

Using self-awareness in decentralized computing
systems

Florian Maier
Faculty of Computer Science and Mathematics

University of Passau
Passau, Germany

maier162@stud.uni-passau.de

Abstract — The term self-awareness in technological
systems has been discussed many years now. There is no
commonly agreed definition of the term self-aware in biological
or psychological meaning therefore there are many different
definitions all stating different aspects and levels of what we
call self-aware in the biological world. In addition the system
should be characterized by properties such as: robustness,
decentralization, flexibility and self-adapting. In the past this
was often achieved by designing good and robust but also
complex algorithms which often lead to unnecessary overhead
and hard to fix runtime bugs. Using self-aware components can
turn such algorithmic systems into organic computing systems,
offering better scalability, more robustness of the global state
and less unnecessary overhead in the communication between
different components in the decentralized system. On the
counterpart such a system might work in a way that cannot be
fully understood by humans in a reasonable time leading to
other problems such as trust issues in the system or unwanted
behavior in the global state of the system. The goal of this
article is to state out how decentralized computing systems can
benefit from self-aware approaches.

Keywords — self-awareness, decentralized computing systems

I. INTRODUCTION
In our modern world the demand of large and complex

computer systems rises, including high decentralization,
local applications with local sights and a high network usage.
Implementing and servicing these systems can be time and
cost intensive if one uses traditional algorithmic approaches.
A more modern approach is to use independent small
systems with local sight linked together. Such systems can be
declared as self-aware, as will be discussed later.

This article will discuss the question how to benefit from
self-aware components in decentralized computing systems,
meaning sort of artificial intelligence on small individual
components, including challenges to face.

Section II. will discuss the term “self-aware” in computer
systems, stating out different approaches to define the term
and finally looks detailed into a specific definition, which
will be used as a reference definition for the rest of the
article.

Section III. than looks into decentralized technical
systems, what they mean and how they have been
implemented in the past using algorithmic approaches. Than
it will take a look at how self-aware components can be and
also are used in such systems.

How such components can be applied to decentralized
computing systems and where the differences, opportunities
and challenges lie compared to classical algorithmic
approaches will be discussed in Section IV. Afterwards there

will be looked at how organic computing links to such
systems.

Section V. concludes this paper.

II. BACKGROUND: SELF-AWARENESS
There is no commonly agreed definition of the term self-

awareness in biological means. Therefore, there are many
different approaches to define “self-aware” for technological
systems. Some of them that stand out as significant
contribution to the definition of self-awareness in computing
systems will be stated in this section.

A. The term “self-aware” in technological systems
One of the higher levels of self-awareness can be called

meta-self-awareness or meta-cognition. This sort of self-
awareness is defined as an organism that is able to construct
and reason about an abstract symbolic representation of itself
[1] or can also be called knowing about knowing [2]. With
this definition Cox [3] argues that being aware of itself is
being able to use possessed information to achieve goals,
which can also include that the information might be
modified. In addition he also states that meta-cognition is
similar to the algorithm selection problem, which task is to
choose the most efficient algorithm from a set of
possibilities.

Agarwal et al. [4] state that the design philosophy should
move from a procedural design, meaning the behavior of a
computing system is pre-programmed and defined during the
design time, onto self-aware systems where pre-
programming is not necessary and the system can adapt to its
context automatically at runtime. One goal of this is to let the
system handle the availability of resources on its own,
resulting in less design effort and a higher possible
performance at runtime. They also state that there should be
five design properties considered while designing self-aware
systems:

• introspective, i.e. to perceive and optimize their
behavior,

• adaptive, i.e. being able to adapt to changing needs of
other applications relying on them,

• self-healing, i.e. being able to make corrections if
errors occur,

• goal oriented, i.e. trying to meet user application
needs, and

• approximate, i.e. the system is able to automatically
choose how precise a task must be executed.

Pervasive computing is primarily about mobile systems.
Those systems are forced to monitor their environment for
changes and adapt to those changes to meet the needs of
human interaction. I.e. such a system must be able to detect

in what situation the human is currently in and therefore
adapt the behavior of the program automatically. Lewis et al.
[5] describe this sort of behavior as self-aware pervasive
computing systems because they monitor their environment
and self-adapt automatically. Because this sort of system is
context-aware, at least a lower self-awareness is
implemented there.

As discussed above, self-awareness can be located in one
single entity or system, that is aware of its environment or
itself. But self-awareness can also be applied to larger
systems with many entities that are self-aware together but
every single entity on its own can’t be described as fully self-
aware. This is called emergent self-awareness [6]. This sort
of distributed system helps the global state to stay robust if
errors occur in local states. This is achieved by the ability of
local entities to be aware of disturbances in the global state.
If every entity collects local information, it is possible to get
enough statistical information in the whole system so that
recovery mechanisms can be applied and the global state can
be stabilized again. With this sort of self-awareness an
artificial intelligent system can be decentralized.

There are also more formal approaches to reach self-
awareness, especially in complex systems. Newer
approaches to represent knowledge within those systems in
formal deterministic and probabilistic ways are discussed by
Vassev and Hinchey [7]. According to them this can lead to
better self-awareness because it is easier to analyze current
local states and goals of parts of the global system.

B. Peter R. Lewis’ et al. definition of “self-aware”
In the above section several different approaches to

define the term self-aware have been discussed. All of them
have their right to exist; they tackle different problems with
sometimes different, sometimes the same solutions. To be
able to discuss the application of self-aware computing
systems in decentralized systems, I will use the
comprehensive definition of Lewis et al [5]. They discussed
all above mentioned definitions and tried to sum up the
general concept of self-aware computing system definitions.
With this definition it is easier to discuss general, not
application specific algorithms.

Their definition is based on a conceptual component
called a self-aware node. Such a node does not need to be
existent in physical or software meanings but it defines a
concept of what is meant by local within a global system;
even more than that it defines the concept of what is seen as
“self” in a self-aware system. Because those conceptual self-
aware nodes are distributed components per definition, this
particular approach to define the term self-aware is hugely
useful for the task of tackling distributed systems problems
with self-awareness. The definition is as follows.

To be self-aware a node must:

• Possess information about its internal state (private
self-awareness).

• Possess sufficient knowledge of its environment to
determine how it is perceived by other parts of the
system (public self-awareness).

Optionally, it might also:

• Possess knowledge of its role or importance within
the wider system.

• Possess knowledge about the likely effect of potential
future actions / decisions.

• Possess historical knowledge.

• Select what is relevant knowledge and what is not.

With this definition it is clear that a node must both have
private and public self-awareness. If it had only private self-
awareness, it would have knowledge about itself, e.g. its
current state, its behavior or history knowledge. It would not
have any information about even the existence of other nodes
in the system, leading it to not communicate with the other
nodes and therefore it would not be able to react to changing
needs of other parts of the system. On the other hand if it had
only public self-awareness, it would only have access to
knowledge of other nodes or more precisely the information
other nodes are sharing with the node. The node would not
have information about itself and therefore would not know
what it currently executes.

If a node has access to both private and public self-
awareness it is able to combine all information of both
sources, which creates a meaningful context for the node and
therefore makes it possible for the node to adapt and change
its behavior perfectly to the needs of the global system. On
top this knowledge allows to support simple reactive
behavior of the node as well as way more complex tasks like
self-learning and prediction making.

III. CHALLENGE: DECENTRALIZED TECHNICAL SYSTEMS
Currently the term self-awareness has been discussed in

detail. For the goal of this paper, researching how self-
awareness can contribute to decentralized systems, we first
have to take a look at what those systems are and how they
function traditionally.*

Decentralized technical systems are a subset of
distributed systems. According to Coulouris et al. a
distributed system is a system in which hardware and
software components located on network computers
communicate and coordinate their actions only by passing
messages [8]. While distributed systems have several parts
that are spread across several units, they still can have one
master unit that combines all information and is responsible
for action choices, decentralized systems don’t have such an
entity. Every unit in those systems takes individual choices
and only the sum of all those actions is what the system as a
whole is doing. The absence of a central master unit makes
such systems much more stable against local disturbances.

A. Algorithmic approaches
Many decentralized systems rely on algorithmic

approaches to achieve their goals.

First of all, architectural modeling is used to define the
details of the organization of the components within the
decentralized system. One commonly known approach here
is peer-to-peer. In a (pure) peer-to-peer approach, all
participants of the system are equally rated and have no
master. Everyone can communicate with everyone else and
the system has no hierarchical system. There are also some
hybrids that are based on peer-to-peer but have hierarchical

* Details in this chapter are based on knowledge learned by Florian
Maier in the course Distributed Systems held by Michael McMahon at
Waterford Institute of Technology, 2016.

structures like a super-peer.

To make it possible for units within the decentralized
system to communicate with each other, one approach is
Remote Method Invocation or RMI, which is Java exclusive.
In this approach, the network itself is seen as a computer,
which makes it possible to use classic system designs like
object orientating across several units in the system. RMI
enables one unit to make method calls on another unit within
the system and therefore share and gather information and
call actions on other parts of the system. Similar approaches
to RMI are Common Object Request Broker Architecture,
also named CORBA and the Microsoft exclusive .NET.

The big problems of decentralized systems are
performance including scalability, reliability, security and
adaptability. Those problems will first be discussed in detail
and in the next chapter addressed and shown how to solve
them with self-aware nodes.

In an algorithmic approach the designer has to think of
how many resources the system needs and how it can scale
up if necessary. If he chooses too little resources, the system
might get very slow, if he chooses too many, resources are
wasted because they are held for the system even if they are
not needed. Hitting the sweet spot can be a tough challenge,
especially considered that the demands of such a system can
change over time.

A distributed system has to work reliable, which is often
a problem if an unreliable network is used to communicate
between several nodes. A programmer of such a system has
to preconsider the failure of network components or
complete units, design and implement backup plans, e.g.
using other routes through the network or doubling key units
etc. Taking all possible failures into account can be a hard
task if the system should not be overscaled.

Large decentralized systems also have to take security
into account. The larger and more network based a system is,
the easier is it for an attacker to get into the system. On top,
if there is no central master overviewing the whole system,
an attacker could also implement a node that links in the
network, impersonating as a normal part of the system but
disturbing the correct function of the global state. An
algorithmic approach additionally suffers from predictable
behavior, making it easier for an intruder who knows the
response of all or many components in the system to
infiltrate it.

Another big problem of algorithmic approaches is
adaptability. It is pretty common that requirements in the real
world change, thus the requirements for decentralized
systems also change. Adapting the new needs into a system
can be time consuming in an algorithmic approach because
either a new element of the system has to be designed and
implemented or an existing one has to be updated. Both of
these methods involve at least one person to make actively
changes to implement the needed changes and therefore to
adapt the system to the new requirements.

B. Self-aware components in decentralized computing
systems
Mitchell [9] researched self-awareness in decentralized

biological systems – namely the immune system and ant
colonies – and abstracts four principles to adapt to
Decentralized Computing Systems.

• Global information is encoded as statistics and
dynamics of patterns over the system’s components

• Randomness and probabilities are essential

• The system carries out a fine-grained, parallel search
of possibilities

• The system exhibits a continual interplay of bottom-
up and top-down processes

The task of interpreting the statistic information is done
by all units locally with local statistical information, what
leads to a system adaptation that fits the current needs.
Randomness is needed to be able to detect and react to much
more events in the environment. Having a large number of
relatively small units helps under these circumstances for a
stable functionality of the whole system. On top it is crucial
to obtain a good balance between bottom-up and top-down
processes, including shifts of how they have to be weighted
to be balanced, thus this balance shifts over time.

C. Current state of the art systems
Esterle et al. [10] used self-aware agents to operate a

distributed smart camera system. They had the goal to track
moving objects within their field of view. To achieve that,
every camera on its own communicates with its neighbors,
making intelligent decisions about what camera is
responsible for what objects and who communicates with
whom. The result is that the cameras have a well balancing
between tracking performance and communication overhead.
On top the cameras did not need to know anything about
their environment or the system structure in design,
programming or installation time.

Decentralized systems with self-aware components can
also be of a much simpler scale. One example is cognitive
radio devices [11]. They monitor and control their own
abilities and communicate that with other radio devices.
Doing this improves the efficiency of communication
because the devices can adapt to parameter changes easily on
their own.

A third example is the SWARM-BOTS project [12].
They developed so called s-bots. Their individual abilities
are strongly limited but they can communicate with local
neighbors. Through this they can assemble into a larger
structure called Swarm-bot. Doing this allows them to
achieve goals a single s-bot could not achieve like navigating
over difficult terrain or the transportation of large objects.

IV. APPLICATION OF SELF-AWARENESS IN DECENTRALIZED
SYSTEMS

Now that we have discussed what self-awareness means,
what definition will be used in this paper and what
decentralized technical systems are, the following section
will look at the opportunities that self-aware components
give against algorithmic approaches and what challenges
come with it. Also a brief look at organic computing will be
made.

A. Opportunities of self-aware approaches opposed to
algorithmic ones
Section III discussed four major problems with

decentralized technical systems. Self-aware components can
help solving these problems.

Self-aware components in decentralized technical
systems are able to observe their environment and adapt to
changing needs on the fly. With this it is pretty easy for such
a system to scale the needed resources up and down
depending on current runtime needs. Therefore, the resources
do not have to be predefined in the design phase.

Reliability in decentralized technical systems can be
improved by using self-aware components, as they are able
to operate on a local scale to detect failures in the system,
react and adapt to them and therefore solving the problem
during runtime, creating a stable global state again.
Therefore, a programmer does not have to put as much effort
into error correction as he or she would have to do in an
algorithmic approach.

As self-aware components are much less predictable as
algorithmic ones, it is way harder to foretell their actions,
making it harder for hackers to attack the system. Also, one
dysfunctional component within the system will have much
less effect on the global state because all other self-aware
nodes will detect the failing behavior and therefore adapt
their actions in such a way that a stable global state is
established again.

The last mentioned challenge is adaptability. As
discussed above, the biggest strength of self-aware
components is that they can adapt their behavior very good
during runtime depending on environmental changes or new
goals to achieve. So with a self-aware approach adaptability
is no challenge at all for a decentralized technical system.

B. Challenges with self-aware components
Self-aware and self-adapting components in

decentralized technical systems might behave in an
unpredicted way. It also can be very hard to track down why
such components behave the way they do. This makes it very
difficult to find and fix bugs. On top it might be possible that
all nodes in such a system might do unforeseen things,
resulting in an unwanted behavior of the global state of the
system. Therefore, it might be hard for designers and
programmers to implement a system that behaves exactly as
wanted and for the users to fully trust such a system.

C. Relation between self-aware decentralized systems and
organic computing
According to Tomforde, Sick and Müller-Schloer [13] an

organic computing system is a technical system equipped
with a potentially large set of sensors and actuators. This
highly overlaps with Lewis’ et al. definition of self-
awareness discussed in Section II. There, several nodes
(actuators) have to receive knowledge about themselves and
their environment (sensors). Tomforde, Sick and Müller-
Schloer also argue that an organic system has to adapt to
changing needs on its own, as has been discussed for self-
aware components in decentralized computing systems
before. Tomforde et al. [14] also defined self-organization,
self-configuration, self-repair and adaptation as parts of
organic computing, where all these attributes are also core
components of self-aware distributed systems as discussed
above.

V. CONCLUSION
In this paper several approaches to the term “self-

awareness” has been discussed. Synthesizing on that the
more general and comprising definition of Lewis et al. was
introduced. Afterwards the term decentralized technical
system has been defined and several tasks that are hard to
fulfill with algorithmic approaches were discussed. Self-
aware components can contribute to those kinds of systems
in a way that those components can solve formerly hard tasks
on their own with little effort of the designer and
programmer. On the counterpart there are new challenges to
face with those components. Having organic computing in
mind, this sort of new way of designing and programming
decentralized systems will be the way to choose in the future
nonetheless.

REFERENCES
[1] A. Morin and J. Everett, “Conscience de soi et langage interieur:

Quelques speculations. [self-awareness and inner speech: Some
speculations],” Philosophiques, vol. XVII, no. 2, pp. 169–188, 1990.

[2] J. Metcalfe and A. P. Shumamura, Eds., Metacognition: Knowing
about knowing. Cam, MA, USA: MIT Press, 1994.

[3] M. Cox, “Metacognition in computation: A selected research review,”
Art. Int., vol. 169, no. 2, pp. 104–141, 2005.

[4] A. Agarwal, J. Miller, J. Eastep, D. Wentziaff, and H. Kasture, “Self-
aware computing,” MIT, Tech. Rep. AFRL-RI-RS-TR- 2009-161,
2009.

[5] P. R. Lewis, A. Chandray, S. Parsons, E. Robinson, K. Glettey, R.
Bahsoon, J. Torreseny and X. Yao, “A Survey of Self-Awareness and
Its Application in Computing Systems,” in Self-Adaptive and Self-
Organizing Systems Workshops (SASOW), 2011 Fifth IEEE
Conference on IEEE, 2011. pp. 102-107.

[6] M. Mitchell, “Self-awareness and control in decentralized systems,”
in Metacognition in Computation, 2005, pp. 80–85.

[7] E. Vassev and M. Hinchey, “Knowledge representation and
awareness in autonomic service-component ensembles – state of the
art,” in 14th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distributed
Computing. IEEE Computer Society, March 2011, pp. 110–119.

[8] G. Coulouris, J. Dollimore, T. Kindberg, “Distributed Systems –
Concepts and Design”, 3rd Edition, Addison-Wesley, ISBN 0-201-
62433-8, 2000

[9] M. Mitchell, “Self-awareness and control in decentralized systems”,
in AAAI Spring Symposium, Metacognition in Computation, 2005,
pp. 80-85.

[10] L. Esterle, P. R. Lewis, M. Bogdanski, B. Rinner, and X. Yao, “A
socio-economic approach to online vision graph generation and
handover in distributed smart camera networks,” in 13th International
Conference on Distributed Smart Cameras (ICDSC 2011), Ghent,
Belgium, 2011, in press.

[11] B. Fette, “Cognitive radio technology”, Academic Press, 2009.
[12] F. Mondada, G. C. Pettinaro, A. Guignard, I. W. Kwee, D. Floreano,

J.-L. Deneubourg, S. Nolfi, L. M. Gambardella, and M. Dorigo,
“Swarm-bot: A new distributed robotic concept,” Autonomous
Robots, vol. 17, pp. 193–221, 2004.

[13] S. Tomforde, B. Sick, C. Müller-Schloer, “Organic Computing in the
Spotlight”, in arXiv preprint, arXiv:1701.08125, 2017

[14] S. Tomforde et al., “Observation and Control of Organic Systems”, in
Organic Computing - {A} Paradigm Shift for Complex Systems,
2011, pp. 325-338.

	I. Introduction
	II. Background: Self-Awareness
	A. The term “self-aware” in technological systems
	B. Peter R. Lewis’ et al. definition of “self-aware”

	III. Challenge: Decentralized technical systems
	A. Algorithmic approaches
	B. Self-aware components in decentralized computing systems
	C. Current state of the art systems

	IV. Application of self-awareness in decentralized systems
	A. Opportunities of self-aware approaches opposed to algorithmic ones
	B. Challenges with self-aware components
	C. Relation between self-aware decentralized systems and organic computing

	V. Conclusion
	References

