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Preliminary note: This paper is one of the chapters of my upcoming book (the Zitterbewegung interpretation of 

quantum mechanics).1 Because this paper is so short, I have no table of contents.   

The illustration below presents the presumed Zitterbewegung of an electron as we would see it when it moves 

through space.  

 

Figure 1: The Zitterbewegung of an electron 

If this makes you think of an Archimedes’ screw, then that’s good because it is, effectively, the same geometric 

shape. We should warn you immediately: there is no reason whatsoever why the plane of the oscillation – the 

plane of rotation of the pointlike charge, that is – would be perpendicular to the direction of propagation of the 

electron as a while. In fact, we think that plane of oscillation moves about itself. We just want you to make a 

mental note of that as we now are going to present a rather particular geometric property of the 

Zitterbewegung (zbw) motion: the Compton radius must decrease as the velocity of our electron increases. The 

idea is visualized in the illustration below (for which credit goes to an Italian group of zbw theorists2): 

 

Figure 2: The Compton radius must decrease with increasing velocity 

                                                           
1 See: http://vixra.org/abs/1901.0105.  
2 Vassallo, G., Di Tommaso, A. O., and Celani, F, The Zitterbewegung interpretation of quantum mechanics as theoretical framework for 
ultra-dense deuterium and low energy nuclear reactions, in: Journal of Condensed Matter Nuclear Science, 2017, Vol 24,  pp. 32-41. Don’t 

worry about the rather weird distance scale (110−6 eV−1). Time and distance can be expressed in inverse energy units when using so-
called natural units (c = ħ = 1). We are not very fond of this because we think it does not necessarily clarify or simplify relations. Just note 

that 110−9 eV−1 = 1 GeV−1  0.197510−15 m. As you can see, the zbw radius is of the order of 210−6 eV−1 in the diagram, so that’s about 

0.410−12 m, which is what we calculated: a  0.38610−12 m. 

http://vixra.org/abs/1901.0105
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Can the velocity go to c? In the limit, yes. This is very interesting, because we can see that the circumference of 

the oscillation becomes a wavelength in the process. This relates the geometry of our zbw electron to the 

geometry of the photon model we’ve developed.3 

What happens here is quite easy to understand – intuitively, that is. If the tangential velocity remains equal to c, 

and the pointlike charge has to cover some horizontal distance as well, then the circumference of its rotational 

motion must decrease so it can cover the extra distance. But let us analyze it the way we should analyze it, and 

that’s by using our formulas. Let us first think about our formula for the zbw radius a: 

𝑎 =
ℏ

m𝑐
=

λ𝐶

2π
 

The λC is the Compton wavelength, so that’s the circumference of the circular motion.4 How can it decrease? If 

the electron moves, it will have some kinetic energy, which we must add to the rest energy. Hence, the mass m 

in the denominator (mc) increases and, because ħ and c are physical constants, a must decrease. How does that 

work with the frequency? The frequency is proportional to the energy (E = ħ·ω = h·f = h/T) so the frequency – in 

whatever way you want to measure it – will increase. Hence, the cycle time T must decrease. We write:   

θ = ω𝑡 =
E

ℏ
𝑡 =

γE0

ℏ
𝑡 = 2π ∙

t

T
 

So our Archimedes’ screw gets stretched, so to speak. Let us think about what happens here. We got the 

following formula for this λ wavelength, which is like the distance between two crests or two troughs of the 

wave5: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=

𝑣

𝑐
∙

h

m𝑐
= β ∙ λ𝐶  

This wavelength is not the de Broglie wavelength λL = h/p.6 So what is it? We have three wavelengths now: the 

Compton wavelength λC (which is a circumference, actually), that weird horizontal distance λ, and the de Broglie 

wavelength λL. Can we make sense of that? We can. Let us first re-write the de Broglie wavelength: 

λL =
h

p
=

h

m𝑣
=

h𝑐2

E𝑣
=

h𝑐

Eβ
=

h

𝑐
∙

1

m ∙ β
=

h

m0𝑐
∙
1

γβ
 

What is this? We are not sure, but it might help us to see what happens to the de Broglie wavelength as m and v 

both increase as our electron picks up some momentum p = m·v. Its wavelength must actually decrease as its 

(linear) momentum goes from zero to some much larger value – possibly infinity as v goes to c – but how 

exactly? The 1/γβ factor gives us the answer. That factor comes down from infinity (+) to zero as v goes from 0 

to c or – what amounts to the same – if the relative velocity β = v/c goes from 0 to 1. The graphs below show 

that works. The 1/γ factor is the circular arc that we’re used to, while the 1/β function is just the regular inverse 

function (y = 1/x) over the domain β = v/c, which goes from 0 to 1 as v goes from 0 to c. Their product gives us 

the green curve which – as mentioned – comes down from + to 0. 

                                                           
3 See: http://vixra.org/abs/1901.0105.  
4 Hence, the C subscript stands for the C of Compton, not for the speed of light (c).   
5 Because it is a wave in two dimensions, we cannot really say there are crests or troughs, but the terminology might help you with the 
interpretation of the geometry here. 
6 The use of L as a subscript is a bit random but think of it as the L of Louis de Broglie. 

http://vixra.org/abs/1901.0105
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Figure 3: The 1/γ, 1/β and 1/γβ graphs 

Now, we re-wrote the formula for de Broglie wavelength λL as the product of the 1/γβ factor and the Compton 

wavelength for v = 0:  

λL =
h

m0𝑐
∙
1

γβ
=

1

β
·

h

m𝑐
 

Hence, the de Broglie wavelength goes from + to 0. We may wonder: when is it equal to λC = h/mc? Let’s 

calculate that: 

λL =
h

p
=

h

m𝑐
∙
1

β
= λ𝐶 =

h

m𝑐
⟺ β = 1 ⟺ 𝑣 = 𝑐 

This is a rather weird result, and we have not yet fully interpreted its significance. Let’s bring the third 

wavelength in: the λ = β·λC wavelength—which is that length between the crests or troughs of the wave.7 We get 

the following two rather remarkable results: 

λL ∙ λ = λL ∙ β ∙ λ𝐶 =
1

β
·

h

m𝑐
∙ β ∙

h

m𝑐
= λ𝐶

2  

λ

λL
=

β ∙ λ𝐶

λ
=

p

h
∙
𝑣

𝑐
∙

h

m𝑐
=

m𝑣2

m𝑐2
= β2 

The product of the λ = β·λC wavelength and de Broglie wavelength is the square of the Compton wavelength, and 

their ratio is the square of the relative velocity β = v/c. – always! – and their ratio is equal to 1 – always! These 

two results are rather remarkable too but, despite their simplicity and apparent beauty, we are also struggling 

for an easy geometric interpretation. The use of natural units may help. Equating c to 1 would give us natural 

distance and time units, and equating h to 1 would give us a natural force unit—and, because of Newton’s law, a 

natural mass unit as well. Why? Because Newton’s F = m·a equation is relativistically correct: a force is that what 

gives some mass acceleration. Conversely, mass can be defined of the inertia to a change of its state of motion—

because any change in motion involves a force and some acceleration. We write: m = F/a. If we re-define our 

distance, time and force units by equating c and h  to 1, then the Compton wavelength (remember: it’s a 

circumference, really) and the mass of our electron will have a simple inversely proportional relation: 

                                                           
7 We should emphasize, once again, that our two-dimensional wave has no real crests or troughs: λ is just the distance between two 
points whose argument is the same—except for a phase factor equal to n·2π (n = 1, 2,…). 
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λ𝐶 =
1

γm0
=

1

m
 

We get equally simple formulas for he de Broglie wavelength and our λ wavelength: 

λL =
1

βγm0
=

1

βm
 

λ = β ∙ λ𝐶 =
β

γm0
=

β

m
 

This is quite deep: we have three lengths here – defining all of the geometry of the model – and they all depend 

on the rest mass of our object and its relative velocity only. Can we take this discussion any further? Perhaps, 

because what we have found may or may not be related to the idea that we’re going to develop in the next 

section. However, before we move on to the next, let us quickly note the three equations – or lengths – are not 

mutually independent. They are related through that equation we found above: 

λL ∙ λ = λ𝐶
2 =

1

m2
 

We’ll let you play with that. To help you with that, you may start by noting that the λLλ = 1/m2 reminds us of a 

property of an ellipse. Look at the illustration below.8 The length of the chord – perpendicular to the major axis 

of an ellipse is referred to as the latus rectum. One half of that length is the actual radius of curvature of the 

osculating circles at the endpoints of the major axis.9 We then have the usual distances along the major and 

minor axis (a and b). Now, one can show that the following formula has to be true: 

a·p = b2 

 

Figure 4: The latus rectum formula: a·p = b2 

If you don’t immediately see why this would be relevant, then… Well… Then you should look at it again. 😊  

I want to add another idea here. In our previous papers10, we suggested a couple of times that Planck’s quantum 

of action h, which we associated with an elementary cycle, or – in its reduced form (ħ = h/2π) – with the 

fundamental unit of angular momentum, should, perhaps, be written as a vector quantity. It’s a force times a 

circumference (or a radius or – more generally – some length) times a cycle time. A force is a vector quantity: it 

                                                           
8 Source: Wikimedia Commons (By Ag2gaeh - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=57428275).  
9 The endpoints are also known as the vertices of the ellipse. As for the concept of an osculating circles, that’s the circle which, among all 
tangent circles at the given point, which approaches the curve most tightly. It was named circulus osculans – which is Latin for ‘kissing 
circle’ – by Gottfried Wilhelm Leibniz. You know him, right? Apart from being a polymath and a philosopher, he was also a great 
mathematician. In fact, he was the one who invented differential and integral calculus.  
10 See: http://vixra.org/author/jean_louis_van_belle  

https://commons.wikimedia.org/w/index.php?curid=57428275
http://vixra.org/author/jean_louis_van_belle
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has a magnitude but it also has a direction. The linear momentum which appears in the second de Broglie 

relation for matter-waves is a vector quantity too—not because of the mass factor (m) but because of the 

velocity factor (v): p = mv. This makes it very tempting to write the second de Broglie relation (λ = h/p) as a 

vector equation: 

λ =
𝐡

𝐩
=

ℎ⃗ 

𝑝 
 

We would, therefore, also have to re-write the Uncertainty Principe—or the Uncertainty Relation as I prefer to 

refer to it. We are currently doing some research in this regard and it is all quite promising. For example, it 

provides a rather fresh perspective on the so-called random walk of an electron in free space and it may, 

therefore, explain Einstein’s formula for it in a very different (but necessarily equivalent) way. However, we do 

not want to burden the reader with that at this point in time, because the mentioned research is rather 

immature at this point. 

You may that vector equation looks weird, but it’s not any different than writing Newton’s force law as a vector 

equation: 

m =
𝐅

𝒂
=

𝐹 

𝑎 
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