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We expound the gradient of Vorticity tensor formula in general coordinates as treated in relativistic 
mechanics. 

                                            

The formula of the gradient of  the Vorticity tensor (eq.A.26) is derived in general coordinates as 
treated in classical and relativistic continuum mechanics and as groundwork of Tailherer’s theory, 

a sort of extension of general relativity as shall be clearer afterwards [2]. 

The basic equations are those of vortex kinematics encountered in lagrangian description of 

continua [1] relating the angular velocity tensor to the deformation velocity K = ½g  (as 

remarked in [2] identified with the second fundamental tensor relative to V4): let us start by 

considering all the points-event of the space spanned by the particles of a continuum as 

parameterized with their co-ordinates representing the position vector OP with respect to an 

arbitrary origin O , and a local frame referred to a local basis of vectors e  =OP/xwhose the 

metric tensor g= e  e   and the countervariant frame  g


 associated with, such that        

gg
 

= 
  

. We consider the lagrangian metric  g (x


/) as function of the trajectory line’s 

variables  x  
and time  , and  so  e  . Since our reasoning might be done in the 4-dimensional 

cronotope too ( so  is referred to as the proper time), it follows that if the relations hold in each 

tern subspace, as we shall see they do, they will keep holding in the whole 4-dimensional space 
for the same equation that we shall get. So, let us choose without loss of generality the tern 

referring to the space indexes h=1,2,3. Let us consider now the gradient of the space components 

of the velocity which will be of the type: 

                      
k

h hk
q v e          ( / , 1,2,3)h

h x h k                                    (A.1) 

 

The matrix  qhk   can always be split up in a symmetrical part and a skew-symmetric one  
 

  qhk =h v e k  = Khk +  hk                                                                                                  (A.2) 

 

with symmetrical part                                                                                        

 

                                        Khk =1/2( h v  e k + k v e h ) = Kkh                                                              (A.3) 
 
and skew-symmetric 

 

hk =1/2(h v  e k  - k v  e h ) = - kh                                                                      (A.4) 
 

Since 

   e h =

2 2

h h

OP OP
=

x x 

 

   
=h v                                         (A.5) 

equ.(A.3) will be written as: 

 

  Khk = 1/2(  e he k +   e k  e h ) =1/2( e h  e k ) = 1/2ghk                     (A.6) 
 

which can be referred to the second fundamental tensor as already outlined in [2] where it was 

denoted as deformation velocity of the metric.  For what concerns  hk  by taking (A.5) into 
account let us introduce the vector 

 

 = ½ e 
h
  e h = ½ e 

h
 h v      with      exterior product                          (A.7)        
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Then from the (A.2) and (A.3) we have successively: 

 

       = ½ e 
h
 (K hk + hk ) e 

k 
= ½ (K hk  e 

h
 e 

k 
)+ ½ (hk  e 

h
 e 

k 
)                          (A.8) 

 

which in account of the symmetry of Khk  and the skew-symmetry of  e 
h 
 e 

k  
becomes: 

 

                              = ½ (hk  e 
h 
 e 

k 
)                                                                      (A.9)



  will be named angular velocity and characterised by the coefficients  hk . 
Moreover, if  we multiply  (A.7)  by  e h   through the exterior product, taking into account that      

e 
h 
 e k = 

h
k , we get: 

  e h  = ½ ( lk  e 
l e 

k 
)  e h =  ½  lk (e 

l
  e h e 

k
 – e 

k
 e h   e 

l
) = ½  lk ( 

l
h e 

k 
-  

k
h e 

l 
)  and 

therefore the relation: 
 

                             e h =hk  e 
k  

               ( h,k=1,2,3 )                                (A.10) 
 

Let us now make some recalls. By differentiating the vectors eh (x


/) of the local base with 
respect to the proper time we get the gradient of the space components of 4-velocity as from 

(A.5). In deriving them with respect to x   
we get for definition the Christoffel symbols as well-

known in differential geometry: 

 

j e h = 
k
j h e k   j  e 

h
 = -  

h
j k e 

k 
                              (A.11) 

 
Let us recall the links between the Christoffel symbols of the first and second kind: 

 

 
k
j h  = g

kr 
 j h , r           j h , r = grk  

k
j h                                                (A.12)             

 

From (A.11) it turns out that  

 

j v =j (v h e 
h
) = ( j vh -  

k
j h vk ) e 

h
 = (j vh) e 

h                                                      
(A.13) 

 

 
leading via (A.4) to the expression: 

 

     hk =1/2 (h vk -k vh)= 1/2 ( h vk - k vh )                                  (A.14)     
 
and by taking advantage of the symmetry of Christoffel symbols with respect to inferior indexes. 

Analogously we get for (A.3): 

 

     Khk =1/2 (h vk +k vh)                                                (A.15)        
 

as usual for the deformation tensor. 

The gradient of the velocity expressed in terms of deformation and angular velocity follows as 
from (A.1), (A.2) and (A.10): 

 

  h v = K h +   e h                                                 (A.16)                                                                   
with   K h    following as from (A.6): 
 

                     K h = K hk  e 
k 
= ½ Khk  e 

k                                                                   
(A.17) 

 

From (A.16) we can infer   to depend on K , that is to say, on the deformation velocity as will be 
seen better next. To see that let us derive both the members of (A.9) with respect to x 

j  
. We get: 



j  = ½ j e 
h 
 e h + ½ e 

h 
 (j e h )                           (A.18) 
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as well as on using (A.11): 

j   = - ½  
h

j k e 
k 
 e h + ½ e

h 
 

k
j h   e k + ½   ( 

k
j h) e 

h 
   e k                                           (A.19) 

 

Since the first two terms vanish as it is understood by changing the indexes h and k, it turns out: 
 

   j = ½   ( 
k
j h) e 

h 
 e k                                                                      (A.20) 

 

On the other hand, since      j h , r = ½ (j ghr +  h grj - r gjh)      and taking into account (A.6) we 
have: 

 

  j h , r =j K h r + h K r j -  r K j h =j K h r+ h K r j  - r K j h + 2 
k
j h K k r                                                     

 
where we used the definition of covariant derivative: 

 

            j K hr = j K hr  -  
k
j h K kr  -  

k
j r K h k                                                            (A.21) 

 

Making use of the triple tensor   q j h , r =j K hr + h K rj - r K jh        we obtain the following 
expression of the time derivative of Christoffel symbols of first kind: 

 

  j h , r = q j h , r +  
k
j h  gk r                                                      (A.22) 

 

Moreover, by differentiating (A.12)2 with respect to proper time we get for the precedent relation: 

 

                              gr k  
k
j h + gr k   

k
j h= q j h , r + 

k
j h  g k r            i.e.                                      

                                                             
k
j h = g

k r
 q j h , r  = q 

k
j h                                                                  (A.23) 

 
which is plainly a tensor. Hence equ.(A.20)  becomes: 

 

                                                   j =½ q jh  , k  e 
h 
  e 

k                                                                         
(A.24) 

  
or because of  (A.21)  and the skew-symmetry of the exterior  product: 

 

j  =h Kk j  e 
h 
  e 

k                                                                    
(A.25) 

 
Then, by differentiating (A.9) we obtain: 

 

j  = ½ jhk ( e 
h 
 e 

k 
) + ½ hk j ( e 

h 
 e 

k 
)   and taking (A.11)2  into account and the 

definition of covariant derivative for hk we finally arrive to the differential expressions: 
 

        j  hk =h Kk j -k Kh j                           ( j,h,k =1,2,3 )                     (A.26)     

 

Extending (A.26) to the 4-dimensional cronotope (also making K and    dimensionally as a 

[length]
-1

 by re-defining them dividing by the light speed c) and entering the Tailherer's ansatz:    

C= S ,  C = R
 

, with 
 any constant skew-symmetric tensor, we have a second 

gravitational equation: 

 
 C = S ( K - K   )                ( ,,  =1,2,3,4 ) 
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with S = (2.5±1.2)E-19 m
-1

 [3] . By choosing 

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 
 

 
 
 

 

  Lorentz invariance is 

yet preserved, however general one is broken as discussed in [4], just regarding the gravitational 

wave phenomenon as symmetry breaking of general relativity .  
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