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Abstract : this is a proof that the d’Alembert’s Wave Equation, that of Schrodinger, of Klein-
Gordon and of Dirac are all related one another and show the oscillation of the universe. Moreover, 
the Klein-Gordon’s Equation gives us a three dimensional interpretation of either all relativistic 
fourth components  or the rest energy.  
 
We know from the relativity that the total energy E is:  
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This is the most general formula we have for the energy and is suitable for a relativistic particle 
indeed. On this purpose, please see the following link on page 52:  
https://scienzaufficialeattendibilita.weebly.com/uploads/1/3/9/1/13910584/la-teoria-della-relativit%C3%80-generale.pdf 

Now, for a photon (a particle whose rest mass is equal to zero), we have: 
222 cpE  , and: 

pcE                                                                                                                                           (1.2) 

For a non relativistic particle, we know its kinetic energy is: 
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(1.1), which is more general, indeed. In fact, (1.1) can be rewritten in this way:  
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and for the developments of Taylor, we have: 
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cmE  and, for the kinetic energy, we 

have:  
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Now, let’s take the general expression for a wave:  
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Such a wave simultaneously propagates in space (x) and oscillates in time t; in fact, if we fix t=0, 

we see we have an oscillation along x ( )( xkieA

 ) and if we fix x=0 we have an oscillation in 

time ( )( tieA  ).  
We also know that:  
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and being (1.2) standing, we have:                                                        
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and (1.4) becomes: 
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By simply putting such a Ψ in the following equations:  
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we have that they give identities, sot they are correct.  
 

In one dimension:    
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So, we can deduce the following operatorial identities:  
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As (1.2) stands: 
222 cpE  , we have: 
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that is: 
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or also (
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which is the d’Alembert’s Wave Equation. 
Please notice such an equation, derived in a ‘’ relativistic’’ environment (photon, i.e. a particle 
propagating by speed c and with a zero rest mass) is invariant under a Lorentz’s Transformation. 
Please, see also the following link on page 55:  
https://scienzaufficialeattendibilita.weebly.com/uploads/1/3/9/1/13910584/la-teoria-della-relativit%C3%80-generale.pdf 
If now we consider non relativistic particles (atoms are like that, ordinarily), we will get a non 
relativistic ‘’wave’’ equation, which is the Schrodinger’s Equation. In fact, if in (1.7) we no longer 

consider pcE  , but 
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and as well as we got (1.12), by a direct use of (1.14) in the following equation: 
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we get an identity. Therefore, (1.15) is true. Please notice that in (1.14) we have no longer used a 
total E, but just an Ek, and we are going to take that into account.  
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which is the Schrodinger’s Equation.  
Let’ get into a more general situation, where we have a relativistic particle with a rest mass not 
equal to zero. 

As well as we did before, as for (1.1) we have: 
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and, as usual, still by introduction of an equation into another, we see that such a Ψ is a solution for 
the following: 
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which is nothing but the Klein-Gordon’s Equation and it is similar to that of d’Alembert, but has 
an item more.  
Let’s really carry out the introduction of (1.17)  in (1.18), to see that all this really stands. We have:  


2

2

2

2
22 )(



pp
i  and  





 )(

1
)(

11 42
0

22

222

2
2

22

2

2
cmcp

c

E
i

ctc 
  and so: 

 

0)(
1

2

22
042

0
22

222

2




cm
cmcp

c

p
  , that is 0=0. 

Let’s set 
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cm
l 0 ; such an l is dimensionally like the wave vector k. By such an l, we have that 

(1.17) and (1.18) can be rewritten as follows: 
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where  clk )(' 22 . 

Relativity says that a body with a zero speed, with respect to us, has, on the othe hand, a spatial 

fourth component ct, a fourth 4-momentum component mc and an intrinsic rest energy 2
0cm . 

Hence, in jumping from a photon, whose m0 is zero, to a relativistic particle with a rest mass m0 , 
the wave equation jumps from the d’Alembert’s (1.13) to the Klein-Gordon’s (1.20), with a wave 
function (1.19), instead of the (1.4) and the difference is that the rest mass component m0 , which 

causes the existence of a “rest” energy 2
0cm (whose essence is “four-dimensional” and shows up 

with Relativity and with the energy-momentum vector) is nothing but an increase of time 

oscillation, where we go from an angular frequency ω to clk )(' 22  higher! This is a three-

dimensional interpretation of an entity whose nature is allegedly four-dimensional. More objections 
to the existence of an alleged fourth dimension can be found at the following link, on page 23: 
http://vixra.org/pdf/1303.0074v1.pdf  
Let’s rewrite the Klein-Gordon’s Equation (1.20) in the following way: 
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and after taking into account that 12 i  and 22))(( bababa  , we have that such an 

equation can be rewritten like this:  

0)]()][([ 00 








mi

t
imi

t
i  ,                                                            (1.22) 

or also: 
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and (1.22) can be developed as:  

0])()()([ 2
0

2
00

2

2

2





 mimim

t
                                             (1.24) 

This equation is equal to the (1.21) if:   
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The last two conditions on alphas make us have only 2 and not mixed terms in  . (1.23), here 
reported: 
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can be considered as the Dirac’s Equation, which is usually provided in the following form, in 
natural units ( 11  c ):  
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Further developments of the Dirac’s Equation will not be carried out, here.  
Thank you for your attention. 
Leonardo RUBINO 


