$\lim_{n \to \infty} -\ln(n) + \sum_{k=1}^{n} \frac{1}{k} = 0.5772156649...$

I know I can make this into two limits:

 $\lim_{x \to \infty} -\ln(x) + \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k}$

I know ln x can be defined as a limit a rearranged version of the one on <u>wikipedia</u> under properties to avoid a 0/0, or undefined.

The this limit is equal to natural $\log \lim_{n \to 0} \frac{x^{n-1}}{n}$ which can be rearranged $\lim_{n \to 0} (x^n - 1) \frac{1}{n}$ using the distributive property this can be made into $\lim_{n \to 0} \frac{1}{n} x^n - \frac{1}{n}$ finally, this can be put as an infinite limit

by inverting every n in the limit $\lim nx^{\frac{1}{n}} - n$

Now I can replace In(x) to make this double limit

 $\lim_{n\to\infty}(\lim_{n\to\infty}nx^{\frac{1}{n}}-n)$

Using simplification because all variable in the function are approaching infinity, I can now put this as one limit

 $\lim_{n\to\infty}nn^{\frac{1}{n}}-n$

Breaking this down into several limits using order of operation

 $\lim_{n\to\infty} n \lim_{n\to\infty} n^{\frac{1}{n}} - \lim_{n\to\infty} n$

I know $\lim n^{\frac{1}{n}}$ approaches to 1 by using a calculator.

The limit $\lim_{n\to\infty} n$ can be solved by direct substitution just making it ∞ . Wolfram Alpha proof here.

That leaves me with

 $\infty \cdot 1 - \infty$

Which is 0

Thus I can now replace the $\lim \ln(x)$ to be 0 this leaves me with the sum and limit

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k}$$

Which can just be put as

 $\sum_{k=1}^{\infty} \frac{1}{k} = 0.5772156649...$

Anywho I should be off stuff like this I'm meh at especially late at night I don't expect to be perfect