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OF THE BROCARD-RAMANUJAN PROBLEM
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Abstract. We identify equivalent restatements of the Brocard-Ramanujan

diophantine equation, (n! + 1) = m2; and employing the properties and impli-
cations of these equivalencies, prove that for all n > 7, there are no values of

n for which (n! + 1) can be a perfect square.

1. Introduction

In a question first posed in 1876, in the journal Nouvelle Correspondance Mathe-
matique, Henri Brocard asked, “For which values of the integer x is the expression,
[(1 · 2 · 3 · 4 · . . . ·x) + 1], a perfect square?”[1]. This product of the sequence
of integers from 1 to x is known as “the factorial of x” or “x factorial”, denoted
“x!” (hereafter we shall dispense with x and substitute n its place). Brocard had
previously observed that for certain values of “n”, n! plus 1 was a perfect square.

n = 4: (n! + 1) = [(1·2·3·4) + 1] = (24 + 1) = 25 = 52

n = 5: (n! + 1) = [(1·2·3·4·5) + 1] = (120 + 1) = 121 = 112

n = 7: (n! + 1) = [(1·2·3·4·5·6·7) + 1] = (5040 + 1) = 5041 = 712.

Srinivasa Ramanujan, unaware of Brocard’s earlier journal question, independently
made this same observation in 1913: “The number (1 + n!) is a perfect square for
the values, 4, 5, 7, of n. Find other solutions” [2, 3]. Both mathematicians sought
the answer to the additional question: Are 4, 5, and 7 the only values of n for which
(n! + 1) is a perfect square, and if so, why these and no others?

Theorem 1.1. For all positive integers m and n, except n = 4, n = 5, and n = 7,
there are no other values of n for which (n! + 1) = m2.

Proof. Consider, that for every positive integer n, n! = [(1·2·3· . . . ·(n−1)·n) is also
the product of [n · (n− 1)!]; and for all n ≥ 2, the product of [(n− 2)! · ((n− 1) ·n)].

Table 1. Alternative Calculations of n! for Selected Values of n
n n! = [n · (n − 1)!] n! = [(n − 2)! · ((n − 1) · n)]

1 1! = (1 · 0!) = (1 · 1) = 1 - - -

2 2! = (2 · 1!) = (2 · 1) = 2 [0! · (1 · 2)] = (1 · 2) = 2

3 3! = (3 · 2!) = [3 · (1 · 2)] = (3 · 2) [1! · (2 · 3)] = (1 · 6) = 6

4 4! = (4 · 3!) = [4 · (1 · 2 · 3)] = (4 · 6) [2! · (3 · 4)] = (2 · 12) = 24

5 5! = (5 · 4!) = [5 · (1 · 2 · 3 · 4)] = (5 · 24) [3! · (4 · 5)] = (6 · 20) = 120

6 6! = (6 · 5!) = [6 · (1 · 2 · 3 · 4 · 5)] = (6 · 120) [4! · (5 · 6)] = (24 · 30) = 720

7 7! = (7 · 6!) = [7 · (1 · 2 · 3 · 4 · 5 · 6)] = (7 · 720) [5! · (6 · 7)] = (120 · 42) = 5040
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And for all n > 1, n! is a product of 2, and where (n! + 1) = m2, m can only be an
odd integer.

Then where (n! + 1) = m2, n! = (m2 − 1) = [(m− 1)(m + 1)], and (m− 1) and
(m + 1) are both even. Let the notation, “2≥2”, be read as “a power of 2 greater
than or equal to 22”.

With m an odd integer then m can be expressed in the form m = (2x+1) where
x is an odd or even positive integer. If x is even, (m− 1) = ((2x+ 1)− 1) = 2x is
a product of 2≥2; and (m + 1) = ((2x + 1) + 1) = (2x + 2) = 2(x + 1) is a product
of only 21. If x is odd, (m− 1) = ((2x+ 1)− 1) = 2x is the product of a power of
2 of only 21; and (m+ 1) = ((2x+ 1) + 1) = (2x+ 2) = 2(x+ 1), a product of 2≥2.

And one of (m− 1) and (m+ 1) is always the product of a power of 2 of only 21

and the other a product of 2≥2.
Then where n! = (m2− 1), with [(m+ 1)− (m− 1)] = 2, (m2− 1) is the product

of consecutive even integers; with each of the consecutive even integers further
expressible as a product of 21— and in order for n! = (m2 − 1) and (m − 1) and
(m + 1) to have a difference of 2, the co-factors of our 21 multipliers can only be
consecutive integers of opposite parity having a difference of 1:

4! = (1·2·3·4) = 24 = (4 · 6) = [(2·2) · (2·3)]

5! = (1·2·3·4·5) = 120 = (10 · 12) = [(2·5) · (2·6)] = [(2·2) · (5·6)]

7! = (1·2·3·4·5·6·7) = 5040 = (70 · 72) = [(2·35) · (2·36)] = [(2·2) · (35·36)].

And as

1! = 1,

2! = (1 · 2) = 2,

3! = (1·2·3) = (2 · 3) = 6,

cannot be expressed in the form, [(2·2) · (odd·even)] or [(2·2) · (even·odd)], where
odd and even are sequential integers, then for all n < 4, n! cannot equal (m2 − 1).

With n! of all n ≥ 4 expressible as a product of (n− 2)! · ((n− 1) · n), where the
factors (n−1) and n are consecutive positive integers; and for all (n−2) > 3, (n−2)!
equal to the factorial of a lesser n value, also expressible as [(2·2) · (odd·even)] or
[(2·2) ·(even·odd)]— where (odd·even) or (even·odd) may or may not be consecutive
integers; then if we further designate the (n − 2)! co-factors of (2 ·2) as a and b,
with a < b, such that (n− 2)! = [(2·2) · (a·b)]; and let c = (n− 1) and d = n, then
n! = [(2·2) · (a·b)·(c·d)].

Reassociating the factors, (a · b)·(c · d), into the product-pairs, (a · c) and (b · d),
or (a · d) and (b · c), then n! = (m2− 1) if and only if one of our product-pairs gives
us consecutive integers of opposite parity with a difference of 1.

With a < b and c < d, then the product-pair of greatest difference in magnitude
is that of (a ·b)·(c ·d))— the difference between the product of the two lesser factors
and the product of the two greatest factors. Followed by that of the greater integer
in (a · b) times the greater integer in (c ·d), and the lesser integer in (a · b) times the
lesser integer in (c · d)— i.e., (b · d)(a · c). With the product-pair of least difference
being that of the lesser integer in (a · b) times the greater integer in (c · d); and the
greater integer in (a · b) times the lesser integer in (c · d)— i.e., (a · d)·(b · c).

And given that n! = (m2−1) only if the products of the reassociated (a ·b)·(c ·d)
co-factors of (2·2) differ by one, it is the product-pair of least difference, (a·d)·(b·c),
that will reveal if we have consecutive integers and n! = [(2·2)·(a·d)·(b·c)] = (m2−1).
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Then where n! = (m2−1) = [(m−1)·(m+1)] = (2ad·2bc); and [(m+1)−(m−1)] = 2,
with (2bc−2ad) = [2 · (bc−ad)]; then [2 · (bc−ad)] can equal 2 only if (bc−ad) = 1.
That is, where a and b, and c and d, are consecutive integers; with b = (a+ 1) and
d = (c + 1), then ad = [a · (c + 1)] = (ac + a), and bc = [(a + 1) · c] = (ac + c), and

(bc− ad) = [(ac + c)− (ac + a)] = (c− a);

and for all (n − 2) ≥ 4, (c − a) = 1 only if c = (a + 1) = b, bc = c2, and
a = (d− 2) = (c− 1), giving us

(bc− ad) = (c2 − ad) = [c2 − (c− 1)(c + 1)] = [c2 − (c2 − 1)].

For n = 4 and n = 5 where (n − 2) < 4, with, respectively, ((n − 1) · n) = (3 · 4)
and ((n− 1) · n) = (4 · 5), we have that the integer composition of each (n− 2)! is
exactly that required to complete the n! factor sequence:

4! = [(n− 2)! · (3·4)] = [(1·2)·(3·4)] = (1·4)·(2·3)

= (2·2)·(2·3);

5! = [(n− 2)! · (4·5)] = [(2·3)·(4·5)] = [(2·5)·(3·4)] = [(2·5)·(2·6)]

= (2·2)·(5·6).

And as noted by Brocard and Ramanujan, (4! + 1) and (5! + 1) are both perfect
squares.

Our next n value is that of n = 6, with (n− 2)! = [(2·2)·(a·b)] = [(2·2)·(2·3)]; and

6! = (1·2·3·4·5·6) = [4! · (5·6)] = [(2·2) · (a·b)·(c·d)] = [(2·2) · (2·3)·(5·6)].

And with a 6= (d− 2) and b 6= c; then ad = (2·6) and bc = (3·5) are not consecutive
integers— (bc− ad) = (15− 12) = 3; and 6! cannot equal (m2 − 1).

Which brings us to n = 7, where (n− 2)! = [(2·2)·(a·b)] = (2·2)·(5·6):

7! = (1·2·3·4·5·6·7) = [5! · (6·7)] = [(2·2) · (5·6)·(6·7)]

= [(2·2) · (5·7)·(6·6)] = [(2·2) · (35·36)].

And (7! + 1) is a perfect square.
But with 6! = [(2·2)·(12·15)], and 7! = [(2·2)·(35·36)]; and with a and b of (n−2)!

continuously increasing with each increase in n (Note: For a and b of the least
difference in the calculations of n! below, a and b of (n− 2)! are ordered, a < b):

8! = [6! · (7·8)] = [(2·2)·(12·15) · (7·8)] = [(2·2) · (12·8)·(15·7)] = [(2·2) · (96 · 105)];

9! = [7! · (8·9)] = [(2·2)·(35·36) · (8·9)] = [(2·2) · (35·9)·(36·8)] = [(2·2) · (315 · 288)];

10! = [8! · (9·10)] = [(2·2)·(96·105) · (9·10)] = . . . = [(2·2) · (960 · 945)];

11! = [9! · (10·11)] = [(2·2)·(288·315) · (10·11)] = . . . = [(2·2) · (3168 · 3150)];

12! = [10! · (11·12)] = [(2·2)·(945·960) · (11·12)] = . . . = [(2·2) · (11340 · 10560)];

. . . ,

then the disparity between a and b of (n − 2)!, and c = (n − 1) and d = n,
continuously increases; and for all n > 7, a can never equal (n− 2) and b can never
equal c; and n! can never again equal (m2 − 1).

—————
What is intriguing is that n! = (m2−1) = [(m−1) · (m+1)] also implies that every
product of four sequential positive integers, plus 1, is a perfect square. That is, if
we allow a, b, c, d to be four consecutive integers, then ad and bc are consecutive
even integers, and every [(a·b·c·d) + 1] = [(m2 − 1) + 1] is a perfect square.
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Without question, (4! + 1) = [(1 ·2 ·3 ·4) + 1], (5! + 1) = [(2 ·3 ·4 ·5) + 1], and
(7! + 1) = [(70 · 72) + 1] = [((7·10) · (8·9)) + 1] = [(7·8·9·10) + 1], all satisfy this
perfect-square criterion. Which further implies that (n! + 1) = m2 only if n! can
be expressed as the product of four sequential positive integers.

Then the observations of Brocard and Ramanujan (with all such four consecutive
integer (a·b·c·d) products, plus 1, a perfect square) can be alternatively stated as
those products of four consecutive integers that can also be expressed as factorials
of n. And with n! a product of n, we have that n must be a factor of (a·b·c·d).

The question then becomes, can the properties of such four consecutive integer
products incontrovertibly establish why only 4, 5, 7 and no others?

Decomposing (7·8·9·10) into its prime componsnts, we have

[7·(2·2·2)·(3·3)·(2·5)] = [(6·7) · (2·2)·(3)·(2·5)] = [(5·6·7) · (2·2)·(3)·(2)]

= [(4·5·6·7) · (3·2)] = (2·3·4·5·6·7) = 5040

= 7!,

and we see that the factors, “8, 9, 10”, are simply the recombining of the prime
elements of those factors of 7! less than 7. Then (setting 6! aside for just a moment)
what is it that prevents the factorials of n > 7 from being reconstructed from the
prime composition of their n-based products of (a·b·c·d)?

Where n = 6 and 6! = (1 ·2 ·3 ·4 ·5 ·6) = 720, the range of values for (a ·b ·c ·d),
incorporating n, are those of (3·4·5·6) = 360; (4·5·6·7) = 840; (5·6·7·8) = 1680, and
(6·7·8·9) = 3024. Clearly none of the (a·b·c·d) products for n = 6 are equal to 6!.

But note that for all n > 3, of the four possible (a·b·c·d) products incorporating
n, the first three (a·b·c·d) products of n are a repetition of the last three (a·b·c·d)
products of (n − 1) (i.e., d of the second (a ·b ·c ·d) product of (n − 1) increments
to n and remains a factor through the fourth and final (a·b·c·d) product). Let the
symbol, “∈” be read as “is a member of the set”.

3!: (a·b·c·d) ∈ {(0·1·2·3), (1·2·3·4), (2·3·4·5), (3·4·5·6)}.
4!: (a·b·c·d) ∈ {(1·2·3·4), (2·3·4·5), (3·4·5·6), (4·5·6·7)}.
5!: (a·b·c·d) ∈ {(2·3·4·5), (3·4·5·6), (4·5·6·7), (5·6·7·8)}.
6!: (a·b·c·d) ∈ {(3·4·5·6), (4·5·6·7), (5·6·7·8), (6·7·8·9)}.
7!: (a·b·c·d) ∈ {(4·5·6·7), (5·6·7·8), (6·7·8·9), (7·8·9·10)}.

With (7·8·9·10) equal to 7!, and 8! = (8 · 7!) = [8 · (7·8·9·10)]; and for n = 8, the
products of (a·b·c·d) within {(5·6·7·8), (6·7·8·9), (7·8·9·10), (8·9·10·11)}, then the
greatest product of (a·b·c·d) for n = 8 is that of (8·9·10·11) = [11 · (8·9·10)]; while
n! = [(8·7) · (8·9·10)] = [56 · (8·9·10)]; and for n = 8, every product of (a·b·c·d) is
less than n!.

Given that the last three products of (a·b·c·d) for (n− 1) = 8 are the first three
(a·b·c·d) products of n = 9, then where the final (a·b·c·d) product for (n − 1) is
less than (n− 1)!, the first three (a·b·c·d) products of n are less than n!; and it is
then only the fourth and final (a·b·c·d) product of n = 9 that we need to evaluate
against 9!— and if that (a·b·c·d) product is less than 9!, then we need only consider
the fourth and final (a·b·c·d) product of n = 10; and if that (a·b·c·d) product is less
than 10!, only the fourth and final (a·b·c·d) product of n = 11. . . ad infinitum.
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If we denote the greatest (a·b·c·d) product of n as (a·b·c·d)1 (with a = n), and the
greatest (a·b·c·d) product of (n− 1) as (a·b·c·d)2 (where a = (n− 1)) —with each
element or sub-group of (a·b·c·d)1 or (a·b·c·d)2 assigned the same subscript as the
(a·b·c·d)1 or (a·b·c·d)2 factor sequence from which it is extracted (recall that the
factors (a · b · c)1 and (b · c · d)2 are the same)— then the increase from (a·b·c·d)2 to
(a·b·c·d)1 is equal to [(d1− a2) · (a·b·c)1] = [(d1− a2) · (b·c·d)2], where (d1− a2) = 4.

Then in order for any (a · b · c · d)1 to equal n!, the growth from (a · b · c · d)2 to
(a · b · c · d)1 must equal [n!− (a · b · c · d)2)], such that

(a · b · c · d)1 = [(a · b · c · d)2 + ((d1 − a2) · (b · c · d)2))] = n!.

But with (n− 1) increasing with each increase in n, and

[(d1 − a2) · (b·c·d)2] = [(d1 − a2)/(n− 1) · (a · b · c · d)2],

and (d1 − a2) = 4, a constant; then (4/(n− 1) is an ever decreasing quantity, and
instead of [(4/(n− 1)) · (a · b · c · d)2)] increasing in relation to n! (as per the need
for (d1 − a2) to equal [n!− (a · b · c · d)2]). . .

n = 7; (n− 1)=6: [7!− (6·7·8·9)2]/7! = [(5040− 3024)/5040] = (2016/5040) = 0.4

n = 8; (n− 1)=7: [8!− (7·8·9·10)2]/8! = [(40320− 5040)/40320] = (35280/40320) = 0.875

n = 9; (n− 1)=8: [9!− (8·9·10·11)2]/9!=[(362880− 7920)/362880]=(354960/362880)=0.978

. . . ,

just the opposite occurs, with [(4/(n− 1)) · (a · b · c · d)2)] continuously diminishing
in respect to n!. Beginning with (n− 1) = 6 and n = 7:

[(4/6) · (6·7·8·9)]/7! = [(0.666 · 3024)/5040] = (2016/5040) = 0.4

[(4/7) · (7·8·9·10)]/8! = [(0.5714 · 5040)/40320] = (2880/40320) = 0.07143

[(4/8) · (8·9·10·11)]/9! = [(0.5 · 7920)/362880] = (3960/362880) = 0.01091

[(4/9) · (9·10·11·12)]/10! = [(0.444 · 11880)/3628800] = (5280/3628800) = 0.00146

[(4/10) · (10·11·12·13)]/11! = [(0.4 · 17160)/39916800] = (6864/39916800) = 1.71957e−4

[(4/11) · (11·12·13·14)]/12! = [(0.3636 · 24024)/479001600] = (8736/479001600) = 1.82379e−5

[(4/12) · (12·13·14·15)]/13! = [(0.333 · 32760)/6227020800] = (10920/6227020800) = 1.75365e−6

. . .

Then the difference between [(a · b · c · d)1 − (a · b · c · d)2] and n!, increases with
each increase in n, and for all n > 7, no product of (a·b·c·d) incorporating n can
ever again equal n!.

—————
Concomitant with the inability of the products of (a·b·c·d) to equal n! for all n > 7,
we also note (focusing on only the first-instance disparities) that for 6! = (1·2·3·4·5·6),

(a·b·c·d) = (3·4·5·6) is lacking a factor of 2.

(a·b·c·d) = (4·5·6·7) is lacking a factor of 2.

(a·b·c·d) = (5·6·7·8) is lacking a factor of 3.

(a·b·c·d) = (6·7·8·9) is lacking a factor of 5.

Of these, it is the prime 2 deficiencies which appear worthy of further exploration.
Given (a·b·c·d), comprised of only four consecutive integer factors, we can have

within any (a·b·c·d) only two products of the prime 2, with one a product of only
21 and the other the product of a power of 2 never greater in magnitude than the
terminating integer of the final (a ·b ·c ·d) product, d = (a + 3). Examining the
factorials and (a·b·c·d) products of the first three values of n > 7, we have:
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With 8! = (1·2·3·4·5·6·7·8) a product of 27, and (5·6·7·8), (6·7·8·9), (7·8·9·10),
and (8·9·10·11), all products of 24, then the power of 2 in (a·b·c·d) is insufficient to
satisfy the power of 2 requirements of 8!, and no product of (a·b·c·d) can equal 8!.

For 9! = (1·2·3·4·5·6·7·8·9), again a product of 27 (with the power of 2 in n!
only increasing with each subsequent even value of n), and (6·7·8·9), (7·8·9·10), and
(8·9·10·11) all products of 24, and (9·10·11·12) a product of 23, then the power of
2 in (a·b·c·d) is insufficient to satisfy the power of 2 requirements of 9!.

For 10! = (1·2·3·4·5·6·7·8·9·10), a product of 28; and (7·8·9·10) and (8·9·10·11),
both products of 24, and (9·10·11·12) and (10·11·12·13) products of 23, then the
power of 2 in (a·b·c·d) cannot satisfy the power of 2 requirements of 10!, and no
product of (a·b·c·d) can equal 10!.

Since for any n expressible as a power of 2, there is an n count of integers —that
we shall denote ”the realm of n”— before arrival at the next power of 2,

n Integers Within the Realm of n
20 = 1 1
21 = 2 2, 3
22 = 4 4, 5, 6, 7
23 = 8 8, 9, 10, 11 12, 13, 14, 15
24 = 16 16, 17, 18, 19 20, 21, 22, 23 24, 25, 26, 27 28, 29, 30, 31
25 = 32 32, 33, 34, 35 36, 37, 38, 39 40, 41, 42, 43 44, 45, 46, 47

48, 49, 50, 51 52, 53, 54, 55 56, 57, 58, 59 60, 61, 62, 63
· · · ,

then where d, the terminating integer of an (a · b · c · d) factor sequence, falls within
the realm of n, a power of 2 —with the greatest power of 2 within the realm of n
being that of n— then the power of 2 in (a·b·c·d) can never be greater than that
of the power of 2 in n, times 21 (see Table 3)1.

Table 3. (a·b·c·d) Factor Sequences within the Realms of n

Max Power of

n (a·b·c·d) (a·b·c·d) (a·b·c·d) (a·b·c·d) 2 in (a·b·c·d)
23 = 8 (5·6·7·8) (6·7·8·9) (7·8·9·10) (8·9·10·11)

(9·10·11·12) (10·11·12·13) (11·12·13·14) (12·13·14·15) (23 ·21) = 24

24 = 16 (13·14·15·16) (14·15·16·17) (15·16·17·18) (16·17·18·19)
(17·18·19·20) (18·19·20·21) (19·20·21·22) (20·21·22·23)
(21·22·23·24) (22·23·24·25) (23·24·25·26) (24·25·26·27)
(25·26·27·28) (26·27·28·29) (27·28·29·30) (28·29·30·31) (24 ·21) = 25

25 = 32 (29·30·31·32) (30·31·32·33) (31·32·33·34) (32·33·34·35)
(33·34·35·36) (34·35·36·37) (35·36·37·38) (36·37·38·39)
. . .

(25 ·21) = 26

Then for all n > 7, where d of (a · b · c · d) falls within the realm of any n, a power
of 2, with the maximum possible power of 2 in (a·b·c·d) being that of the power
of 2 in n, times 21; the power of 2 in n! is equal to the power of 2 in n, times 21,
times the power of 2 in every even integer in n! greater than 2 and less than n.

1Note that in Table 3, each (a · b · c · d) factor sequence corresponds to that of the fourth and
final (a·b·c·d) sequence of an n value where a = n and d = (n + 3).
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Let the symbol, “|∧2|”, be read as the ”power of 2 ”:

n = 8: |∧2| in 8! = [(23 · 21)·(22 ·21)] = 27; |∧2| in (8·9·10·11) = (23 ·21) = 24

n = 16: |∧2| in 16! = [(24 · 21)·(22 ·21 ·23 ·21 ·22 ·21)] = 215; |∧2| in (16·17·18·19) = (24 ·21) = 25

n = 32: |∧2| in 32! = [(25 · 21)·(22 ·21 · . . . ·22 ·21)] = 231; |∧2| in (32·33·34·35) = (25 ·21) = 26

n = 64: |∧2| in 64! = [(26 · 21)·(22 ·21 · . . . ·22 ·21)] = 263; |∧2| in (64·65·66·67) = (26 ·21) = 27

. . .

and for all n > 7, the power of 2 in (a ·b ·c ·d) can never satisfy the power of 2
requirements2 of any factorial of n, and no (a·b·c·d) product can ever equal n!.

�
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2Observe in the equations immediately above that for n, a power of 2, the power-of-2 in n! is

equal to 2(n−1), e.g., |∧2| in (27! = 128!) = 2127. With, for n = 8, |∧2| in 8! = [(23 ·21)·(22·21)]; and
the even factors of n! increasing with each increase in n, a power of 2, a proof of this observation

is not essential to this paper and is not addressed here.


