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Abstract 

A fairly and simple exact solution of a well-known singular quadratic Liénard type equation is 
developed in this paper. The solution is compared with those obtained by Sundman and Lie 
Symmetry analysis. It is found that the result are in nice agreement. 

Introduction  

Consider the equation 
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which is a Liénard II type harmonic nonlinear oscillator equation, where x  is the function of 
time t  and ω is a free parameter. 

This equation is investigated by Orhan and Özer in [1] wherein, his first integral of the form
),(),( xtBxxtA +&  is found and the invariant solution is obtained. The aim of this paper is first 

to show that the equation (1) is a particular case of a more general one that belongs to the 
general class of quadratic Liénard type equations introduced by Akande et al. [2, 3, 4] and 
then determine in a straightforward fashion an exact solution. Second to analyze the equation 
(1) in one part from Lie Symmetry point of view and in second part by Sundman Symmetry to 
show that the obtained solutions are the same one computed by application of the nonlinear 
differential theory introduced by Akande et al. [2, 3, 4] 

2- Solution using the generalized Sundman transformation developed by Akande et al. 

[2, 3, 4] 

Let us consider the theory of nonlinear differential equations recently introduced by Akande 
et al. [2, 3, 4]. In this way, let’s take into account the general class of quadratic Liénard type 
equations [2, 3, 4]. 
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which is found by applying the transformation 

∫= dxxgy l )()(τ ;        dtxfd )(γτ =                                                                                      (3) 
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to the equation of harmonic oscillator 

0)()( 2 =+′′ ττ yay                                                                                                                    (4) 

For b=0, 
2)()( xxgxf == , the equation (2) is rewriting in this form 
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The choice 0=γ , 
3

1−
=l  and 

9

2
2 ω
=a , leads to the equation (1) studied in [1] 

This equation is then a particular case of the generalized equation (5).To find the solution, let 
us consider (3) which after substitution of )(xf , )(xg  and γ , becomes 

3

1

3)( xy =τ , 

and 

dtd =τ       which reduces  to 

kt +=τ  ,  with k  a constant 

Since )(τy  is solution of (4), then 

]sin[)( 1 αττ += aAy                                                                                                                (6) 

so that one may obtain the solution to (1) in the form 
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where  
3

2

ω
α +=A , and 1=k  

3-Lie point symmetry analysis 

3.1-Eight symmetries of (1) 

Consider the one parameter Lie group of infinitesimal transformation in the variables 
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where ),( xtξ  and ),( xtη  are the infinitesimal symmetries defined by the determining 

equations [5], 
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From (9), 

)()(3),( 3

1

taxtbxt +=ξ                                                                                                           (12) 

Replacing (12) in (10) and doing some algebraic manipulations, one can find 

)()()(9),( 3/23/4 tdxtxcxtbxt ++= &η                                                                                      (13) 

The next step is to calculate )(ta , )(tb , )(tc  and )(td . To achieve this, let us replace ),( xtξ

and   ),( xtη  in (10) and (11) and setting the coefficient of mx  equal to zero, one may have a 

following system of differential equations  
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The integration of the equations of the previous system leads to the expression of )(ta , )(tb , 

)(tc  and )(td , viz 
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Thus the infinitesimal symmetries are  
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The eight symmetries are then given by 
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3.2- Solution of the equation using Lie Symmetry 

The equation admitting eight parameters is isochronous according to [5]. Hence there exists 
an invertible transformation )(xhX = , which maps this equation into 

0
2
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Let us find )(xh , according to the equation [5] 
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Comparing (21) and (1), it leads  
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Then 
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ω = . Since the solution )(tX is given by 

)sin()( 201 AtAtX += ω  

the solution )(tx  is then 
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where 1A and 2A are constants . Such a solution is the same as that obtained previously by 

generalized Sundman transformation. 

4- Sundman symmetry analysis 

4.1-Elements of Sundman Symmetry analysis 

The comparison of (1) with [6] 
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Consider the general nonlocal transformation [6] 
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Replacing )(xφ and )(xB yields 
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Thus, the nonlocal transformation of (1) is 
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4.2-Sundman Symmetry of equation (1) 

The Sundman symmetries x~  and t~ are determined by the following equations  
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where c  is a constant, F  and G  are given respectively by ( 22). 

from (23) one may have 
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On the other hand, substituting F  and G  in (24) leads to  
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The Sundman Symmetry of equation (1) is then given by 
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4.3-Parametric solution of equation (1) 
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which may yield 
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β,1I  and 2c  are arbitrary constants and τ  is the parameter. 

4.4- Explicit solution of (1) using Sundman symmetry 

The expression of )(τt  may be arranged in the form 
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which is nothing but the solution obtained previously by application of the generalized 
Sundman transformation introduced by Akande et al. [2, 3, 4] and Lie symmetry group 
analysis. 

Conclusion 

A singular quadratic Liénard type equation with well-known solutions has been considered in 
this contribution. A new solution which appear fairly and simple has been developed within 
the framework of the generalized sundman transformation. The obtained solution has been 
found to be identical to those computed from Lie point symmetry group analysis as well as 
from Sundman symmetry method. 
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