Finite faithful G-sets are asymptotically free

Pierre-Yves Gaillard

Let G be a finite nontrivial group, let X be a finite faithful G-set, let P^iX be the *i*-th power set of X, let $n(i)$ be the number of points of $PⁱX$, let $m(i)$ be the number of points of $PⁱX$ with non-trivial stabilizer, let k be the number of prime order subgroups of G, and set $E(j) := 2^j$ for any integer j. We prove $\frac{n(i)}{m(i)} \geq \frac{1}{k} E(\frac{n(i-1)}{4})$ $\frac{i-1}{4}$) for $i \ge 2$.

Let G be a finite nontrivial group, X a finite faithful G-set, write PX for the power set of X, define the sets $P^i X$ for $i \in \mathbb{N}$ by $P^0 X = X$ and $P^{i+1} X = P P^i X$, let $n(i)$ be the number of points in P^iX , let $M(i)$ be the set of all $\xi \in P^iX$ such that there
is a $g \in G$ satisfying $g \neq 1$ and $g\xi = \xi$ let $m(i)$ be the number of points of $M(i)$ is a $g \in G$ satisfying $g \neq 1$ and $g\xi = \xi$, let $m(i)$ be the number of points of $M(i)$, and set $E(j) := 2^j$ for any integer j.

We expect the sequence

$$
\frac{n(1)}{m(1)}, \frac{n(2)}{m(2)}, \ldots
$$

to grow explosively. Let us illustrate this with the toy example where G and X have cardinality two. We get

$$
\frac{n(1)}{m(1)} = \frac{4}{2} = 2, \quad \frac{n(2)}{m(2)} = \frac{16}{8} = 2, \quad \frac{n(3)}{m(3)} = \frac{E(16)}{E(12)} = 16,
$$

$$
\frac{n(4)}{m(4)} = \frac{E(E(16))}{E(E(15) + E(11))} = E(15 E(11)),
$$

and $\frac{n(4)}{m(4)}$ turns out to have 9248 digits.

The purpose of this text is to try to shed some light on this phenomenon.

Theorem. Let G be a finite nontrivial group and X a finite faithful G-set, and i an integer ≥ 2 . Then, in the above setting, we have

$$
\frac{n(i)}{m(i)} \geq \frac{1}{k} E\left(\frac{n(i-1)}{4}\right) = \frac{1}{k} E\left(E(n(i-2)-2)\right),
$$

where k is the number of prime order subgroups of G .

Proposition 1. Let G be a group acting on a set Y with finitely many orbits. Then G has precisely 2^r fixed points in PY, where r is the number of G-orbits in Y.

Proof. The fixed points in PY are the invariant subsets of Y , which are unions of G-orbits.

Recall that $n(i)$ is the cardinality of $PⁱX$, so that we have $n(i + 1) = E(n(i))$ for all i.

We start by assuming that the order of G is a prime number p ; in particular $m(i)$ is the number of fixed points of G in $P^i X$.

Proposition 2. We have, in the above setting,

$$
\frac{n(i)}{m(i)} \geq E\left(\frac{n(i-1)}{4}\right)
$$

for all $i \geq 2$.

Proof. Let $r(i)$ be the number of G-orbits in $PⁱX$, and $f(i)$ the number of free G-orbits (that is, of orbits with p points) in $P^i X$.

Let i be a nonnegative integer. We have

$$
\begin{cases}\nn(i) = pf(i) + m(i) \\
r(i) = f(i) + m(i).\n\end{cases}
$$

Let us express $f(i)$ and $r(i)$ in term of $n(i)$ and $m(i)$:

$$
f(i) = \frac{n(i) - m(i)}{p},
$$

$$
r(i) = \frac{n(i) + (p - 1) m(i)}{p}
$$

In view of the equalities

$$
n(i + 1) = E(n(i)), \quad m(i + 1) = E(r(i))
$$

(Proposition 1), we get

$$
m(i + 1) = E\left(\frac{n(i) + (p - 1) m(i)}{p}\right),
$$

$$
\frac{n(i + 1)}{m(i + 1)} = E\left(\frac{p - 1}{p} (n(i) - m(i))\right) = E((p - 1)f(i)) \ge 2,
$$

the inequality $f(i) \ge 1$ following from our faithfulness assumption. This is easily seen to imply

$$
n(i) - m(i) \ge \frac{n(i)}{2} \ \forall \ i \ge 1,
$$

so that we get for $i \geq 2$

$$
\frac{n(i)}{m(i)} = E\left(\frac{p-1}{p} \left(n(i-1) - m(i-1)\right)\right)
$$

\n
$$
\geq E\left(\frac{p-1}{2p} n(i-1)\right) \geq E\left(\frac{n(i-1)}{4}\right).
$$

Proof of the Theorem. We know that the Theorem is true of G has prime order. Let us show that the Theorem hold for any finite group G .

Let H be the set of prime order subgroups of G . For each subgroup H of G let $M(i, H)$ be the set of all $\xi \in P^i X$ such that there is a $h \in H$ satisfying $h \neq 1$ and $h\xi - \xi$ and write $m(i, H)$ for the cardinality of $M(i, H)$. We get $M(i, G) - M(i)$ $h\xi = \xi$, and write $m(i, H)$ for the cardinality of $M(i, H)$. We get $M(i, G) = M(i)$,

$$
M(i) = \bigcup_{H \in \mathcal{H}} M(i, H), \quad m(i) \leq \sum_{H \in \mathcal{H}} m(i, H),
$$

and, for $i \geq 2$,

$$
\frac{m(i)}{n(i)} \leq \sum_{H \in \mathcal{H}} E\left(\frac{n(i-1)}{4}\right)^{-1} = kE\left(\frac{n(i-1)}{4}\right)^{-1},
$$

where k is the cardinality of H .

Tex file available at

<https://tinyurl.com/y3ls6ql8> and<https://tinyurl.com/y2cewbgq>

March 5, 2019

 \Box