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Abstract

Whitehead’s description of the gravitational field of a static point mass
source is equivalent to Schwarzshild’s solution of Einstein’s equations.
Conveniently generalized in the framework of Special relativity, I proved
that it leads to a new description of the linear approximation of General
relativity with a color gage group symmetry. Here I introduce a new line
of thought to discuss the problem of spacecrafts orbiting a planet taking
into account its motion around the Sun or its proper rotation.

1 Introduction

In 1922 Whitehead [1] presented a theory of gravity that was supposed to be
a possible alternative to Einstein’s theory of General relativity. It was simpler,
being a theory in the framework of Special relativity, and predicted the correct
values for the advance of the peri-helium of Mercury and the deviation of light
by the Sun. The reason for that is that both theories propose in particular the
same exact description of the gravitational field of a static point mass source.
More restrictive but also more generally it can be said that the two theories
coincide in describing stationary weak fields. Beyond this approximation, as
discussed in [3], Whitehead’s theory is not a match to Einstein’s theory.

Despite of this I believe that Whitehead’s approach to gravity is remarkable
because in the simplest possible way it assumes from the very beginning that
gravitation is a retarded interaction, and with very few steps Newton’s theory
follows thus solving the action at a distance problem that so much bothered
Newton himself and so many people since then.

A few years ago, [4], I generalized Whitehead’s formalism in a way that it
describes gravity as a true gage theory, this gage being distinguished from coor-
dinate changes that so much obscure metrology problems in General relativity,
while remaining equivalent to it at the linear approximation in vacuum, and
predicting the same observational values to the classical tests. The formalism is
remarkable also in the sense that the velocity of a source point mass is explicit
in the exterior solution and this paper makes an essential use of this feature.
Also it is worthwhile mentioning the pedagogical interest that it has avoiding
to the beginner the most difficult aspects of General relativity.

The purpose of this paper is to use this generalized Whitehead formalism
to discuss qualitatively a genuine relativistic effect that might have something
to say about what in [5] is described as “Anomalous Orbital-Energy Changes
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Observed during Spacecraft Flybys of the Earth”, as a ”Puzzle” in [6], as a
”Paradox” in [7], as ”Unexpected” in [8], and as a suggestion that gravitation
is a retarded interaction. [9].

The principal character of the play is a spacecraft of negligible mass com-
pared to the mass of the planet, coming in and going out of stage. The planet
has a negligible mass compared to that of the Sun and is peacefully orbiting it
as always does. And the Sun is there as a standard of rest. The essence of the
result that I derive is the following: if the Sun is taken to be the standard of
rest then the system planet-Spacecraft can not be simplified assuming that the
planet is at rest and the Sun is moving. Similarly, if the center of the planet is
the standard of rest and the planet is rotating then the linear velocity of each
element of mass can not be ignored. In both cases this introduces a relativistic
effect of order 1/c while the classical relativistic tests are of order 1/c2

2 Extended Whitehead formalism

Let us consider, in the frame-work of special relativity, an idealized point source,
a planet in this case, moving around the Sun with a velocity vi, i = 1, 2, 3
with respect to a galilean frame of reference where the sun is at rest. Let
x̂α, α, · · · = 0, 1, 2, 3 be a particular event in the trajectory of the planet and
xα an event in the future of x̂α, and let uα be the unit 4-velocity of the planet
uαuα = −1. In [4] I introduced the symmetric tensor:

gβλ = ηβλ + hβλ, hβλ =
1

r
(A0uβuλ +A1ηβλ +A2(lβuλ + lλuβ)−A3lλlβ)

(1)
where:

lα =
Lα

r
, r = −uαLα, Lα = xα − x̂α (2)

and A0, A1, A2, A3 are for the time being four constants, to be latter chosen
proportional to the mass of the Sun or the planet depending on the problem to
be considered.

Whitehead [1] and later Synge [2] introduced directly the following particular
case:

gαβ = ηαβ −
2m

r
lαlβ . (3)

while I decided to use Einstein’s vacuum equations to first order:

Rαβ = 0 (4)

that turns out to be equivalent to 1:

A0 = 2(A1 −A2) (5)

Let us consider a time-like world-line with parametric equations x̂α = x̂α(τ)
and let uα be its future pointing unit vector. Let xα be an event in the future
of an event xα corresponding to any particular value of the proper time τ . By

1Complete details in the Appendix
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definition, a concomitant variation of xα, xα + δxα, and τ , τ + δτ is causal if
xα + δxα is in the future of x̂α +uαδτ . And for this to happen the condition is:

δτ = −1

r
Lβδx

β , δx̂α = uαδτ (6)

Let us now consider any function f(Lα) and its causal variation:

δf =
∂f

∂xα
δxα − ∂f

∂x̂α
δx̂α (7)

Since the two partial derivatives are equal the preceding result can be written:

δf = ∂̂αfδx
α with ∂̂α =

(
δβα +

1

r
uβLα

)
∂β (8)

The substitution ∂α → ∂̂α is instrumental in the development of Whitehead’s
formalism and the reader is invited to muse about it.

To start with we get:

∂̂αuβ = 0, ∂̂αr = −uα + lα, ∂̂αlβ =
1

r
(ηαβ + uαlβ + lαuβ − lαlβ) (9)

Proceeding now with the first derivatives of the h′s we obtain:

∂̂αhβλ =
A1

r2
(2uβuλ + ηβλ)(−lα + uα)

+
2A2

r2
((lβuλ + uβlλ)(−lα + uα) + 2uβuλ(2lα − uα) + (ηαβuλ + ηαλuβ))

+
A3

r2
((3lβlλ − lβuλ − lλuβ)lα − 3lβlλuα − ηαλlβ − ηαβlλ) (10)

from where we get directly the Christoffel symbols of the connection to first
order with the corresponding substitutions:

Γ̂µαβ = ηµλΓ̂αβλ, Γ̂αβλ =
1

2
(∂̂αhβλ + ∂̂βhαλ − ∂̂λhαβ) (11)

The equations of motion for a test particle with unit 4-velocity wµ to be
considered are then:

dwµ

dσ
= −Γ̂µαβw

αwβ ≡ fµ (12)

where σ is the proper time along its trajectory and fµ is:

fµ = −A1

r2

((
uw2 − 1

2

)
lµ +

(
−2lw uw + uw2 +

1

2

)
uµ + (uw − lw)wµ

)
−A2

r2
(−2lw2 + 4lw uw − uw2 − 1)uµ

−A3

r2

((
3

2
lw2 − 3lw uw + 1

)
lµ +

1

2
lw2uµ

)
(13)

where:

lw = lαw
α, uw = uαw

α (14)
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3 The low velocities approximation

In this section I assume that all the quantities ui and wi are small quantities
and neglect any product of small quantities. And therefore I shall have

u0 = 1, w0 = 1 (15)

an approximation that means that the proper-time of the source of the grav-
itational field as well as the proper-time of the test particle flow at the same
pace as that of the underlying Lorentz frame corresponding to the dominant
standard of rest.

Using (12), a straightforward simple calculation leads to the following equa-
tions of motion of the test particle:

dwi

dt
= −A1−A3

2L3
Li +

A1−A3

2cL2

(
ui − 3LuLi

L2

)
, L2 = LiLi, Lu = Liui

(16)
where:

Li = xi − x̂i(t), ui = dx̂i(t)/dt (17)

and where I have included c in arbitrary units to have the formula dimensionally
correct. The first term is the Newtonian term with the identification:

A1−A3 = 2Gm (18)

It is the purpose of this paper to point out that the velocity dependent term
of the right-hand-side of (16) might have something to say about gravity assists
and the ”Anomalous Orbital-Energy Changes Observed during Spacecraft Fly-
bys of Earth”, [5]. To show it I consider the Newtonian orbital energy of the
test particle:

H =
1

2
wiwi −Gm/L (19)

Differentiating H with respect to t and keeping products of pairs of small
quantities yields the simple formula:

dH

dt
=
Gm

cL2

(
uw − 3

LuLw

L2

)
, Lw = Liwi, uw = uiwi, (20)

Noteworthy is the fact that contrary to the classical tests that are of order 1/c2

the second term of the r-h-s is of order 1/c.

4 Rotating planets

This section examines the case where an aircraft byflies a planet, assuming that
the velocity of the center of mass of this planet with respect to the Sun can be
neglected but not its proper rotation, i.e. the linear velocity of its elements of
mass.

To coordinate points exteriors to the planet I consider a system of coordi-
nates with origin at the center of the planet where α is the right ascension and
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δ is the declination. To coordinate elements of mass δm = ρr2 sin θ, with ρ
constant, I consider polar spherical coordinates r, θ, φ such that φ = 0 is the
same plane as α = 0.

I now consider a point of space E at a distance D from the center of the
planet, with right ascension α = 0, and declination δ. And correspondingly I
consider an element of mass δm of the planet located at a point P with coordi-
nates r, θ, φ. If the planet is rotating with angular velocity ω the corresponding
element of mass will have a linear velocity with components:

u1 = −r sin(θ) sin(φ)ω, u2 = r sin(θ) cos(φ)ω, u3 = 0. (21)

So that the components of the vector with origin P and extremity E are:

L1 = D cos(δ)− r sin(θ) cos(φ), L2 = −r sin(θ) sin(φ), L3 = D sin(δ)− r cos(θ)
(22)

With these data and (16) we can calculate the components of the force that
each element δm of mass of the planet exerts on the aircraft. Assuming that
D is larger than the radius R of the planet the leading terms of f i can be
approximated as follows:

f1 =
−G cos δ

D2
+

2Grω sin θ sinφ(3 cos2 δ − 1)

cD2
(23)

f2 =
Gr sin θ sinφ

D3
+ (24)

2G sin θ(5 sin θ cos2 φ− 3 sin θ)r2ω cos δ

cD3
+

4G sin θr2ω sin δ cosφ cos θ

cD3
(25)

f3 =
−G sin δ

D2
+

6Grω sin θ sinφ cos δ sin δ

cD2
(26)

The components of the force acting on a aircraft

F i =

∫
V

ρf ir2 sin(θ)drdθdφ (27)

that in the particular case in which it is located on the plane corresponding to
right-ascension α = 0 they are:

F 1 = −GM
D2

cos δ, F 2 = −GM
D2

(
ωR2

5Dc

)
cos δ, F 3 = −GM

D2
sin δ (28)

where M is the total mass of the planet, and R is its radius. F 1 and F 3 are
pure Newtonian contributions. F 2 instead is due to the rotation of the planet.

More generally, the system of differential equations governing the evolution
of the aircraft are:
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F 1 = −GM
D3

x1 +
GMR2ω

5cD4
x2P(r/D) (29)

F 2 = −GM
D3

x2 − GMR2ω

5cD4
x1P(r/D) (30)

F 3 = −GM
D3

x3 (31)

and P(r/D) is a function whose three first terms of its series expansion are:

P(r/D) = 1 +
2

7

R2

D2
+

1

7

R4

D4
(32)

Notice also that for most planets, including the Earth, ω is a negative parameter.
The advance of the perihelion of Mercury, while puzzling several generations

of astronomers, was never considered to be a paradox, but as a fact to be
explained by a new theory or other as yet unknown facts.

Gravity assists have been observed and used extensively to lead humanity
to the gorgeous wonder of space flights. Byflys of aircrafts around the Earth
are observed and like gravity assists are considered paradoxical and sometimes
anomalous .

What this paper claims is that while akin and inspired from General Rel-
ativity a different but simpler theory, without the dubious principle of general
covariance, can fill a missing link between a theory of gravitation and the era
of space-flights. If facts support it.

Appendix

These are the formulas that prove the two fundamental implications:

A0 − 2(A1 −A2) = 0⇒ Rαβ = 0 (33)

A0 − 2(A1 −A2) = 0 and A1 −A3 = 0⇒ Rαλβµ = 0 (34)

Defining:

Rαλβµ = −1

2
(∂̂αβhλµ + ∂̂λµhαβ − ∂̂αµhλβ − ∂̂λβhαµ) (35)

Rαβ = ηλµRαλβµ (36)

and:

Xαλβµ =
3

2
(lαuβ + uαlβ − lαlβ)ηλµ (37)

The Riemann tensor can be decomposed as:

Rαλβµ = A0R
0
αλβµ +A1R

1
αλβµ +A2R

2
αλβµ +A3R

3
αλβµ (38)

where:

6



R0
αλβµ = − 3

2r3
(lαuλ − uαlλ)(lβuµ − uβlµ) (39)

R3
αλβµ ==

1

r3
(−Xαλβµ −Xλµαβ +Xαµλβ +Xλβαµ + ηβληαµ − ηµληαβ

+3(lαlβuλuµ + uαuβlλlµ − lαuβuλlµ − uαlβlλuµ) (40)

R1
αλβµ = −R3

αλβµ − 2R0
αλβµ (41)

R2
αλβµ = 2R0

αλβµ (42)

and the Ricci tensor is:

Rαβ = −1

2
(A0 − 2(A1 −A2))

1

r3
(ηαβ − 3lαlβ − 2uαuβ + 3(lαuβ + uαlβ)) (43)

Notice that the scalar curvature is always zero:

R = ηαβRαβ = 0 (44)

But this is irrelevant in the context in which the formalism has been used in the
main body of the paper.

The implication (33) is obvious from the above expression of the Ricci tensor.
Assuming now the first assumption of (34) in (38) and using the definitions (39)-
(40) above we get:

Rαλβµ = −(A1 −A3)R3
αλβµ (45)

that proves (34).
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