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Abstract

In standard construction of hyperrational numbers using ultra-
power we assume that the ultrafilter is selective. It makes possible to
assign real value to any finite hyperrational number. So, we can con-
sider hyperrational numbers with selective ultrafilter as extension of
traditional real numbers. Also proved the existence of strictly mono-
tonic or stationary representing sequence for any hyperrational num-
ber.
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1 Notation and definitions

We use standard set theoretic notation (see [3]). Let us give some
well-known definition for convenience.

Partition of a set S is a pairwise disjoint family {Si}i∈I of nonempty
subsets such that

⋃
i∈I Si = S.

Let F ⊂ 2ω be non-principal ultrafilter on ω. We’ll call elements
in F big subsets (relative to F) and elements not in F small subsets
(relative to F).

F is called selective ultrafilter if for every partition {Sn}n∈ω of
ω into ℵ0 pieces such that Sn /∈ F for all n (small partition) there
exists B ∈ F (big selection) such that B ∩ Sn is singleton for all
n ∈ ω. Equivalently, F is selective if for every function f : ω → ω such

1



that f−1(i) is small for every i, there exists a big subset B such that
restriction f |B is injective.

The restriction of F to a big subset B ⊂ ω defined as FB = {J ∩
B | J ∈ F} ⊂ 2B is selective ultrafilter on B.

Continuum hypothesis (CH) implies existence of selective ultrafil-
ters due to Galvin [3, theor. 7.8]. The result of Shelah [4] shows that
existence of selective ultrafilters is unprovable in ZFC. So, we continue
with ZFC & CH to ensure the existence of selective ultrafilter.

Let [S]k = {X ⊂ S : |X| = k} is the set of all subsets of S that
have exactly k elements. If {Xi}i∈I is a partition of [S]k then a subset
H ⊂ S is homogeneous for the partition if for some i : [H]k ⊂ Xi.

The following fact is special case of Kunen’s theorem proven in [5,
theor. 9.6]:

Theorem 1. An ultrafilter on ω is selective if and only if for every
partition of [ω]2 into two pieces there is a big homogeneous set.

Due to this theorem selective ultrafilters are also called Ramsey
ultrafilters. We’ll give simplified proof of theorem 1.

We say that filter F ⊂ 2ω is normal if for any collection {Ai}i∈ω ⊂
F there exists B ∈ F such that for any i, j ∈ B : i < j =⇒ j ∈ Ai.
Equally, we can say that F is normal if there exists I ∈ F such that
above definition holds for any collection {Ai}i∈I ⊂ F. Indeed we can
expand given collection adding Ak = ω for k /∈ I, then apply definition
to {Ai}i∈ω and intersect obtained B with I.

We continue with fixed selective ultrafilter F on ω.
Let us denote Q∗ = Qω/ ∼F the quotient of Qω = {(xi)i∈ω | ∀i :

xi ∈ Q} by the following equivalence relation:

(xi) ∼F (yi)⇔ {i ∈ I | xi = yi} ∈ F .

This is well-known ultrapower construction widely used in model the-
ory and in Robinson’s non-standard analysis (see [1], [2]). We only
added the property of selectivity to F. So, we call elements of Q∗ hyper-
rational numbers. There is natural embedding ι : Q→ Q∗ where ι(q)
is the equivalence class of constant sequence (q, q, . . . , q, . . . ). We’ll
identify Q with ι(Q). Also Q∗ satisfies the transfer principle. So, all
true first order statements about Q are also valid in Q∗. In particular,
Q∗ is ordered field.

We call element x ∈ Q∗ infinitely large if |x| > |q| for all q ∈ Q,
infinitesimal if |x| < |q| for all q ∈ Q. Otherwise x is called finite. We
write x <∞ if x is finite or infinitesimal.

We use short notation xn for some representative (xn)n∈ω of equiv-
alence class x = [(xn)n∈ω] ∈ Q∗. So, we can make arbitrary changes
to sequence xn on arbitrary small set without changing appropriate
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x ∈ Q∗. Allowing some inaccuracy we’ll talk about hyperrational num-
ber x = xn. Let us call subsequence xnk

= xJ of xn big subsequence
if the subset J = {nk : k ∈ ω} of indexes is big.

The hyperrational number x = xn is infinitely large if and only if
any big subsequence xnk

is unbounded, is infinitesimal if and only if
1/x is infinitely large.

2 Propositions

Theorem 2. For any x = xn ∈ Q∗, there exists big subsequence xnk
,

which is strictly increasing or strictly decreasing or stationary. The
cases are mutually exclusive. In case of x <∞ the subsequence is fun-
damental and any two such subsequences xnk

and xmk
are equivalent

in traditional metric sense lim
k→∞

(xnk
− xmk

) = 0

Hyperrational numbers given by increasing (decreasing) sequences
we call left (right) numbers. Hyperrational numbers given by station-
ary sequences are exactly rational numbers.

Let Q∗fin = {x ∈ Q∗ | x <∞} be the set of all finite hyperrational
numbers and infinitesimals.

Theorem 3. The set Q∗fin is local ring, which unique maximal ideal
is the set of infinitesimals I. The factor ring of Q∗fin modulo I is the
field isomorphic to the field of real numbers:

Q∗fin/I ' R

3 Proofs

We give the proof of the theorem 1 which is a bit more simple than
the one from [5] in part of implication ”selective ⇒ normal”.

Proof of theorem 1. We use following proof schema: selective ⇒ nor-
mal ⇒ Ramsey ⇒ selective.

selective⇒ normal. Let {Ai}i∈ω ⊂ F be arbitrary collection of big
sets. We can assume with no loss of generality that ∀i ∈ Ak : i > k,
because we can replace Ak with big subsets A′k = {i ∈ Ak|i > k}.
Let us define mapping f : ω → ω, f(i) = min{j ∈ ω | i /∈ Aj}. Thus
f(i) ≤ i because i /∈ Ai. Obviously, f−1(j) ∩ Aj = ∅ and, so, sets
f−1(j) are small for all j. Then there exists big set B such that f is
injective on B.

We’ll construct big set A with the property: ∀i, j ∈ A : i < j ⇒
i < f(j) ≤ j. Such a set satisfies the conditions of the statement.
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Now let us construct subsets Pk of B as follows:

m0 = f(b0) = min f(B), P0 = {b0},

Sk = {s ∈ f(B) | s > max
k−1⋃
i=0

Pi}, k ≥ 1,

mk = f(bk) = minSk, k ≥ 1,

Pk = {b ∈ B | mk−1 < f(b) ≤ mk}, k ≥ 1

All Pk are finite because f |B is injective. Obviously, ∪ki=0Pi = {b ∈
B | f(b) ≤ mk}. All Sk are infinite because f(B) is infinite. Thus
Sk 6= ∅ and all mk are correctly defined. Note that Sk+1 ⊆ Sk and so
mk ≤ mk+1 for all k.

In fact mk = f(bk) ≤ bk < mk+1 because bk ∈ Pk and mk+1 >
max∪ki=0Pi. So, the sequence mk is strictly increasing. The sets Pk
are not empty because at least bk ∈ Pk.

Now if y ∈ Pk+2 then max(∪ki=0Pi) < mk+1 < f(y) and so x <
f(y) ≤ y for all x ∈ ∪ki=0Pi.

We have
∐
k Pk = B. One of two sets

∐
k P2k and

∐
k P2k+1 is big

and partitioned with small sets Pn where n is odd or even. Let A be
big selection from this partition. Let i < j be arbitrary elements of
A. Then i ∈ Pk and j ∈ Pk+2s for some k and s > 0. So, i < f(j) ≤ j
and j ∈ Ai.

normal ⇒ Ramsey. Let [ω]2 = P
∐
Q be some partition of [ω]2.

We consider following subsets of ω:

Pi = {j ∈ ω | {i, j} ∈ P and j > i}
Qi = {j ∈ ω | {i, j} ∈ Q and j > i}

Obviously, ω = Pi
∐
Qi

∐
{1, . . . , i} for all i. So, for fixed i one

and only one of Pi and Qi is big. Let B = {i ∈ ω | Pi ∈ F} and
C = {i ∈ ω | Qi ∈ F}. One of B and C is big. Let it be B. So, we
have family {Pi}i∈B of big sets. By the definition of normal ultrafilter
there exists big set A such that for any two elements i < j from A we
have j ∈ Pi which means {i, j} ∈ P . So, A is homogeneous.

Ramsey ⇒ selective. Let {Si}i∈ω be a small partition of ω. Con-
sider Q = {{i, j} ∈ [ω]2 | ∃k : i ∈ Sk and j ∈ Sk} and P = ω − Q.
There exists big subset H ⊂ ω such that [H]2 ⊂ Q or [H]2 ⊂ P . But
[H]2 ⊂ Q implies H ⊂ Sk for some k which is impossible because Sk
is small. Thus, [H]2 ⊂ P and the intersection H ∩ Sk can not contain
more than one element for any k. We can add elements to H if some
of the intersections are empty. So, H is the desired big selection.

Lemma 1. For any injection π : ω → ω there exists big subset B such
that π|B is increasing.
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Proof. We define the partition [ω]2 = P
∐
Q as follows P = {{i, j} ∈

[ω]2 | i < j and π(i) < π(j)} and Q = [ω]2 − P . There exists homo-
geneous big set B for this partition. But [B]2 can not be subset of Q
because there is no infinitely decreasing sequences in ω. So, [B]2 ⊂ P
and π|B is increasing.

Proof of theorem 2. Let x = xn ∈ Q∗ be arbitrary hyperrational num-
ber. First of all let us consider the equivalence relation on ω : n ∼ k
if and only if xn = xk. If the partition corresponding to this relation
have big subset then there is big stationary subsequence of xn.

Otherwise, we consider D ⊂ ω be big selection from this partition.
So, for k, n ∈ D if k 6= n then xk 6= xn. For any k ∈ Z we define
subsets Ik = {n ∈ D | xn ∈ (k, k + 1]}. It is clear that choosing
nonempty subsets Ik we get the partition of D. If this partition is
small then there exists big selection B. One and only one of two sets
B1 = {n ∈ B | xn > 0} and B2 = {n ∈ B | xn < 0} is big. Note that
the set {xn | n ∈ Bi} for big Bi has order type ω in case of B1 and ω∗

in case of B2.
Otherwise, Ik is big for some k. Thus, xIk is big bounded subse-

quence and number x is finite or infinitesimal. Only one of two sets
E1 = {n ∈ B | xn < x} and E2 = {n ∈ B | xn > x} is big.

Let show that if E1 is big then there exists big subset B3 ⊂ E1

such that {xn | n ∈ B3} has order type ω and xB3 is fundamental.
For this purpose let us define the partition of E1 as follows: Js =
{i ∈ E1 | x − 1

n ≤ xi < x − 1
n+1}. Js subsets are small for all s

because if Js is big for some s then the number x′ given by xJs is
equal to x but on other hand x′ < x. Contradiction. Thus, we can
get big selection B3 from the partition {Js}s∈ω. The sequence xB3 is
obviously fundamental and the set {xn | n ∈ B3} has order type ω.

Similarly If E2 is big we can get big subset B4 ⊂ E2 such that the
sequence xB4 is fundamental and the set {xn | n ∈ B4} has order type
ω∗.

If xK and xL are big fundamental subsequences then xK∩L is big
fundamental subsequence of both xK and xL. Thus, xK and xL are
equivalent in traditional metric sense.

Let C be the only big subset from subsets Bi and X = {xn}n∈C ⊂
Q subset of sequence elements. We define injection π : ω → ω as
follows:

π(n) =

{
index of min(X − {xπ(1), . . . , xπ(n−1)}), if C = B1 or C = B3

index of max(X − {xπ(1), . . . , xπ(n−1)}), if C = B2 or C = B4

Thus, π is descending or ascending ordering of X and for any i < j
we have xπ(i) < xπ(j) in first case and xπ(i) > xπ(j) in second case.
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According to lemma 1 there exists big subset E ⊂ ω such that πE is
increasing and subsequence xE∩C is monotonic.

We call ν(x) ∈ R the value of number x ∈ Q∗fin.

Proof of theorem 3. Let us define mapping ν : Q∗fin → R. For any
x = xn ∈ Q∗fin we set ν(x) equal to limit of some big fundamental
subsequence of xn. This limit is uniquely defined as follows from the
theorem 2. It is easy to see that ν is epimorphism of Q-algebras and
ker ν = I is the ideal of all infinitesimals in Q∗fin. All elements of
compliment of I in Q∗fin are invertible. Thus, I is only maximal ideal
in local ring Q∗fin and Q∗fin/I ' R.
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