Another example is the
increase of the MaxConnections parameter. This adaption is
based on the constant connections used, too, as in a more
stable network more connections can be left open, because
topology will most likely not change in the future. This leads
to a better interconnectedness of the network and improves the
performance of the network, because the steps of establishing
connection to another node can be skipped if the connection
was left open.

Variable Standard value
NumberOfUnchokes 3 conn.
ChokingInterval 20 sec.
RequestPipe 8 req.
NumberPeersPerTracker 24 peers
MinPeers 20 peers
MaxInitiate 40 peers
MaxConnections 1104 conn.

Tab. II: Optimised solution of the BitTorrent protocol [2]

Summarizing the results, Tomforde et al. [2] are pointing
out, that optimised parameter sets can lead to a performance
increase of 0.1% up to 30.0% in specific configurations. The
time needed to develop these optimised solutions is highly
dependent on the number of peers and the file-sizes of the
data. For a small number of peers and file-size (e.g. 5 peers,
5MB files) the evolution only requires a couple of minutes,
but for a big number of peers and file-size (e.g. 100 peers and
1000MB files) it lasts about 24 hours until one simulation run
is finished.[2]

3) Evaluation of On-line learning system: As we have
seen in the section before the textitOff-line optimisation can
lead to a big performance improvement by creating optimised
parameter sets. In contrast to the Layer 2 component the On-
line learning system needs to instantly react to environmental
changes and appropriately use given parameter sets for specific
situations. Every three minutes the ONC checks for changes
and applies a new parameter set to the network controllers
protocol if needed. We are starting with an empty rule set and
therefore only the default parameter set can be used until the
Off-line optimisation has finished developing new parameter
sets. [2]

This is one of the main causes, why we can not see a big
improvement on the first day, because the Off-line optimisation
is still busy developing new parameter sets for Layer 1. These
requests get queued up by the On-line learning system as
soon as a new situation appears and therefore the average
download-rate does not exceed the performance of the standard
protocol (165.5 KByte/sec). On Day 2 a performance increase
is achieved, which can be explained by a situation-depending
selection of parameter sets. The average download-bandwitdh
increased by 7.2% compared to the standard configuration
(177.4 KByte/sec), because appropriate parameter sets for
previously occurring situations have been developed and used
in this particular situations. Tomforde et al. [2] point out,
that the increase also can be influenced by the Covering

Mechanism, simply on basis of more parameter sets being
available to choose from. The last day shows the biggest
improvement, because the Off-line optimisation added more
possible parameter sets again. Now the On-line adaption
is able to always choose the optimum parameter set and
therefore the performance improvement lies by 20.4% (199.3
KByte/sec) compared to the standard configuration. Tomforde
et al.[2] were not able to produce a better performing solution
after day three, which leads to the assumption that for this
scenario this is the optimum in performance. On Layer 1
the textitCovering Mechanism is also responsible for the
performance improvement, because in situations where no
particular solution was developed so far the most appropriate
one is choosen this way.

The results of Tomforde et al. [2] are impressive and show
that an ONC can successfully adapt network protocols to
perform more efficient. On our way to a generic solution we
will look at another example for adapting network protocols
to be able to identify certain similarities or problems.

B. Optimisation: Mobile Ad-hoc network protocol

Mobile Ad-hoc networks are dynamic networks with at least
two nodes that are connected through a wireless connection.
It especially stands out by its mobile nodes and its constantly
changing topology due to that mobility. Therefore special
protocols are needed for such networks and its behaviour
differs based on the situation. For example in a network with
quick moving nodes probing for neighbours and refreshing the
current topology is much more important than in a network,
which consists of pretty stationary nodes.[6]

The following experiment was presented by Montana et al.
in [6] and describes a comparison of automated and manual
optimisation of Mobile Ad-hoc network protocols and the per-
formance of an adapted dataset in an unknown environment.
In this case it is a ”proactive link state protocol”, which is a
specialized version and gets optimised in a scenario with mov-
ing nodes. The previously described architecture is not used,
but we can describe important aspects and requirements for
a generic solution through this example of network protocol
adaption by a Genetic Algorithm. It is comparable with only
having the Layer 2 of the previous example, but now operating
in a non-static network.

1) Experimental Setup: The following experiment was
based on a live mobile network demonstration performed
for the DARPA/Army Future Combat System Communication
Program at Lakehurst, NJ. On one side real world data from
Lakehurst was used to compare manual with automated param-
eter tuning and additionally artificial datasets were generated
by a scenario generator for a more controlled investigation on
the optimisation process.

The simulation contained multiple mobile nodes (SUVs)
and a helicopter being connected in a Mobile Ad-hoc network
moving through a simulated, wooden terrain. Basis for this
simulation was the OPNET Modeler with the OPNET Wireless
Module, which allows the user to specify certain properties
for the desired network simulation.[7] The scenario generator



was used to simulate 20 nodes moving through a square area
of about 1200 meters length. The nodes were moving in a
straight line to randomly selected waypoints with constant
speed. From this general settings Montana et al. [6] created
two datasets with a length of 100 seconds each. The difference
between these two was the movement speed of the nodes. In
one dataset the nodes were travelling with a speed of 10 meters
per second and in the other one they were moving with 0.5
meters per second. One of them was used for evaluation during
the optimisation process of parameter sets, and the other one
was there to test the performance of already adapted parameter
sets.

As they were operating in a Mobile Ad-hoc network,
downloading-bandwidth was no suitable measure for the per-
formance of a protocol, because of the fact how a Mobile
Ad-hoc network works. When a node is taking part it can
show its own presence by a periodic broadcast of heartbeat
packets, which are received by another node in the network.
If this second node detects multiple heartbeats in a short
time a link exists between these two nodes. As long as these
heartbeat packets are received the node is an active node in
the Mobile Ad-hoc network. When no packages are received
from a node, the link is considered as broken and the node is
no longer taking part. These packages are distributed through
all out the network with the effect of every node knowing
about the whole topology. This distribution through the whole
network is using capacities and makes detecting the download-
bandwidth or upload-bandwidth unnecessary. Montana et al.
have selected the dropped package score as the main indicator
for performance measure.

To opitmize this score the Genetic Algorithm was allowed to
modify following parameters of the used protocol: Heartbeat
Interval, Heartbeat Points, Score History Size, Up Score
Threshold, Down Score Threshold, Routing Algorithm, Rout-
ing Event Interrupt Period, Routing Global Interrupt Period,
Traffic Max Attempts.

Variable Explanation

Heartbeat Interval Time interval for
sending heartbeats

Heartbeat Points
Number of nodes
to forward a received
heartbeat to

Score History Size
Time window to observe
for making decisions
about scores/points

Up Score Threshold
Minimum value of score
needed to establish a link
to a neighbor

Down Score Threshold
Score must always be
bigger, otherwise the
connection is torn down

Routing Algorithm Hazy Sighted Link State
or Standard Link State

Routing Event Interrupt Period Interval formodule
checking for link changes

Routing Global Interrupt Period Interval for node to
sending a link state update

Traffic Max Attempts Number of retransmission
attempts

Tab. III: Parameters of used protocol for optimisation

To not have multiple parameter sets every node was using
this set of parameters. [6]

Now we want to take a closer look at how Montana et
al. in [6] have defined or restricted the Genetic Algorithm for
optimising the parameter set. The representation of parameters
was defined as real-valued. The big difference to a binary
valued representation is that a maximum value, a minimum
value and steps between the values have to be defined for all
parameters. For generating new individuas a standard mutation
and uniform crossover operators with a probability of 0.5 were
used. For steady replacement an exponential parent selection
was choosen, which means if a new individual was generated it
was instantly added to the population and the worst individual
in the population was erased. When an individual was adapted
the simulation was triggered with the current configuration of
the individual. During the simulation values about the network
performance were gathered and combined to a single score.

The experiment started at a population size of 300 random
individuals with a weighted scoring function defining the
fraction of dropped packets and the average delay in seconds.
As we mentioned before the dropped packets were the main
concern, so it was weighted 10 times more than the average
delay. Montana et al. [6] reported a big issue concerning the
simulation time for a new parameter set. The simulation took
about 7-8 minutes per individual of the Lakehurst dataset
and slightly less for a generated scenario. Hence, the time
for a full optimisation run exceeded multiple days on a
single machine, because about 600-1000 [6] individuals had
to pass the simulation. Therefore Montana et al. restricted the
textitGenetic Algorithm to do a single run per experiment
and were forced to waive getting average values for their
optimisation process.

2) Evalutation of results: For the Lakehurst dataset Mon-
tana et al. [6] evaluate how effective the training is regard-
ing the performance on the training dataset. They compared
dropped packets and average delay for manually and auto-
matically adapted datasets. For the artificially created data
of the simulation generator the major concern is how good
the adapted parameters perform in one or multiple known
or unknown scenarios. To achieve this the training and later
performance test are executed on different datasets.

The result of the comparison between manually and au-
tomatically tuned parameters of the set clearly shows that
automated adaption outperforms manual adaption. In Table
IV we can see what Montana et al. [6] discovered in their
experiment in values.

Approach Dropped Packets Average Delay
Manual 0.089 0.0089

Automated 0.042 0.0036

Tab. IV: Results of Lakehurst dataset optimisation [6]

In their article they point out, that even without a directed
optimisation and only on a basis of 300 random individuals
the Genetic Algorithm performs much better than the random
search algorithm, because it still discovers new solutions when



the random search is producing new sets either slowly or is
no longer able to create new ones. [6]

Next they test the performance of optimised parameter sets
in a simulation with currently unknown scenarios. For example
an individual was trained on a dataset with high speed of the
single nodes and now has to perform on a dataset with low
speed of single nodes. Thereby they pick up a very important
requirement for algorithms to perform well in the real world.
”Generalization to new scenarios is critical to the success of
networking algorithm in the real world.”[6] The big issue is
that we are not able to simulate every possible scenario so an
algorithm has to self adapt to various unknown and unforseen
situations.

Montana et al. [6] name their training sets ”poky1” (slow
nodes) and ”speedy1” (fast nodes), while the test sets are called
”poky2” and ”speedy2”. For clarification purpose we will name
these ”slowTrain”, ”fastTrain”, ”slowTest”, and ”fastTest”.
Three different parameter sets are trained on different test
instances and then applied to the unknown instances that are
left. In table Tab. V you can see the performance measured
by the dropped packets of the parameter sets.

trained on tested on
fastTrain slowTrain fastTest slowTest

fastTrain 3.9% N/A 3.9% 10.3%
slowTrain N/A 0.3% 16.8% 2.0%

fastTrain+slowTrain 3.9% 0.9% 4.8% 0.6%

Tab. V: Dropped package rate of adapted parameter sets tested on
different scenarios [6]

In the results it is clearly noticable, that parameter sets
are performing better on statistically similar scenarios. For
example a set developed on basis of fastTrain is performing
well on fastTrain and fastTest, but its performance on slowTest
is pretty poor. If the set was trained on a bigger variety of
scenarios like the last one (trained on fastTrain+slowTrain)
the performance is good through most of the test scenarios, if
they are statistically similar. Another important fact is that the
package loss is higher if the speed and therefore the range
of geometrical configurations is bigger as you can see in
Tab. V. This means that even an optimised algorithm does
not perform perfectly if not a big amount of time and a
very large amount of different scenarios are available for
the training. Additionally Montana et al.[6] point out that
they have reasonable expectations, based on own and others
experience with optimizing parameter sets, that a performance
degredation will always occur if one parameter set is applied
to too many different scenarios or operating conditions.

As a conclusion there is to say that many different chal-
lenges in this topic have to be solved to make parameter opti-
misation with a Genetic Algorithm reasonable and exectuable
in the real world. During this and the previous experiment we
discovered some problems that have to be taken into account
when it comes to generic adaption of such parameter sets. In
the next section we will have a closer look at those and try to
specify them more precisely.

IV. PROBLEMS AND CHALLENGES OF GENERIC NETWORK
PROTOCOL OPTIMISATION

Finding a generic solution for parameter set optimisation
in an Organic Network Control System would be a big step
in computer science. The sheer amount of different protocols
used in various networks with even more possible configura-
tions seems to make this challenge nearly impossible to solve.
But there are many approaches that have been proposed and
allow further investigations of this topic. In the remainder of
this article we want to point out some of the biggest issues
that we will have to face if we want to build such a system
successfully.

A. Choosing appropriate parameter sets

The first problem to face in a generic solution will be
selecting an appropriate set of parameters for the current
configuration of the network. Even if one node knows which
type of network it is operating in and therefore which protocols
are used, it needs to figure out the parameters of a protocol
that are important for a better performance. Montana et al.
[6] are pointing out, the parameter set is highly dependent of
the current configuration of the network and influences the
performance for the most part. Due to predefined parameter
sets we were able to note a better performance after every cycle
of optimisation in the experiments, but without pre-defining
these parameters the system has to take a big foundational
part of work on its own, detecting the correct parameters for
adapting the system performance appropriately. For example
in both experiments presented in this paper the parameters
given to the Evolutionary Algorithm were completely different
and so was its quality function, how the system can decide
which ones are the ones to be taken into account always differs
by the current use and configuration [6] of the protocol, e.g.
in a Mobile Ad-hoc network download-bandwidth or dropped
packets can be the main concern.

This problem is currently solved by the developers or
engineers including a protocol to a simulation. As Tomforde
et al. present in [8] to integrate a new protocol to their
system some major tasks have been solved previously. The
first task is to create a performance metric to be able to qualify
good or bad performance. The second task is to describe the
situation accompanied with a distance function to measure
the difference between two situations. This includes defining
the parameter that is most important for optimising certain
processes, because it sets the focus of the optimiziation. The
final task is to provide a simulation model for the simulation
based testing on the Off-line optimisation component. A big
problem with this approach is the big amount of different
protocols used in the real world. It would take a lot of time
to include all of them manually to the system. Therefore an
automatic solution would be very desirable, but this needs
further investigations and has not been proposed yet.

B. Resource and time management

Testing a new rule or individual is an important step when
it comes to network protocols to avoid bad performance or



malfunction [3]. The question to face is in which extent
the simulation should test a new developed parameter set.
A more complex scenario would lead to a better quality of
the developed parameter set, but also to more time spent.
Tomforde et al. mention in their evaluation, that the time
needed for a new generation of a parameter set highly depends
on the complexety of the given test scenario. Montana et al.
also point out that for a real life scenario of the Lakehurst
dataset a simulation for one parameter set lasts about 7-8
minutes. ”Since an optimisation run requires evaluation of
600-1000 different parameter sets, and hence the same number
of executions of the simulation, an optimisation run takes
multiple days on a single machine”[6]. Even if in the presented
architecture time restrictions are not given it is not possible
to estimate the amount of time that would be needed by
an Evolutionary Algorithm to develop a new generation of
parameter sets in a real world scenario, underlying the fact
that a real world scenario will even be more complex than a
simulated one.

The process is highly resource and time consuming [9] and
for various networks it can not be realized for every node in
a decentralized system as presented in [8]. These nodes can
underly resource restrictions what makes running a simulation
of that extent impossible.

Tomforde et al. are presenting various solution approaches
and challenges due to this problem in [9]. To make the
simulation faster the idea is to speed-up the start time of the
Evolutionary Algorithm and get a faster algorithm to develop
new generations. Therefore the quality of new individuals
will decrease, but these can be approximated at runtime.
Meeting the resource restrictions for some networks the archi-
tecture will have to be adapted to environmental properties.
In a Wireless Sensor Network, for example, one node does
not have the resources to handle a simulation of multiple
hours. [9] Therefore it is presented that an ”intelligent inter-
extrapolation mechanism”[9] is needed. This means nodes
should be able to communicate and update each other on
current running services. Additionally the architecture needs
to be half-centralized, which means having a node doing the
simulation for other nodes in the network.

Hence, we see a big challenge in applying this architecture
and simulation approach to the real world, but since real world
scenarios are much more complex some challenges still have
to be met especially considering time and resource mangement
in networks like Wireless Sensor Network or Mobile Ad-hoc.

V. SUMMARY

On the way to a solution for adapting network protocols
generically some tasks still have to be solved to guarantee
a optimal functionality in real world scenarios. We showed
up an architectural approach, which can serve as a basis
for further investigations due to its fast responding On-line
adaption component and the Off-line rule generator. After
explaininig the basic functionality and including components
of this system the included experiments should lead to a
better understanding of the range of scenarios where these

systems can be used in. Nevertheless we pointed out the
problem of selecting an appropriate parameter set due to these
being needed for a proper adaption and highly depending
on the current environment. Additionally it has to be dealt
with time and resource management problems concerning the
rule generation at Layer 2 (Off-line optimisation). To make
this technology applicable to all types of networks solutions
need to be found for resource restricted nodes as they exist
in Wireless Sensor Network or Mobile Ad-hoc networks. The
future task of investigation should be dealing with these
problems as they need to be solved for a generic solution of
ONC.

REFERENCES

[1] Branke, J., Mnif, M., Müller-Schloer, C.: Organic Computing - Address-
ing Complexity by Controlled Self-organization, In: Second International
Symposium on Leveraging Applications of Formal Methods, Verification
and Validation, pp. 185-191 (2006)

[2] Tomforde, S., Steffen, M., Hähner, J., Müller-Schloer, C.: Towards an
Organic Network Control System, In: Proceedings of the 6th Inter-
national Conference on Autonomic and Trusted Computing (ATC´09),
Springer Verlag (2009) 2 - 15

[3] Tomforde, S., Hähner, J., Müller-Schloer, C.: Adaptive Control of Sensor
Networks, In: Automatic and Trusted Computing, pp. 77-91 (2010)

[4] Web: The Network Simulator - NS/2, https://www.isi.edu/nsnam/ns/
[5] Eger, K., Hofeld, T., Binznehöfer, A., Kunzmann, G.: Efficient simula-

tion of largescale p2p networks: Packet-level vs. flow-level simulations.
In: 2nd Workshop on the Use of P2P, GRID and Agents for the
Development of Content Networks (UPGRADE-CN 2007), Monterey
Bay, USA, pp. 9-16 (2007)

[6] Montana, D., Redi, J.: Optimizing Parameters of a Mobile Ad Hoc Net-
work Protocol with a Genetic Algorithm, In: GECCO ’05 Proceedings
of the 7th annual conference on Genetic and evolutionary computation,
pp. 1993-1998 (2005)

[7] Web: Opnet Technologies, Inc. Wireless module, 2004.
http://www.opnet.com/products/modules/wirelessmodule.html.

[8] Tomforde, S., Hurling, B., Hähner, J.: Dynamic control of mobile ad-
hoc networks - network protocol parameter adaptation using organic
network control. In: Proceedings of the 7th International Conference on
Informatics in Control, Automation, and Robotics (ICINCO’10), (2010)

[9] Tomforde, S., Cakar, E., Hähner, J.: Dynamic Control of Network
Protocols - A new vision for future self-organised networks. In: Proc. of
the 6th Int. Conf. on Informatics in Control, Automation, and Robotics
(ICINCO’09), pp. 285-290 (2009)

[10] Turgut, D., Daz, S., Elmasri, R., Turgut, B.: Optimizing clustering
algorithm in mobile ad hoc networks using genetic algorithmic approach.
In: Proc. of the IEEE Global Telecommunications Conference (GLOBE-
COM 2002), pp. 62-66 (2002)

[11] Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: To-
wards a generic observer/controller architecture for Organic Computing.
In: Tagungsband der GI Jahrestagung, pp. 112-119 (2006)

[12] Müller-Schloer, C., Tomforde, S.: Organic Computing - Technical Sys-
tems for survival in the real world, Springer, pp. 6 (2017)


