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1 Introduction

In 1964, John Bell wrote a paper [1] on the possibility of hidden variables [2] causing the entan-

glement correlation E(a, b) between two particles. In his famous paper, Einstein [2] argued that

the quantum description must be supplemented with extra variables to explain the entangle-

ment phenomenon. von Neuman [4] presented a mathematical proof that any hidden variables

theory is in conflict with quantum mechanics. However, one can doubt if von Neuman’s view

on the matter was completely related to the physics. In the present paper, an inconsistency in

the starting formula of Bell [1] will be demonstrated.

Bell, based his hidden variable description on particle pairs with entangled spin, originally

formulated by Bohm [3]. Modern research from e.g. Nordén arrives at the conclusion that

we don’t need the Bell experiments and theorem to make a difference between classical and

quantum explanations [7]. In an earlier article Norden [8], already draws attention is to the

strange linear dependence on angle between polarizers that the Bell model assumes but for

which it gives no explanation.

In his correlation expression, Bell [1] uses hidden variables λ that are elements of a universal

set Λ and are distributed with a density ρ(λ) ≥ 0. Suppose, E(a, b) is the correlation between

measurements with distant A and B that have unit-length, i.e. ||a|| = ||b|| = 1, real 3 dim

parameter vectors a and b. Then with the use of hypotherical λ we can write down the classical

probability correlation between the two simultaneously measured spins of the particles. This is

what we will call Bell’s formula.

E(a, b) =

∫
λ∈Λ

ρ(λ)A(a, λ)B(b, λ)dλ (1.1)

The spin measurement functions are, A(a, λ) ∈ {−1, 1} and B(b, λ) ∈ {−1, 1}. The probability

density is normalized,
∫
ρ(λ)dλ = 1.

In our present paper we look at a particular subset of models and question the methodology

of the derivation of inequalities from Bell’s formula.

...
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2 Example computation

Bell’s formula (1.1) is very general. That means that it has to be valid for all kinds sub-cases

where ± functions are used.

In the present example we will concentrate the attention on the following expression for e.g.

the measurement function A = A(a, λ) ∈ {−1, 1}. Let us also, for the sake of the example,

make use of one single Gaussian density function and change the notation slightly. We have

P(x) =
1√
2π

∫ x

−∞
e−y

2/2dy (2.1)

Therefore, ρGauss(x) = d
dxP(x) in this example. To be even more precise, let us concentrate on

a sub-case of Bell’s formula where

E =

∫ +∞

−∞
A(a, x)ρGauss(x)dx (2.2)

is a part of the computation of a more complete correlation. Let us define, for a ∈ R ∩ [−1, 1],

A(a, x) = lim

(
Hn(x− a) + 1

3Hn(x− a)− 1

)
=

 +1, x ≥ a

−1, x < a
(2.3)

The lim notation is introduced to abbreviate limn→∞. In order to remain close to the physics of

the problem, we select a ∈ [−1, 1]. Here we have A(a, x) = sign(x− a). If a critic believes that

(2.3) cannot be used then he has to explain if Bell’s theorem and the associated experiments

are still sufficiently general to allow all kinds of conclusions about the yes/no existence of

Einstein hidden variables and inseparability [2] and [5]. It is based on, H(x) = 1⇔ x ≥ 0 and

H(x) = 0⇔ x < 0. The closed limit Heaviside form is here equal to:

H(x) = limHn(x) = lim exp

(
−e
−nx

n

)
≥ 0 (2.4)

It must be noted that (2.3) is perfectly in order when in a Bell formula we are looking for a

function A ∈ {−1, 1}.
We observe that in (2.2) there is the case of ”

∫
before lim”. In Appendix 1 it is demonstrated

that ”
∫

before lim” and ”lim before
∫

” give the same result. It is noted that there are many

limits to only one sign function. We are therefore allowed to use the ”lim before
∫

” form

equipped with (2.3) and write in Riemanian integration form:

E = lim

∫ +∞

−∞

d

dx
P(x)

(
Hn(x− a) + 1

3Hn(x− a)− 1

)
dx (2.5)

Because all normal concrete mathematical operations can be performed on (2.5), we may

use partial integration. If this is not the case then the critic has to explain why he believes the

Bell theorem is still general. Pending that verdict,

E = 1− lim

∫ ∞
−∞

P(x)
d

dx

(
Hn(x− a) + 1

3Hn(x− a)− 1

)
dx = (2.6)

1− lim

∫ ∞
−∞

P(x)
dHn(x−a)

dx

(3Hn(x− a)− 1)2
{(3Hn(x− a)− 1)− 3 (Hn(x− a) + 1)} dx
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Therefore

E = 1 + 4 lim

∫ ∞
−∞

P(x)
dHn(x−a)

dx

(3Hn(x− a)− 1)2
dx (2.7)

From the definition (2.4) it can be concluded that dHn(x−a)
dx ≥ 0 for all x ∈ R and arbitrary

n > 0. Note that x and n are independent. Moreover, note that ∀x∈R0 ≤ P(x) ≤ 1. Hence,

with a similar inequality producing procedure such as in [1] we have

P(x)
dHn(x−a)

dx

(3Hn(x− a)− 1)2
≤

dHn(x−a)
dx

(3Hn(x− a)− 1)2
(2.8)

This implies looking at (2.7),

E ≤ 1 + 4 lim

∫ ∞
−∞

dHn(x−a)
dx

(3Hn(x− a)− 1)2
dx = (2.9)

1− 4

3
lim

∫ ∞
−∞

d

dx
(3Hn(x− a)− 1)

−1
dx =

1− 4

3
lim

{
1

3Hn(∞)− 1
− 1

3Hn(−∞)− 1

}
=

1− 4

3

{
1

(3 ∗ 1)− 1
− 1

(3 ∗ 0)− 1

}
=

1− 4

3

{
1

2
− 1

−1

}
= 1− 4

3

{
1

2
+ 1

}
= 1− 4

3

3

2
= 1− 2 = −1

Therefore, this excercise gives E ≤ −1. However, this holds true for all values of a ∈ [−1, 1].

Hence, the outcome E ≤ −1 is unacceptable.

3 Conclusion

In the paper it is demonstrated that the operations leading to Bell inequalities are in some

cases leading to unacceptable outcomes. The expected E = 1 − 2P(a) that can be obtained

from the sign-and-density integration stands in contrast to the derived E ≤ −1. The latter is

based on the same operations such as employed in derivations of Bell inequialities. If one wants

to contest the conclusion that Bell’s formula is ill defined and want to use persistent poles in

the (2.5) integral then

• one destroys the ±1 meaning of the Bell formula because H then projects in e.g. {0, 1
3 , 1}.

Sign functions like 2H − 1 then no longer project in {−1, 1}.

• one has to explain why the expected outcome E = 1−2P(a) can be obtained as well from

(2.7).

We contest the validity of the objection ”there are poles in the integrand of (2.5)” and believe

this is untrue and contradictory with a meaningful Bell formula. The confusion around this

theme is related to Bell’s formula and can not be attributed to the methods such as presented

here and in [6]. Key question is: can the present sign function limit representation be excluded

from consideration for spin measurement function.

The author is aware of the fact that the claim is controversial. At its least we can argue

that a Bell experiment [9] most likely excludes certain Einstein type models [2] and [5] from

consideration.
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Appendix 1

Here we look at interchanging between limit and integral and note that limit parameter, n,

is independent of the integration variable x ∈ R. We will show in this appendix that, with

a specific example ”
∫

before lim” gives the same as ”lim before
∫

”. The example is specific

but generalizes to the case under attentionm in the main text because there is only one sign

function but a multitude of limits that may approach it.

Suppose, for x ∈ R, we look at a density

ρ(x) =

 x, 0 ≤ x ≤
√

2,

0, elsewhere
(3.1)

Furthermore, let us model the sign function, for 0 < a <
√

2 with

sign(x− a) = lim


(

1

2

)2n
√

(x−a)2

+
1

π
arctan [n(x− a)]

 (3.2)

with lim ≡ limn→∞ such as in the main text. Moreover,
√

(x− a)2 is positive or zero. If x ≤ a,

then
√

(x− a)2 = −(x − a). If x ≥ a then so lim
∫ √

(x− a)2 = (x − a). The expression in

(3.2) is a realization of sign(x − a) = 1 ⇔ x ≥ a and sign(x − a) = −1 ⇔ x < a. Note that

lim
(

1
2

)2n√(x−a)2
= 0,⇔ x 6= a and lim

(
1
2

)2n√(x−a)2
= 1,⇔ x = a .

We compute the limit first ”outside the integral”. Let us first look at the arctan integral.

Ba =

∫ √2

0

xsign(x− a)dx =
2

π
lim

∫ √2

0

x arctan [n(x− a)] dx = (3.3)

2

π
lim

∫ √2

0

1

2

d

dx
x2 arctan [n(x− a)] dx

Partial integration then gives, 0 < a <
√

2, with a of course independent of n,

Ba =
{
√

2}2

2

2

π
lim arctan

[
n(
√

2 − a)
]

+ (3.4)

− 1

π
lim

∫ √2

0

x2 d

dx
arctan [n(x− a)] dx
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Therefore,

Ba = 1− 1

π
lim

∫ √2

0

x2 n

1 + n2(x− a)2
dx (3.5)

Suppose y = x− a then this gives for x2 = (y + a)2 = y2 + 2ya+ a2

Ba = 1− 1

π
lim

∫ √2−a

−a

(
y2 + 2ya+ a2

) ndy

1 + n2y2
(3.6)

Or,

Ba = 1− 1

π
lim

∫ √2−a

−a

ny2

1 + n2y2
dy + (3.7)

− 1

π
lim

∫ √2−a

−a

2nay

1 + n2y2
dy − 1

π
lim

∫ √2−a

−a

na2

1 + n2y2
dy

Now, we may note that ny2

1+n2y2 = 1
n

(
1− 1

1+n2y2

)
. The first right hand integral in (3.7) then is

1

π
lim

∫ √2−a

−a

ny2

1 + n2y2
dy = lim

1

nπ

∫ √2−a

−a

(
1− 1

1 + n2y2

)
dy (3.8)

Hence, the combined first and third integral of (3.7) is,looking at (3.8)

1

π
lim

∫ √2−a

−a

ny2

1 + n2y2
dy +

1

π
lim

∫ √2−a

−a

na2

1 + n2y2
dy = (3.9)

1

π
lim

{∫ √2−a

−a

(
1

n
+
na2 − 1

n

1 + n2y2

)
dy

}
=

1

π
lim

{√
2

n
+

1

n

(
na2 − 1

n

)[
arctan(n(

√
2− a))− arctan(−na)

]}
=

1

π
lim

{(
a2 − 1

n2

)[π
2
− (−π

2
)
]}

= a2

The second integral of (3.7) is

B′a =
1

π
lim

∫ √2−a

−a

2nay

1 + n2y2
dy (3.10)

Suppose z = ny. Then dz = ndy and

ny

1 + n2y2
=

1

2n

1

1 + z2

dz2

dz
=

1

2n

d

dz
log
(
1 + z2

)
(3.11)

Hence, looking at (3.10)

B′ =
1

π
lim

∫ n(
√

2−a)

−an

1

2n

(
d

dz
log
(
1 + z2

)) dz

n
= (3.12)

1

π
lim

1

2n2

{
log
(

1 + (
√

2− a)2n2
)
− log

(
1 + (−a)2n2

)}
= 0

Therefore, from (3.7)-(3.12) and substitution in (3.5) it follows that

Ba = 1− a2 (3.13)
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Then let us look at the influence of
(

1
2

)2n√(x−a)2
= exp

[
−n
√

(x− a)2 log 2
]

term and

demonstrate that this vanishes for n→∞. We have

Ca = lim

∫ √2

0

x exp
[
−n
√

(x− a)2 log 2
]
dx = (3.14)

lim

∫ a

0

x exp [n(x− a) log 2] dx+ lim

∫ √2

a

x exp [−n(x− a) log 2] dx

Let us look at the first integral on the right hand of (3.14) and call it C1a. Hence,

C1a = lim

∫ a

0

x exp [n(x− a) log 2] dx = (3.15)

lim
exp [−na log 2]

n log 2

∫ a

0

x
d

dx
exp [nx log 2] dx =

lim

{
a

n log 2
− exp [−na log 2]

n log 2

∫ a

0

exp [nx log 2] dx

}
Therefore we have

C1a = − lim
exp [−na log 2]

(n log 2)2

∫ a

0

d

dx
exp [nx log 2] dx = (3.16)

− lim
exp [−na log 2]

(n log 2)2
(1− exp [na log 2]) =

(1− exp [−na log 2]) = 0

Subsequently let us, with y = x− a rewrite the second integral on the right hand side of (3.14)

as

C2a = lim

∫ √2

a

x exp [−n(x− a) log 2] dx = (3.17)

lim

∫ b

0

(y + a) exp [−ny log 2] dy =

lim
−1

n log 2

∫ b

0

(y + a)
d

dy
exp [−ny log 2] dy

with b =
√

2− a > 0. Therefore, after partial integration we may write

C2a = lim
−1

n log 2

{
(b+ a) exp [−nb log 2]− a−

∫ b

0

exp [−ny log 2] dy

}
= (3.18)

lim
1

(n log 2)2

∫ b

0

d

dy
exp [−ny log 2] dy =

lim
1

(n log 2)2
(exp [−nb log 2]− 1) = 0

Hence, Ba + Ca = 1 − a2 is the result of the lim
∫

form of integration. If we then look at the

limit beyond the integration, i.e. look at
∫

lim, then we see

Da =

∫ √2

0

x sign(x− a)dx = −
∫ a

0

xdx+

∫ √2

a

xdx = (3.19)

−1

2
a2 + 1− 1

2
a2 = 1− a2
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The latter result, based on
∫

lim, agrees with the former derived from lim
∫

given in (3.13).

This likely ends the discussion about the interchange between integral and limits. We have that

lim
∫

gives the same result as
∫

lim, i.e. Da[
∫

lim] = (Ba+Ca)[lim
∫

]. The limit representation

in (3.2) is a particular form for the general sign (sign(0)=1) function. The probability density

was a convenient choice.


