
Improving Language Model Performance with
Smarter Vocabularies

Brad Jascob bjascob@msn.com

Abstract

In the field of Language Modeling, neural-network models have become popular due to their ability to
reach low Perplexity [1] scores. A common approach to training these models is to use a large corpus,
such as the Billion Word Corpus [2], and restrict the vocabulary to the top-N most common words (aka
tokens). The less common words are then replaced with an “unknown” token. These unknown tokens
then become a single representation for all low occurrence words which may not be closely related
semantically. In addition, some closely related tokens, such as numbers, may be common enough to be
given a unique integer ID when we might prefer that they be combined under a single ID.

In the following article, we’ll explore using part-of-speech (POS) tagging to identify word types and
then use this information to create a “smarter” vocabulary. Using this smarter vocabulary, we’ll show
that it achieves a lower perplexity score, for a given epoch, than a similar model using a top-N type
vocabulary.

Keywords: Language Model, Neural Network, Perplexity, Artificial Intelligence

1. Introduction

When creating a language model, we are trying to create a system that can recognize patterns of words
and predict the probability of the next word in the sequence. The issue arises that we generally work
with a vocabulary of very specific words, rather than grouping them into categories. This leads to
situations where predicting the next word in a sequence is completely ambiguous. For instance, if you
were given the phrase “I left for the movies at” you would probably predict the next word to be a time
or possibly a location. Given just this small piece of text, it’s impossible to be more specific and guess
the exact time the person left. However, the typical neural-net language model is asked to do just that.
Depending on how the vocabulary was derived, it may have multiple different tags to choose from, or
they may have all been lumped under an “unknown” symbol.

In another example you might be given the phrase, “The capital of Arkansas is”. Here the obvious next
words are “Little Rock”, however this is a very specific piece of knowledge that likely does not show
up verbatim in the training corpus. Such specific answers are better suited for a Question/Answer task
where a lookup table of facts is used. For modeling sentence patterns we may be better off generalizing
this sentence to “The capital of <LOCATION> is <LOCATION>”. This generalization takes the
knowledge portion out of the pattern and has the added bonus of recognizing that some locations, such
as “Little Rock” contain multiple word tokens. Again, typical vocabularies today may include many

locations in their vocabulary and/or lump them under an “unknown” token, neither of which is optimal
for pattern learning.

While today we typically don’t directly convert words into categories, it is common practice to train
word embeddings in the input stage of the network. When properly trained, words that show up in
similar contexts are expected to show up close to one another, based on their cosine similarity. In
concept this provides a generalization similar to what is discussed above.

There are some potential deficiencies to this however. The first being that for low frequency words
there may not be sufficient information to fully train the vector. For instance, if you only have the two
phrases, “I left the house at 12:35.” and “We went to the 6 PM movie.” to train the vectors for the word
tokens “12:35” and “6”, it’s very possible there would not be enough information for the network to
properly locate these close to one another. In addition, the token “6” may show up in significantly
different contexts such as “There were 6 of us.” in which case we may not want it to be encoded closely
to “12:35”.

The second deficiency with word vectors is at the output stage of the network. Regardless of how
words were encoded in the input, networks today often use a one-hot encoded output. In this case the
net must choose which token is the most likely. For the phrase “I left for the movies at”, there are an
infinite number of possibilities. One would expect a well trained network to rank all tokens
representing a time very high, but because it’s likely there are many of these in the vocabulary, each
would be expected to have a low confidence score and thus drive the perplexity higher.

2. Proposed Improvement

One potential solution to these issues is to use a Natural Language Processor to preprocess the training
corpus and group words that represent, names, times, etc.. into more general categories while leaving
dictionary words the same. By doing this preprocessing step, we are injecting outside knowledge of the
word category and not relying on our network to learn this from the training corpus, which may not be
well suited for such distinctions.

3. Experiments

In the following experiments, the Stanford CoreNLP [3] software was used to perform a processing
task. The software was fed sentences from the Billion Word Corpus and asked to tokenize words,
identify the Part-of-Speech (POS), and tag applicable words with Named Entity (NE) tags. Using this
information the words were given unique integer IDs based on a simple grouping scheme. Several
different schemes were used, including the typical method employed today of keeping the top-N tokens
and lumping the rest under an “unknown” tag. The following details the different methods tested.

Simple : This follows the standard method of keeping the top-N tokens and lumping the remaining low
occurrence ones under an “unknown” tag. The number of tokens kept is the same as the resulting
number of tokens in the Smart A vocabulary. This was done to facilitate comparisons by minimizing

the possibility that the overall number of tokens in the vocabulary was a factor influencing the final
perplexity.

Smart A : In this method, if a word is identified as an NE, that tag is applied. If not an NE, then the
POS tag is used for proper-nouns, cardinal-numbers and punctuation. If none of these apply, the word
is looked up in a dictionary. If it exists there, the word itself is used as the tag. Finally, if the word
doesn’t fit any of the above criteria, the POS tag is used. For all instances of NEs or POS tags, if
identical adjacent tokens are detected, only one is used. For example, “Little Rock” translates to
LOCATION.

The dictionary used is a pre-processed version of the American English [4] dictionary. Preprocessing
converts words to lower-case and strips suffixes such as “’s”. The final dictionary contains 72,330
words, including proper nouns.

Smart B : Same as SmartA but NE tags are not considered. This has the effect that NEs such as
LOCATION or PERSON are grouped under their proper noun POS tags.

Smart C : In this vocabulary, punctuation is first grouped and then words looked up in the dictionary.
If a word does not appear in the dictionary, the POS tag is used. NE tags are not considered.

It should be noted that because all of the Smart vocabularies default to using the POS tag if none of the
earlier criteria are met, there are no words that get grouped under an “unknown” tag.

After tokenization and grouping, the training data was then fed into a single layer network consisting of
2048 LSTM cells with 512 projected units, using a 0.1 dropout rate. The Adam optimizer was used for
minimization. Due to the amount of time it takes to train these networks on the available hardware, the
Billion word corpus data was distributed across 800 epochs and a single pass through the data was
made. Performance was then tested at epochs 200 and 800.

It should be noted that other researchers have shown better results by using different optimizers and
making multiple passes over the entire corpus. In the paper Estimation of gap between current
language models and human performance [5] the researchers achieved a 45.3 perplexity on a similar
model.

The concession to take one pass over the corpus allowed the experiments to be completed in reasonable
time-frame while still showing the improvements that can be made with these techniques.

Table 1: Results of Language Model training

Model Vocab Num Tokens Perplex @200 Perplex @800

L1-2048-512-0.1 Simple 64,831 72.1 62.8

L1-2048-512-0.1 SmartA 64,831 52.0 46.2

L1-2048-512-0.1 SmartB 66,043 49.1 43.6

L1-2048-512-0.1 SmartC 69,222 62.6 55.1

4. Analysis

From the data in table 1, we can see that the Smart A grouping improves the overall perplexity score by
more than 15 points from a simple top-N vocabulary, under these test conditions.

The Smart B vocab generically groups entities under proper noun POS tags. These POS tags are
differentiated as either singular or plural (NNP or NNPS). This vocab yields a small additional
improvement over Smart A.

The scores for both of these are close to or slightly better than the previously mentioned paper which
achieves a 45.3 perplexity. The score here is achieved using significantly less processing time. It
remains to be demonstrated how much these scores can be further reduced by the use of a multi-pass
optimization process.

The Smart C vocabulary does not use NEs or group proper nouns together. It gives unique IDs to
words that appear in the dictionary and assigns the POS tag if they don’t. In this case, the perplexity
increases (gets worse) noticeably from SmartA and B. However, the perplexity is still significantly
better than the simple top-N vocabulary.

5. Conclusions and Future Work

The results shown here indicate that grouping words into categories will improve the overall perplexity
score of a language model significantly when training under similar conditions.

While the improvement is noticeable when training over a single pass of the data, it remains to be
demonstrated how much these methods improve the final perplexity of a net trained using more
extensive training setups.

The code used in the above experiments can be found on GitHub at
https://github.com/bjascob/SmartLMVocabs.

6. References

[1] Perplexity: See https://en.wikipedia.org/wiki/Perplexity.

[2] Google Billion Word Benchmark for Language Modeling: See
https://opensource.google.com/projects/lm-benchmark

[3] Stanford Core NLP software: see https://stanfordnlp.github.io/CoreNLP

[4] american-english dictionary: From Ubuntu 18.04 wamerican package, which is created from
SCOWL. See https://packages.ubuntu.com/bionic/wamerican

https://github.com/bjascob/SmartLMVocabs
https://packages.ubuntu.com/bionic/wamerican
https://stanfordnlp.github.io/CoreNLP
https://en.wikipedia.org/wiki/Perplexity

[5] Xiaoyu Shen, Youssef Oualil, Clayton Greenberg, Mittul Singh, Dietrich Klakow “Estimation of
gap between current language models and human performance”

	Abstract
	1. Introduction
	2. Proposed Improvement
	3. Experiments
	4. Analysis
	5. Conclusions and Future Work
	6. References

