
Resolving limits of organic systems in large scale
environments: Evaluate benefits of holonic systems

over classical approaches
Claudio Schmidt

University of Passau
schmidcl@fim.uni-passau.de

Abstract—With the rapidly increasing number of devices and
application components interacting with each other within larger
complex systems, classical system hierarchies increasingly hit
their limit when it comes to highly scalable and possibly fluctual
organic systems. The holonic approach for self-* systems states
to solve some of these problems. In this paper, limits of different
state-of-the-art technologies and possible solutions to those will
be identified and ranked for scalability, privacy, reliability and
performance under fluctuating conditions. Subsequently, the idea
and structure of holonic systems will be outlined, and how to
utilize the previously described solutions combined in a holonic
environment to resolve those limits. Furthermore, they will be
classified in the context of current multi-agent-systems (MAS).
The focus of this work is located in the area of smart energy
grids and similar structures, however an outlook sketches a few
further application scenarios for holonic structures.

CONTENTS

I Introduction 1

II Literature review 1

III Classification in MAS (Multi-Agent-Systems) 2

IV Challenges for MAS 2
IV-A Scalability 2
IV-B Privacy 2
IV-C Fluctuation Performance 3

V Description of Holonic Systems 3
V-A Vision & Structure 3
V-B How challenges for MAS can be issued 3

V-B1 Scalability 3
V-B2 Conflict resolution 3
V-B3 Privacy 3
V-B4 Reliability 4
V-B5 Compatibility 4

VI Flaws of Holonic Systems 4
VI-A Supervising instance 4
VI-B Privacy concerns 4
VI-C Recursion 4

VII Outlook 4

VIII Conclusion 5

References 5

I. INTRODUCTION

The approach of holonic systems or architectures is not new,
in fact the idea of holons has been around for more than 50
years [9]. The name refers to the Greek word “όλος“, which
means all, whole 1.

Holonic systems are part of a goal-oriented approach, in
which a single node holds two different roles: On the one
hand, it is part of a complex system and its hierarchy, being
one independent node upon many others offering a set of
input goals - definitions of some value or state that should
be achieved - to the system it is part of. On the other hand, it
acts as a controller encapsulating another complex system of
any kind, structure or hierarchy, which is used to propagate,
split, and, finally, achieve the defined goals of the system.
This refers to the famous divide-and-conquer principle which
means that splitting up things and handling them separately
is much easier than dealing with the problem as a whole
(“However, as every parent of a small child knows, converting
a large object into small fragments is considerably easier than
the reverse process.“ [13]). Within a holonic system, a single
holon recursively consists of multiple sub-holons, that may
contain holons themselves. The actual inside implementation
of a holonic agent is completely private to the outside. Because
of the strict shielding, different architectures can be used
for every holon, giving them the possibility to pick the best
one suitable for every scenario without any interference with
other agents of the system. Given the context of intelligent,
dynamic, and self-* Multi-Agent-Systems (MAS) being on
the march right now, but still facing some limits regarding
scalability, compatibility, privacy or performance, especially
in highly fluctuating environments, the demand for a generic
and scalable standard is constantly growing. Holonic systems
sound very promising, since state-of-the-art architectures (and
possibly already existing systems) can be combined to MAS
without larger scalability or compatibility problems.

II. LITERATURE REVIEW

The theoretic foundation for holonic architectures is quite
clear and prepared by now. Yet, they are still hard to develop,

1https://de.pons.com/

like all other MAS, since they are complex self-optimizing
systems interacting with each other. The current literature
mostly deals with planning problems, “as the coordination
of individual agents’ planning processes is a hard problem
in systems that allow concurrent action between autonomous,
rational agents “ [7]. One approach to this solution is
MA-STRIPS, an extension of the STRIPS planning language
[2] [1]. As well, the development and programming process
has been getting pretty much attention over the last years. For
example, there are PASSI [3] and the adaptation to holonic
environments, HoloPASSI [4], MetaMorph [12], the SARL
Agent-Oriented Programming Language 2 and the
Janus-Platform 3. Other current topics are privacy con-
cerns between agents [1] and self-repairing MAS [10]. “While
such issues are well studied in classical planning, the presence
of multiple agents makes some known techniques unsuitable“
[1].

III. CLASSIFICATION IN MAS (MULTI-AGENT-SYSTEMS)

The definition of MAS is very broad, describing multiple
agents interacting with each other, either using a central
control unit to coordinate them or giving the nodes full control
over their own decisions. A system with self-regulating agents
is much more complex, because every single node can have
different personal goals, possibly even conflicting with each
other. So a superior conflict resolution unit (CRU) is necessary
that can sort and prioritise conflicting goals. This is only
possible if the CRU has a global goal itself, e.g. fairness,
performance or system goals like temperature stability of a
room. Let’s take such a system, defining global goals (e.g.
temperature stability) that has three agents: a heating, an air
conditioner and a central power unit. The heaters declared goal
is to warm up the room, while the air conditioner tries to cool
it down. The central power unit wants to minimize the energy
consumption, thus holding back the other two. All three goals
are conflicting with each other, therefore the CRU has to set a
global room temperature and prioritise the agents accordingly
to achieve that. This system could be part of another MAS
controlling comfort in a house, and this is already the basic
idea of holons. Holonic systems are part of a goal-oriented
approach, where agents only exist to perform goals, which can,
once triggered, subsequently call other goals implemented by
the same or other agents.

IV. CHALLENGES FOR MAS

A. Scalability

One of the most common problems in larger systems is
scalability. When having a large number of agents and each
of them holding different goals, it becomes impossible to
manage them using a central control institution. One possible
solution is the Stigmergy Pattern, which “describes the way
non-rational, autonomous agents (such as termites or ants)
collaborate to achieve complex tasks thereby displaying some
type of emergent swarm-intelligence“ [11] This means, that

2http://www.sarl.io/docs/official/index.html
3http://www.sarl.io/runtime/janus/

there is no superior instance monitoring or controlling all
agents. Instead, every agent communicates with their direct
neighbours (peer-to-peer), making the system extremely scal-
able while increasing stability (a lot of nodes must fail to
impair the overall functionality). However, as all agents are
similar to identical, a systematic programming fault could
cause all agents to fail at once. The privacy is relatively
moderate, as information is scattered over all participants
and thus impossible to bundle for one agent, although it is
assembled by the supervising structure, if any is in place.
Nevertheless, it is hard to gain emergence of the system
and reaching a common goal, that has been pre set or may
vary during runtime, as actions of a single agent are not
directly linked to the emerging system result, which makes
the programming of single nodes difficult. The fluctuation
performance is rather good, as one single agent has very little
logic and thus its meaning to the whole system is limited.

0 2 4 6 8 10
fluctuation

scalability

reliability

privacy

Figure 1. Privacy, reliability, scalability and fluctuation performance repre-
sentation for the Stigmergy pattern on a scale from 0 to 10. 0 means poor,
10 represents excellent performance in an area.

B. Privacy

Whenever systems need to interact with each other, they
need to exchange data. That is where privacy becomes an
issue. Often, the agents hold information that is either personal
or safety-critical and thus must be kept secret from other
nodes. Therefore, an agent must classify held information by
sensitivity and trade off between the importance of commu-
nication and safety. In addition, “the definition of privacy in
multi-agent planning is debated, e.g., what agents should kept
private information (state variables, actions, goals) and what
minimal information they should exchange in order to be able
to construct a joint plan remain an open question.“ [1]. One
approach to this topic are Trust-based or Reputation-based
patterns. In those models, mostly used in peer-to-peer archi-
tectures where the agents are unrelated and unknown to each
other and privacy plays an important role during interaction,
the amount of information shared or the permission to certain
roles depends on an agents trustworthiness or reputation [16].
Reputation can be gained by good performance and respecting
the system’s rules, or by being vouched for by other trustwor-
thy agents. Given the context of holonic MAS (HMAS), the
sub-holons utilized to implement the defined goals could be
selected based on their reputation, along with other metrics
like performance, value to the system, load, etc. while access
control and role distribution could be implemented by trusted
entities vouching for each other, as described in [8]. The
scalability and thus stability of peer-to-peer networks is very

high, while the reliability depends on how good agents work
together and could be unbalanced by malicious participants.
When exposed to high agent fluctuation, the performance will
suffer badly, since it takes time to build trust in the agents -
and constant joining or leaving of nodes will prevent that.

0 2 4 6 8 10
fluctuation

scalability

reliability

privacy

Figure 2. Privacy, reliability, scalability and fluctuation performance repre-
sentation for the Trust- and Reputation-based pattern on a scale from 0 to
10. 0 means poor, 10 represents excellent performance in an area.

C. Fluctuation Performance

Another problem of MAS is their performance under ex-
posure to highly fluctual environments. In a system that man-
ages for example power distribution for electric car charging
stations, cars (agents) will be joining and leaving the system
constantly, just like a house manager that has to cope with
household devices being (un)-plugged constantly. Therefore,
the integration of new agents must be (1) possible and (2)
extremely time-efficient prevent pulling down the overall per-
formance when adoptions to its structure occur. This requires
constant monitoring and optimizing “on a continual basis to
accommodate fluctuations in demand“ [15], which introduces
another bottleneck in the system’s structure. Furthermore, ev-
ery agent joining or leaving possibly triggers a rearrangement
in the system or at least some integration effort, which gets
costly on larger scales.

V. DESCRIPTION OF HOLONIC SYSTEMS

A. Vision & Structure

The efforts for holonic structures are basically driven by
practical thoughts: In a theoretical, empty and static environ-
ment, an optimal structure could be implemented - in reality,
there are already existing structures and systems, that are
constantly developed and maintained. On top, smart systems
and requirements are constantly growing and developing.
Therefore, low coupling between systems is necessary to meet
requirements like scalability, reliability or performance under
fluctuation and to integrate heterogeneous architectures. The
holonic approach defines goals for every system, which are
tasks it can do or achieve (e.g. “heat up“or “multiply“) [5]. If
a goal is triggered, the systems tries resolve the goal and break
it down into minor goals (e.g. multiply → adding) and either
solve primitive goals directly or pass them to sub-systems
(divide and conquer). A holonic system needs to be able to
self-optimize, this means:

• integrating new agents (or sub-holons) on demand, if
rational

• continuously optimizing goal resolution functions

• join or leave supra-holons at any point, if sensible
• adapt conflict resolution rules, if pertinent
• be part of multiple supra-holons, if necessary and possi-

ble.
This makes them perfectly suitable for smart home applica-
tions with high fluctuations (houses consuming and prosuming,
varying energy supply) and lots of heterogeneous participants
(e.g. power plants, consumers, private prosumers, batteries).
However, it is possible that an agent receives multiple instruc-
tions that are conflicting. Thus, every holon needs a conflict
resolution unit that resolves and prioritises goals and achieves
fair results, where possible. On top, in there might occur
economical concerns and negotiations, in this scenario about
energy prices. A smart house being part of a multigrid will try
to absorb as much power as can be stored for a low price and
sell spare power when the prices rise. This makes the system
state unpredictable, as the price and supply can change within
few moments.

B. How challenges for MAS can be issued

1) Scalability: Holonic systems are highly scalable,
only limited by the architecture and scale in one single
layer. Because of the system encapsulation, the layer depth is
(theoretically) unlimited, as all layers beneath are hidden from
the next higher level. Although, due to goal resolution and
relaying, the performance will suffer when having too many
layers between the initial goal and the final goal execution. In
self-optimizing systems, this should be automatically detected
so that lower holons could step up layers and reduce the
amount of relays in between. Per layer, the count of agents
is limited by the common holon state, which is provided and
managed by the administrating interface. This state needs to
be distributed to all participants of the system and is required
to be in a consistent state all the time. If too many agents
need to synchronize the current state, it would slow down
the whole system, again leading to a rearrangement of the
holons.

2) Conflict resolution: Every holon has a central conflict
resolution function that can prioritise and evaluate conflicting
goals. Let’s imagine the following scenario: A smart house
is configured to start the washing machine at 10pm. At that
exact time, the energy price is surprisingly high, so that the
houses power manager triggers the goal energy reduction. So
there are two conflicting goals, starting the washing machine
and energy reduction. The houses CRU has to evaluate the
context and make a decision, weather to delay the wash or
to use expensive energy. The CRU can be extracted and is
independent of the remaining holon implementation or the
used architecture. The only requirement is a central container
or membrane [5] around the holon, that, used in peer-to-peer
networks, would have a major impact on performance limits
but would still work.

3) Privacy: Due to the membrane surrounding a holon
and its encapsulation, private data can easily be kept inside,
goal definitions is the only information being exposed

to surrounding agents. This isolation can be weakened,
depending on the business case and with security concerns in
mind. “Finally, a holonic structure may also help with self-
protection and privacy concerns“ [6], as “the state information
a holon provides to its supra-organisation can depend on the
business context (e.g. collaboration or competition) and may
even change during runtime (e.g. threat detection)“ [6]. That
means, the holon’s context-awareness capabilities enables it
to adapt privacy rules at runtime.

4) Reliability: The concept of holons is that they can
join and leave a supra-holon any time or even exist solely
in an isolated environment. This constellation makes the
system very durable. If the holon membrane fails or the
systems collapses, the holons can distribute themselves to
other surrounding systems instead of being wrecked. If one
sub-holon fails to fulfil his goals, it can be exchanged for
another one. If no other node can fulfil its functionality,
the goals must be updated eventually causing the system to
endure the loss of crucial functionality, eventually causing
the system to fail. However, there is some redundancy in
comparison to “classical“ MAS, as multiple implementations
can exist independently from another. This makes a loosely
coupled HMAS much more reliable than hierarchies, while
still being more sensitive than peer-to-peer networks.

5) Compatibility: HMAS are highly compatible with other
structures and architectures. Since it would be way too costly
to reimplement already existing systems or those being under
development to adapt them to some common architecture and
standard (“The nice thing about standards is that you have
so many to choose from“ [14]), the demand for compatible
solutions that are easy to adapt to is constantly growing.
The holonic approach is a relatively generic one, the only
requirement is the definition of goals for the outside, the
concrete implementation does not matter, it doesn’t even have
to be holonic. A primitive agent without many dependencies
that can perform simple goals can be non-intelligent or non-
holonic and still be integrated in an existing holon nearly
trouble-free.

VI. FLAWS OF HOLONIC SYSTEMS

A. Supervising instance

Every holon needs some kind of supervising instance, a
membrane to

• manage the current state and keep it consistent
• offer the goals achievable by the holon
• manage goal implementation(s)
• resolve conflicting goals.

This introduces a new entity and thereby a new single point of
failure, that - if it failed - would destroy the whole holon, or at
least make it unusable for others. On the other side, this also
limits scalability, as this entity can hardly be parallelized. Too
many state changes - that need to be distributed to every agent
in the system, constant goal adaptations or lots of conflicting
goals could cause an overload and thus limit the system’s
overall performance. On top of that, every goal defined by

the holon passes that entity and must be split into sub-goals
that fit the available agent’s goals (divide and conquer).

B. Privacy concerns

The openness of holonic systems also makes them vulnera-
ble to security threats. Since agents can discover and join/leave
other unknown and possibly malicious holons, they have to
protect themselves against other harmful agents. In some areas,
this could be compensated by trust-based implementations,
which doesn’t work properly for highly fluctuating environ-
ments. Furthermore, data given away to goal implementations
of sub-holons can not be traced. This means that either,
data given away to unknown sub-holons must be completely
pseudonymized and harmless from privacy-perspective, or the
supra-holon can only trust certain sub-holons, which limits the
advantages of such openly designed systems.

C. Recursion

Special care must be taken when adapting goals during
runtime. Let’s imagine the holons A1 and B1 being part of the
supra-holons A and B, with A1 defining the goal addition. B1
discovers A1 and its addition goal and incorporates the goal
in its interface (now A1 and B1 offer addition). This would be
a valid action, because B1 is contributing to discovering better
and faster goal implementations for B. Now, A1 discovers
B1 and recognizes its addition goal. It could adapt the goal
implementation and use B1’s addition instead of the old one.
This means, that A1 and B1 both offer the goal addition
while depending on each other. Once the goal is triggered,
an infinite loop would occur until A1 or B1 decide to change
the goal implementation or to remove the goal from its
interface. It would need more communication before taking
over goals to avoid bad constellations like loops as well as
an efficient goal adaptation algorithm to allow quick changes,
measure performance accordingly and initiate immediate roll-
backs, if the new implementation does not meet performance
requirements.

VII. OUTLOOK

Current HMAS research mostly focuses on their use in
electricity microgrids, for example to connect appliance-level,
house-level and district-level goals [4]. But possible applica-
tions reach far beyond that. Systems with deep multi-level
architectures are perfectly suitable for those kinds of systems.
This counts for every application in the electricity supply
system, but is also imaginable for e.g.

• logistic systems, to coordinate good distribution on dif-
ferent layers, from the top down to warehouses and the
means of transport

• manufacturing systems, to manage the production steps
top down from the end result to every single part and
those parts

• house management, to monitor the comfort and control
corresponding house appliances to reach abstract goals
set by the resident

• large-scale calculations, to split up the formula and calcu-
late every part in a specialized holon for that task, while
also being able to optimize by switching implementations

and many more. The performance benefit highly depends on
the actual environment and goal implementations, but the
structure itself is broad enough to support lots of different sce-
narios, even though some implementation details are not quite
clear yet, which makes further research necessary, especially
in the contexts of software engineering and development.

VIII. CONCLUSION

HMAS offer a rich variety of application scenarios, while
being very generic and compatible to state-of-the-art technolo-
gies. Furthermore, their clear structures are close to real-world
scenarios, which makes them easy to understand, which is,
particularly in the development process of highly complex,
interlaced, dynamic and intelligent systems, an important thing
to note. Regardless of the high potential of such systems,
they are still hard to develop. At the current point researches
propose a lot of different, potentially promising approaches,
yet there is no common standard for the structure of those
systems. Furthermore, a lot more research will be necessary
to clarify software engineering processes and develop frame-
works to make multi-agent-systems in general applicable to the
broad majority of companies and developers. Since software
development strategy is always a rather sluggish topic, it will
probably take some more years of research until HMAS are
well-known and initial effort is completely done and usable.

REFERENCES

[1] A. Bonisoli, “Distributed and multi-agent planning: Challenges and open
issues,” 01 2013.

[2] R. Brafman and C. Domshlak, “From one to many: planning for loosely
coupled multiagent systems.” in Proceedings of ICAPS, 2008, pp. 28–35.

[3] M. Cossentino, “From requirements to code with the passi methodol-
ogy,” Agent-Oriented Methodologies, 04 2012.

[4] M. Cossentino, N. Gaud, S. Galland, V. Hilaire, and A. Koukam, “A
holonic metamodel for agent-oriented analysis and design,” 01 2007.

[5] A. Diaconescu, S. Frey, C. Müller-Schloer, J. Pitt, and S. Tomforde,
“Goal-oriented holonics for complex system (self-)integration: Concepts
and case studies,” 2016.

[6] S. Frey, A. Diaconescu, D. Menga, and I. Demeure, “A holonic control
architecture for a heterogeneous multi-objective smart micro-grid,” in
2013 IEEE 7th International Conference on Self-Adaptive and Self-
Organizing Systems, Sep. 2013, pp. 21–30.

[7] A. Jonsson and M. Rovatsos, “Scaling up multiagent planning: A best-
response approach,” in Proceedings of the 21st International Conference
on Automated Planning and Scheduling, ICAPS 2011, F. Bacchus,
C. Domshlak, S. Edelkamp, and M. Helmert, Eds. AAAI Press, 6
2011, pp. 114–121.

[8] L. Kagal, T. Finin, and A. Joshi, “Trust-based security in pervasive
computing environments,” Computer, vol. 34, no. 12, pp. 154–157, Dec
2001.

[9] A. Koestler, The Ghost in the Machine, 1967.
[10] A. Komenda, P. Novák, and M. Pěchouček, “How to repair multi-agent

plans: Experimental approach.” in Proceedings of the First Workshop on
Distributed and Multi-Agent Planning., 2013, pp. 66–74.

[11] Z. Mason, “Programming with stigmergy: Using swarms for construc-
tion,” in ICAL 2003: Proceedings of the eighth international conference
on Artificial life, 01 2002, pp. 371–374.

[12] F. Maturana, “Metamorph: an adaptive multi-agent architecture for
advanced manufacturing systems,” 1997.

[13] A. Tanenbaum, Computer Networks, 4th ed. Prentice Hall Professional
Technical Reference, 2002.

[14] ——, Computer Networks, 2nd ed. Prentice Hall Professional Technical
Reference, 2002.

[15] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal, I. Whalley,
J. O. Kephart, and S. R. White, “A multi-agent systems approach to
autonomic computing,” in Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume 1,
ser. AAMAS ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 464–471.

[16] L. Xiong and L. Liu, “Peertrust: supporting reputation-based trust for
peer-to-peer electronic communities,” IEEE Transactions on Knowledge
and Data Engineering, vol. 16, no. 7, pp. 843–857, July 2004.

	Introduction
	Literature review
	Classification in MAS (Multi-Agent-Systems)
	Challenges for MAS
	Scalability
	Privacy
	Fluctuation Performance

	Description of Holonic Systems
	Vision & Structure
	How challenges for MAS can be issued
	Scalability
	Conflict resolution
	Privacy
	Reliability
	Compatibility

	Flaws of Holonic Systems
	Supervising instance
	Privacy concerns
	Recursion

	Outlook
	Conclusion
	References

