
Draft version February 11, 2019
Preprint typeset using LATEX style emulateapj v. 01/23/15

COMPUTATION, COMPLEXITY, AND P 6= NP PROOF

Hugh Wang1

McGill University

Draft version February 11, 2019

ABSTRACT

If we refer to a string for Turing machines as a guess and a rejectable substring a flaw, then all
algorithms reject similarly flawed guesses flaw by flaw until they chance on an unflawed guess, settle
with a flawed guess, or return the unflawed guesses. Deterministic algorithms therefore must identify
all flaws before guessing flawlessly in the worst case. Time complexity is then bounded below by the
order of the product of the least number of flaws to cover all flawed guesses and the least time to
identify a flaw. Since there exists 3-SAT problems with an exponential number of flaws, 3-SAT is not
in P, and therefore P 6= NP.

The radiating paths problem, illustrated in Figure 1,
offers insight into the P versus NP problem. Given a
natural number n, I lay 2n paths of length n2 radiating
from where you stand. Then, I place a stone at the end of
each path, and may or may not bury some fruits under
half of the stones. At your luckiest, you need to walk
only a polynomial n2 to be fruitful. At your unluckiest,
you need to walk an exponential (2n−1 + 1) · n2 to leave
no stone unturned. That is, overlooking walking back to
square one. Therefore, deciding if some fruits are within
reach is in NP but not in P, hinting that P 6= NP.

We later shape this problem into an emblem of classi-
cal computation by analogizing walking down one of the
2n paths of length m to deciding a truth assignment of a
3-SAT problem with n variables and m clauses. Suppose
the analogy holds, then if the length of a path or the num-
ber of clauses decreases from n2 to 1, you need to remem-
ber only 1 clause but walk an exponential (2n−1 + 1) · 1
to leave no stone unturned, and auxiliary space complex-
ity decreases from PSPACE to REG, but not the time
complexity. We see that the exponential number of un-
fruitful paths alone excludes the radiating paths problem
from P.

On the other hand, the radiating directions problem,
shown in Figure 2, is in P despite its exponential number
of unfruitful paths. It differs from the previous problem
in that, after I may or may not bury the fruits, I de-
vise n2 directions, not necessarily disjoint, that cover the
unfruitful paths. Then, an unfruitful path implies that
the paths in any of its directions are unfruitful, and at
your unluckiest, you need to walk at most a polynomial
(n2 + 1) ·n2 to leave no stone unturned. This problem is
then in P, hinting that the number of directions to cover
the unfruitful paths matters to time complexity.

Suddenly, the length of a path matters to the time
complexity. If the length of the paths or the number
of clauses is 2n, then you need to walk an exponential
(n2 + 1) · 2n and remember at most 2n clauses to leave
no stone unturned, and this problem is beyond P and
maybe PSPACE too. Since you can but leave no stone
unturned to decide this problem, the time complexity is

1 B.S. Joint Honours Mathematics and Computer Science, In-
terdisciplinary Life Sciences Minor, McGill University, Canada

the product of the least number of directions to cover
all unfruitful paths and the time to decide a direction
unfruitful, or the length of the path. Is this the number
of clauses and therefore the auxiliary space complexity if
the analogy holds?

Figure 1. A radiating paths problem with n = 3 and therefore
23 paths of length 32.

Figure 2. A radiating directions problem with n = 3 and there-
fore 32 directions.



2

We now support the analogy between walking down
one of the 2n paths of length m in a radiating direc-
tions problem and deciding one of the 2n assignments of
a 3-SAT problem with n variables and m clauses. Sup-
pose you walk a unit length each time a classical com-
puter transitions through the necessary states to decide
a clause, the stone turning unfolds according to the deci-
sion of the final state, and the implications of an unfruit-
ful path correspond to the implications of a false partial
assignment. Then, deciding the radiating directions ana-
logue of a 3-SAT problem is deciding the problem itself.

This analogy holds because walking and classical com-
putation abide by the same physical laws. You cannot
foresee what lies ahead of a path or be at two places at
once, just as a classical computer cannot foresee what
lies ahead of a computation or be in two states at once.
Then at your unluckiest in 3-SAT, you must reject all
unsatisfying partial assignments before accepting. Time
complexity is then bounded below by the order of the
product of the least number of flaws to cover all flawed
guesses and the least time to identify a flaw. Is this the
number of clauses and therefore the auxiliary space com-
plexity?

If we refer to the analogue of an assignment in a general
problem as a guess, that of a false partial assignment a
flaw, then for Turing machines, a string is a guess, a
rejectable substring a flaw. Also, all algorithms reject
similarly flawed guesses flaw by flaw until they chance on
an unflawed guess, settle with a flawed guess, or return
the unflawed guesses. More, deterministic algorithms in
the worst case identify all flaws before guessing flawlessly,
so their time complexity is bounded below by the order
of the product of the least number of flaws to cover all
flawed guesses and the least time to identify a flaw.

We now consider an algorithm from each paradigm in
Algorithm Design1 as examples. In breadth-first search
for connectivity, a guess is a path from s, a flaw an end
not in t. In the cashier’s algorithm, a guess is a sequence
of coins, a flaw a coin not of largest value less than the
unpaid amount. In mergesort, a guess is a permutation,
a flaw a value succeeded by one smaller. In weighted
interval scheduling, a guess is a subset of the intervals, a
flaw a wrong inclusion. In Ford-Fulkerson, a guess is a
residual network, a flaw a path not augmented. In global
min cut, a guess is a cut, a flaw an edge probably wrong
to cut.

We do the same for Artificial Intelligence: A Modern
Approach2. In genetic programming, a guess is an in-
dividual, a flaw low fitness. In minimax, a guess is a
move, a flaw trouble down the line. In backtracking, a
guess is an assignment, a flaw an unsatisfied constraint.
In forward chaining, a guess is a proof, a flaw a dead end.
In bayesian inference, a guess is a probability, a flaw a
wrong decimal. In supervised learning, a guess is a func-
tion, a flaw nonconformity to examples. In unsupervised
learning, a guess is a set cover, a flaw an inclusion too
different. In reinforcement learning, a guess is a strategy,

a flaw bad experiences.
We hereinafter refer to the shortest runtime of a k-SAT

problem as T , smallest auxiliary space S, the length of
a guess G, the least number of flaws to cover all flawed
guesses N , and the length of the logic optimization of
the flaws in disjunctive normal form L. Since an in-
verted boolean circuit implementing the logic optimiza-
tion of the flawed guesses in disjunctive normal form with
a guessing circuit is the smallest computer to solve this
problem, and the flawed guesses and flaws are equivalent
in disjunctive normal form, O(S) = O(L) ≤ O(N · G).
Space complexity is then O(G + L) ≤ O(G + N · G) =
O(N ·G).

It is also clear that O(T ) ≥ O(N) as each flaw requires
time to identify, and an exponential N implies an expo-
nential T . More, the shortest time to identify any flaw
is the shortest time to decide a guess, which is at most
O(L). Then, O(T ) ≤ O(N · L) ≤ O(N2 · L), and an
exponential T implies an exponential N . Thus, the time
complexity of a k-SAT problem is polynomial if and only
if the least number of flaws to cover all flawed guesses
is polynomial. More, O(T ) = O(N · L) = O(N · S) =
O(N) ·O(S) for algorithms that do not prune, then their
auxiliary space complexity is a dimension of their time
complexity.

In a 2-SAT problem with n variables and m clauses, we
can convert the m clauses into at most 2m implications
and further into at most 2m implication chains that are
at most 2m+1 literals long. In an implication chain, once
a literal is true, all that follow are true. A flaw is thus
a break in the chain, and any deterministic algorithm
in the worst case must identify at most O(m2) of them,
leaving an O(m2) possible flaws left as each of the 2m
chains has at most 2m + 1 dissimilarly flawed guesses.
Since the number of flaws to cover all flawed guesses is
polynomial, so is the time complexity, and 2-SAT is in
P.

Finally, we construct a 3-SAT problem by converting

(ai)i∈N =
∑i+1

j=2 j to binary and generating from ai the
ith flawed guess by assigning the kth digit to the kth vari-
able. Since arithmetic sequences grow only quadratically,
the number of flawed guesses grows exponentially with
respect to the number of variables and therefore to the
number of possible clauses too. More, the flawed guesses
are by construction dissimilarly flawed, and therefore al-
most all flaws in themselves. Since the least number
of flaws to cover all flawed guesses is exponential, so is
its time complexity. Therefore, 3-SAT is not in P, and
P 6= NP.

REFERENCES

Jon Kleinberg and Eva Tardos. 1982, Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A
Modern Approach (3rd ed.). Prentice Hall Press, Upper Saddle
River, NJ, USA.


