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Abstract. The cosmological constant problem arises because the magnitude of
vacuum energy density predicted by quantum field theory is about 120 orders of
magnitude larger than the value implied by cosmological observations of accelerating
cosmic expansion. We pointed out that the fractal nature of the quantum space-time
with negative Hausdorff- Colombeau dimensions can resolve this tension. The canonical
Quantum Field Theory is widely believed to break down at some fundamental
high-energy cutoff �� and therefore the quantum fluctuations in the vacuum can be
treated classically seriously only up to this high-energy cutoff. In this paper we argue that
Quantum Field Theory in fractal space-time with negative Hausdorff-Colombeau
dimensions gives high-energy cutoff on natural way.We argue that there exists hidden
physical mechanism which cancel divergences in canonical
QED4,QCD4,Higher-Derivative-Quantum-Gravity, etc. In fact we argue that
corresponding supermassive Pauli-Villars ghost fields really exists.It means that there
exist the ghost- driven acceleration of the univers hidden in cosmological constant.

In order to obtain desired physical result we apply the canonical Pauli-Villars
regularization up to ��.This would fit in the observed value of the dark energy needed to
explain the accelerated expansion of the universe if we choose highly symmetric masses
distribution between standard matter and ghost matter below that scale ��, i.e.,
fs.m��� � �fg.m���, � � mc,� � �eff,�effc � �� The small value of the cosmological
constant explaned by tiny violation of the symmetry between standard matter and ghost
matter.Dark matter nature also explaned using a common origin of the dark energy and
dark matter phenomena.
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1.Introduction

1.1.The cosmological constant problem and Quantum
Field Theory in fractal spacetime with negative dimension.

One of the greatest challenges in modern physics is to reconcile general relativity and
elementary particles physics into a unified theory. Perhaps the most dramatic clash
between the two theories lies in the cosmological constant problem [1-6] and in the
problem of the Dark (i.e., non-luminous and non-absorbing) Matter nature is, arguably,



the most widely discussed topic in contemporary particle physics.Naive predictions of
vacuum energy from canonical quantum field theory predict a magnitude so high that the
expansion of the Universe should have accelerated so quickly that no any structure
could have formed. The predicted rate of acceleration resulting from vacuum energy is
famously 120 orders of magnitude larger than what is observed. In order to avoid these
difficultnes mentioned above we assume that:(i) physics of elementary particles
essentially is separated into low/high energy ones, (ii) the standard notion of smooth
spacetime is assumed to be altered at a high energy cutoff scale �� and a new
treatment based on QFT in a fractal spacetime with negative dimension is used above
that scale ��. In this paper we argue that Quantum Field Theory in fractal space-time
with negative Hausdorff-Colombeau dimensions [15] gives high-energy cutoff on natural
way.No one knows what dark energy is, but we need it to explain the discovered
accelerated expansion of the Universe. The most elegant and natural solution is to
identify dark energy with the energy of the quantum vacuum predicted by Quantum Field
Theory, but the trouble is that QFT predicts the energy density of the vacuum to be
orders of magnitude larger than the observed dark energy density:

�de � 7. 5 � 10�27kg/m3. �1. 1. 1�

Recall that it was stressed by Zeldovich [1] that quantum field theory generically
demands that cosmological constant or, let us repeat, what is the same, vacuum energy
is non-vanishing.Summing the zero-point energies of all normal modes of some
quantum field of mass m up to a wave number cut-off ��/c2 � m, QFT yields [1],[5] a
vacuum energy density

�vac � �
0

p�
d3p p2 � m2 � p�4 . �1. 1. 2�

1.2. Sources of Vacuum Energy
It is not excluded experimentally that the number of fermionic and bosonic species in

Nature are the same. Moreover it is practically a necessity, because otherwise vacuum
energy density would be infinite. Still the masses of bosons and corresponding fermions
are different and, with arbitrary relations between their masses, only the leading term,
which diverges as the fourth power of the integration limit, would be canceled out.
However in some supersymmetric theories with spontaneous symmetry breaking there
may be specific relations between masses of different fields which ensure the
compensation not only of the leading term but also quadratically and logarithmically
divergent terms. This looks as a very strong argument in favor of such models. However
the finite terms are not compensated. Moreover in global supersymmetric theories finite
contributions into ρvac must be nonzero and by the order of magnitude they are equal to

�vac
susy � msusy

4 �1. 2. 1�

where msusy is the scale of supersymmetry breaking. It is known from experiment that
msusy	 100 GeV. Correspondingly �vac

susy	 108 GeV, i.e. 55 orders of magnitude larger than
the permitted upper bound. In more advanced supersymmetric theories which include
gravity (the so called supergravity or local supersymmetry) the condition of
non-vanishing vacuum energy in the broken symmetry phase is not obligatory. However,
if one does not take a special care, the value of vacuum energy in



unbroken supergravity models is typically about mPl
4 � 1076 GeV. One can choose in

principle the parameters in such a way that this contribution into ρvac is compensated
down to zero with the accuracy 10�123 but this demands a fantastic fine-tuning.
One more source of vacuum energy is the energy of the scalar (Higgs) field in the
theories with spontaneous symmetry breaking.

1.3.New Model of ”Nullification” of Vacuum Energy
Several possible approaches to the problem of vacuum energy have been discussed

in the contemporary literature, for the review see ref. [5]. They can be roughly devided
into four different groups:

(1) Modification of gravity on large scales.
(2) Anthropic principle.
(3) Symmetry leading to ρvac � 0.
(4) Adjustment mechanism.
(5) Hidden nonstandard matter sector and corresponding
symmetry leading to ρvac � 0.
1.A modification of gravity at large scales should be done in such a way that the

general
covariance, which ensures vanishing of the graviton mass, is preserved, energy
momentum tensor is covariantly conserved, and simultaneously the vacuum part of

this
tensor, which is proportional to gμ�,does not gravitate. This is definitely not an easy

thing
to do. Possibly due to this reasons there is no satisfactory model of this kind at the
present time.
2.Anthropic principle states that the conditions in the universe must be suitable for life,
otherwise there would be no observer that could put a question why the universe is

such
and not another. With cosmological constant which is as large as predicted by natural
estimates in quantum theory, life of our type is definitely impossible. Still this point of

view
does not look very appealing. The situation is similar to the one that existed in the
Friedmann cosmology before inflationary resolution of the fundamental cosmological
problems has been proposed. There is one more difficulty in the implimenttion of the
anthropic principle. Even if we assume that it is effective, there are no visible building
blocks to achieve the necessary compensation of vacuum energy. One can say of

course
that this compensation is not achieved by a physical field but just by a subtraction
constant or in other words by a choice of the position of zero on the energy axis. In

other
words it is assumed that there is some energy coming from nowhere, which exactly
cancels out all the contributions of different physical fields. Though formally this is not
excluded, it definitely does not look beautiful.
3.Probably the most appealing would be a model based on a symmetry principle
which forbids a nonzero vacuum energy. Such a symmetry should connect known
fields with new unknown ones. Some of those fields should be very light to achieve



the cancellation on the scale 10�3eV. Neither such fields are observed, nor such a
symmetry is known.
4. An adjustment mechanism seems the most promising one at the present
time. The idea is similar to the mechanism of solving the problem of natural CP-
conservation in quantum chromodynamics by the axion field. The axion potential
automatically acquires a minimum at the value of the field amplitude that cancels out

the

CP-odd contribution from the so called theta-term, θGG. Similar mechanism can
hopefully kill vacuum energy. Let us assume that there is a very light or massless field
coupled to gravity in such a way that it is unstable in De Sitter background and

develops
the condensate whose energy-momentum tensor is equal by magnitude and opposite

by
sign to the original vacuum energy-momentum tensor. Though it looks rather

promising, it
is very difficult, if possible at all, to construct a realistic model based on this idea.
5.Hidden nonstandard matter sector and corresponding symmetry leading to ρvac � 0.
The luminous (light-emitting) components of the universe only comprise about 0.4% of

the
total energy. The remaining components are dark. Of those, roughly 3.6% are

identified:
cold gas and dust, neutrinos, and black holes. About 23% is dark matter, and the
overwhelming majority is some type of gravitationally self-repulsive dark energy.
There is no candidate in the standard model of particle physics.In what way does dark
matter extend the standard model?
Remark 1.3.1.In order to explain physical nature of dark matter sector we assume that
main part of dark matter,i.e., � 23% � 4. 6% � 18% (see Fig.2.3.3) formed by
supermassive ghost particles vith masess such that mc2 � ��.
Remark 1.3.2.In order to obtain QFT description of the dark component of matter in
natural way we expand now the standard model of particle physics on a sector of

ghost
particles. QFT in a ghost sector developed in Sect.3.1-3.4 and Sect.4.1-4.8.

The paper is organized as follows:
In Sec.2, classical Zel’dovich approuch [1] to cosmological constant problem revisited.
In Sec.2.1, we summarize the aspects of the cosmological constant problem that are
relevant to this work.
In Sec.2.2, we summarize the model of cosmological dynamics in the presence of a
vacuum energy that was introduced in [1-4], and how it attempts to resolve the

problem.
In Sec.2.3, dark matter nature is considered. We argue that dark matter sector

essentially
formed only by super massive ghost particles.The Standard Model of fundamental
interactions is extendent on a ghost sector.
In Sec.3, Pauli–Villars ghosts as physical dark matter is considered.
In Sec.3.1,Pauli– Villars renormalization of the ��4

4 field theory by using Pauli–Villars



host
fields is considered.New physical interpretation of the scalar Pauli–Villars host fields is
given.
In Sec.3.2, Pauli–Villars renormalization of the the QED3 by using Pauli–Villars ghost
fields is considered. New physical interpretation is given.
In Sec.3.3, High covariant derivatives renormalization as Pauli–Villars renormalization

of
non-Abelian gauge theories.New physical interpretation is given.
In Sec.3.4, Pauli–Villars renormalization of QED4 via Colombeau generalized functions

is
considered successfully.The physical significance of Pauli-Villars renormalization
is explained.
In Sec.4,we construct OFT in a ghost sector via dimensional renormalization

supported
by Colombeau generalized functions.
In Sec.4.1, Dimensional Regularization via Colombeau generalized functions is given.
In Sec.4.2, the scalar theory ��4

4 in standard sector via Colombeau generalized
functions

in one-loop approximation is given.
In Sec.4.3, the scalar theory ��4

4 in a ghost sector via Colombeau generalized
functions

in two-loop approximation is given.
In Sec.4.4, quantum electrodynamics in a ghost sector via Colombeau generalized
functions is given.
In Sec.4.5, quantum chromodynamics in a ghost sector via Colombeau generalized
functions is given.
In Sec.4.6, the general structure of the �-operation in a ghost fields sector via
Colombeau generalized functions is given.
In Sec.4.7, the renormalization Group in a ghost sector is considered.
In Sec.4.8, dimensional regularization and the MSscheme in a ghost sector is given.
In Sec.5, the higher-derivative-quantum-gravity is considered as physical

quantum-gravity
theory below high energy cutoff ��The renormalizable models of quantum-gravity

which
we have considered in this section, many years mistakenly regarded only as

constructs for
a study of the ultraviolet problem of quantum gravity. The difficulties with unitarity

appear
to preclude their direct acceptability as canonical physical theories in locally Minkowski
space-time. In canonical case they do have only some promise as phenomenological
models.However, for their unphysical behavior may be restricted to arbitrarily large

energy
scales mentioned above by an appropriate limitation on the renormalized masses m2

and
m0.Actually, it is only the massive spin-two excitations of the field which give the

trouble



with unitarity and thus require a very large mass. The limit on the mass m0 is
determined

only by the observational constraints on the static field.
In Sec.6, Hausdorff-Colombeau measure and associated negative

Hausdorff-Colombeau
dimensions is considered successfully.
In Sec.6.1, we provide fractional integration in negative dimensions on natural way via
Colombeau generalized functions.
In Sec.6.2, Using Hausdorff measure with associated positive Hausdorff dimension

the
rigorous definition of the Colombeau-Feynman path integral in D � 4 from dimensional
regularization is given.
In Sec.6.3, we provide Hausdorff-Colombeau measure and associated negative
Hausdorff-Colombeau dimensions.
In Sec.6.4, we provide the main properties of the Hausdorff- Colombeau metric
measures with associated negative Hausdorff-Colombeau dimensions.
In Sec.7, we provide scalar quantum field theory in spacetime with Hausdorff-
Colombeau negative dimensions.
In Sec.7.1,the equation of motion and Hamiltonian in spacetime with Hausdorff-
Colombeau negative dimensions is considerd.
In Sec.7.2,propagator of a free scalar quantum field in configuration space with
Hausdorff-Colombeau negative dimensions is considerd.
In Sec.7.3,Green’s functions corresponding to a self-interecting scalar quantum field in
spacetime with Hausdorff-Colombeau negative dimensions is considerd.
In Sec.7.4,saddle-point evaluation of the Colombeau-Feynman path integral
corresponding to a self-interecting scalar quantum field in negative dimensions is
considerd successfully.
In Sec.7.5,an criteria of the power-counting renormalizability of P���D

_ scalar quantum
field theory in negative dimensions D� � 0 is considerd successfully.
In Sec.7.6,we have proved power-counting renormalizability of Einstein gravity in
negative dimensions.
In Sec.7.7,an criteria of thepower-counting renormalizability of Ho� rava gravity in

negative
dimensions.
In Sec.8,the solution cosmological constant problem is considerd successfully.
In Sec.8.1,Zeropoint energy density corresponding to Einstein-Gliner-Zel’dovich

vacuum
with tiny Lorentz invariance violation is considerd.
In Sec.8.2,Zeropoint energy density corresponding to a non-singular Gliner cosmology
is considerd.
In Sec.8.3, Zeropoint energy density in models with supermassive physical ghost

fields
is considerd.
In Sec.9, we compare the classical and non classical assumptions that are made in

the
different formulation of the cosmological constant problem.



In Sec.9.1,we briefly review the canonical assumptions that are made in the usual
formulation of the cosmological constant problem.
In Sec.9.2,we list the modified assumptions that are made in this paper.
In Sec.9.3,
In Sec.9.4,
In Sec.9.5,
In Sec.9.6,semiclassical Möller-Rosenfeld gravity via aprouch proposed in this paper
is considerd. We conclude that Moller-Rosenfeld equation holds again in a good
approximation.
In Sec.9.7,we briefly discussed higher-derivative quantum gravity at energy scale

� � ��

and corresponding controlable tiny violetion of the unitarity condition.
We conclude with the physical significance of the new results in Sec.9-10.

2. Zel’dovich approach to cosmological constant problem
by using Pauli-Villars regularization revisited.Ghost
particles as physical dark matter.

2.1.The formulation of the cosmological constant problem.
The cosmological constant problem arises at the intersection between general

relativity and quantum field theory, and is regarded as a fundamental unsolved problem
in modern physics. Remind that a peculiar and truly quantum mechanical feature of the
quantum fields is that they exhibit zero-point fluctuations everywhere in space, even in
regions which are otherwise ‘empty’ (i.e.devoid of matter and radiation).This vacuum
energy density is believed to act as a contribution to the cosmological constant �
appearing in Einstein’s field equations from 1917,

R�� � 1
2

g��R � 8�G
c4 T��

� �2. 1. 1�

where R�� and R refer to the curvature of space-time, g�� is the metric, T��
� the energy-

momentum tensor,

T��
� � T�� � c4�

8�G

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

�2. 1. 2�

where T�� is the energy-momentum tensor of matter. Thus T00
� � T00 � ��,

T�	
� � T�	 � 
�	P�, where

�� � �P� � c4�/8�G. �2. 1. 3�

Remind that under Lorentz transformations ���,P�� 	 ��� , ���,P�� 	 P�
� the quantities

�� and P� are changes by law

��� �
�� � 	2P�

1 � 	2 ,P�
� �

P� � 	2��
1 � 	2 . �2. 1. 4�

Thus for the quantities �� and P� Lorentz invariance holds by Eq.(2.1.3) [1].



In modern cosmology it is assumed that the observable universe was initially
vacuumlike, i.e., the cosmological medium was non-singular and Lorentz invariant. In
the earlier, non-singular Friedmann cosmology the Friedmann universe comes into
being during the phase transition of an initial vacuumlike state to the state of ‘ordinary’
matter [2],[3].

The Friedmann equations start with the simplifying assumption that the universe is
spatially homogeneous and isotropic, i.e. the cosmological principle; empirically, this is
justified on scales larger than ~100 Mpc. The cosmological principle implies that the
metric of the universe must be of the form Robertson-Walker metric [2].
Robertson-Walker metric reads

ds2 � dt2 � a2�t� dr2

1 � kr2 � r 2�d�2 � sin2�d�2� . �2. 1. 5�

For such a metric, the Ricci curvature scalar is R � �6k and it is said that space has the
curvature k.The scaling factor a�t� rescales this curvature for a given time t, producing a
curvature k�t� � k/a�t�.The scaling factor a�t� is given by two independent Friedmann
equations for modeling a homogeneous, isotropic universe reads

a
 2 � G
3
�a2 � k,ä � � G

6
�� � 3p� �2. 1. 6�

and the equation of state

p � p���, �2. 1. 7�

where p is pressure and � is a density of the cosmological medium. For the case of the
vacuumlike cosmological medium equation of state reads [1],[2],[3],[4]:

p � ��. �2. 1. 8�

By virtue of Friedman’s equations (2.1.6) in the Universe filled with a vacuum-like
medium, the density of the medium is preserved, i.e. � � const, but the scale factor a�t�
grows exponentially. By virtue of continuity, it can be assumed that the admixture of a
substance does not change the nature of the growth of the latter, and the density of the
medium hardly changes. This growth, interpreted by analogy with the Friedmann models
as an expansion of the universe, but almost without changing the density of the medium!
- was named inflation. The idea of inflation is the basis of inflation scenarios [2].

Non-singular cosmology [2],[3],[4] suggests that the initial state of the observable
universe was vacuum-like, but unstable with respect to the phase transition to the
ordinary non-Lorentz-invariant medium. This, for example, takes place if, by virtue of the
equations of state of the medium, a fluctuation decrease in its density d violates the
condition of vacuum-like degeneration, p � �� or, which is the same, 3p � � � �2� � 0,
replacing it with

� 2� � 3p � � � 0. �2. 1. 9�

According to Friedman’s equations, it corresponds to an accelerated expansion of the
cosmological medium, accompanied by a drop in its density, which makes the process
irreversible [2]. The impulse for expansion in this scenario, the vacuum-like environment,
is not reported to itself (bloating), but to the emerging Friedmann environment.

In review [5], Weinberg indicates that the first published discussion of the contribution
of quantum fluctuations to the cosmological constant was a 1967 paper by Zel’dovich
[6].In his article [1] Zel’dovich emphasizes that zeropoint energies of particle physics
theories cannot be ignored when gravitation is taken into account, and since he explicitly



discusses the discrepancy between estimates of vacuum energy and observations, he is
clearly pointing to a cosmological constant problem. As well known zeropoint energy
density of scalar quantum field,etc.is divergent

�vac�m� � 2�c
�2���3 �0



p2 � m2c2 p2dp � 
. �2. 1. 10�

In order avoid difficultnes mentioned above, in article [1] Zel’dovich has applied
canonical Pauli-Villars regularization [7],[8] and formally has obtained an finite result (his
formulas [1], Eqs. (VIII.12)-(VIII.13) p.228)

�vac � �pvac � 1
8 �

0

�eff

f����4�ln��d� � c4�
8�G

, �2. 1. 11�

where

�
0

�eff

f���d� � �
0

�eff

f����2d� � �
0

�eff

f����4d� � 0. �2. 1. 12�

Remark 2.1.1.Unfortunately the Eq(2.1.11)-Eq(2.1.12) gives nothing in order to obtain
desired small numerical values of the zero-point energy density �vac.It is clear that
aditional physical assumptions is needed.

In his paper [1], Zel’dovich arrives at a zero-point energy (his formula [1],Eq.(IX.1))

�vac � m mc
�

3
� 1017g/cm3,� � 10�10cm�2, �2. 1. 13�

where m (the ultra-violet cut-of ) is taken equal to the proton mass. Zel’dovich notes that
since this estimate exceeds observational bounds by 46 orders of magnitude it is clear
that "...such an estimate has nothing in common with reality".

In his paper [1], Zel’dovich wroted:" Recently A.D. Sakharov proposed a theory of
gravitation, or, more precisely, a justification GR equations based on consideration of
vacuum fluctuations.In this theory, the essential assumption is that there is some
elementary length L or the corresponding limiting momentum p0 � �/L. Shorter lengths
or for large impulses theory is not applicable. Sakharov gets the expression of
gravitational constant G through L or p0 (his formula [1],Eq.(IX.6))

G � c3L2

�
� �c3

p0
2 . �2. 1. 14�

This expression has been known since the days of Planck, but it was read "from right
to left": gravity determines the length L and the momentum p0. According to Sakharov, L
and p0 are primary. Substitute Eq.(IX. 6) in the expression Eq.(IX.4) (see [1]), we get

�� � m6c5

p0
2�3

,�vac � m6c7

p0
2�3

. �2. 1. 15�

That is expressions that the first members (in the formulas [1],Eqs.(VIII.10)-(VIII. 11))
which are vanishes (with p0 	 
).Thus, we can suggest the following interpretation of the
cosmological constant: there is a theory of elementary particles, which would give
(according to the mechanism that has not been revealed at the present time) identically
zero vacuum energy, if this theory were applicable infinitely, up to arbitrarily large
momentum; there is a momentum p0, beyond which the theory is nont aplicable; along
with other implications, modifying the theory gives different from zero vacuum energy;
general considerations make it likely that the effect is portional p0

�2.Clarification of the



question of the existence and magnitude of the cosmological constant will also be of
fundamental importance for the theory of elementary particles".

In contrast with Zel’dovich paper [1] we assume that Poincaré group is deformed at
some fundamental high-energy cutoff �� [9],[10],[11] in accordance on the basis of the
following deformed Poisson brackets

�x�,x�� � 
�1�x��0� � x���0�,�p�,p�� � 0,

�x�,p�� � ���� � 
�1��0p�
�2. 1. 16�

where μ,�,� 0, 1, 2, 3, ��� � ��1,�1,�1,�1� and 
 is a parameter identified as the ratio
between the high-energy cutoff �� and the light speed. The corresponding to (2.1.16)
momentum transformation reads [11]

p0
� �

��p0 � upx�
1 � �c
��1��� � 1�p0 � �upx�

,px
� �

��px � up0/c2�

1 � �c
��1��� � 1�p0 � �upx�
,

py
� �

py

1 � �c
��1��� � 1�p0 � �upx�
,pz

� �
pz

1 � �c
��1��� � 1�p0 � �upx�
,

�2. 1. 17�

and coordinate transformation reads [11]

t � �
��t � ux/c2�

1 � �c
��1��� � 1�p0 � �upx�
,x� �

��x � ut�
1 � �c
��1��� � 1�p0 � �upx�

,

y� �
y

1 � �c
��1��� � 1�p0 � �upx�
,z� � z

1 � �c
��1��� � 1�p0 � �upx�
,

�2. 1. 18�

where � � 1 � u2/c2 . It is easy to check that the energy E � c
 , identified as the
high-energy cutoff ��, is an invariant as it is also the case for the fundamental length
l�� � �c/E � �/
.

Remark 2.1.2. Note that the transformation (2.1.17) defined in p-space and the
transformation (2.1.18) defined in x-space becomes Lorentz for small energies and
momenta and defines a large invariant energy l��

�1 .The high-energy cutoff �� is
preserved by the modified action of the Lorentz group [9],[10].

This meant that the canonical concept of metric as quadratic invariant collapses at
high energies, being replaced by the non-quadratic invariant [9]:

�p�2 �
�abpapb

�1 � l��p0�
, �2. 1. 19�

or by the non-quadratic invariant

�p�2 �
�abpapb

�1 � l��p0�
, �2. 1. 20�

where l�� � ��
�1,a,b � 0, 1, 2, 3.

Remark 2.1.3.Note that:
(i) the invariant (2.1.16) is infinite for the new negative invariant energy scale of the
theory �� � �l��

�1 , and it’s not quadratic for energies close or above and
(ii) the invariant (2.1.17) is infinite for the new positive invariant energy scale of the
theory �� � l��

�1 .
Remark 2.1.4.It is also clear from Eq.(2.1.16) and Eq.(2.1.17) that the symmetry of
positive and negative values of the energy is broken.The two theories with the two

signs of l� obviously are physically distinct; and we know of no theoretical argument



which fixes
the sign of l�
The massive particles have a positive invariant �p�2 � 0 which can be identified with

the
square of the mass �p�2 � m2, �c � 1�.Thus in the case of the invariant (2.1.19) we

obtain

p0
2 � p2

�1 � l��p0�2 � m2,p0 � ��l��
�1 ,
� �2. 1. 21�

From Eq.(2.1.21) we obtain

p0 � m2l��
1 � m2l��

2 � 1
1 � m2l��

2

m4l��
2

1 � m2l��
2 � �p2 � m2� . �2. 1. 22�

In the case of the invariant (2.1.20) we obtain

p0
2 � p2

�1 � l��p0�2 � m2,p0 � ��
, l��
�1 �. �2. 1. 23�

From Eq.(2.1.23) we obtain

p0 � � m2l��
1 � m2l��

2 � 1
1 � m2l��

2

m4l��
2

1 � m2l��
2 � �p2 � m2� �2. 1. 24�

The action for a scalar field � must be invariant under the deformed Lorentz
transformations.The invariant action reads [10]

S � 1
2 � d4x

�ab��a����b��
�1 � l���0��

� m2

2
�2 � V��� . �2. 1. 25�

Thus there is no linear field equation even if V��� � 0.
Remark 2.1.5.Throughout this paper, we use the perturbative expansion

S � 1
2 � d4x �ab��a����b�� � m2

2
�2 � O�l�� �. �2. 1. 26�

and dealing in Lorentz invariant approximation

S � 1
2 � d4x �ab��a����b�� � m2

2
�2 . �2. 1. 27�

since for l�� 
 1 the expansion (2.1.26) holds.

2.2. Zel’dovich approuch by using Pauli-Villars
renormalization revisited.What is wrong with Pauli-Villars
renormalization. Ghost particles as physical dark matter.

2.2.1. Zel’dovich approuch by using Pauli-Villars
renormalization revisited.

Remind that vacuum energy density for free scalar quantum field is [1]:

���� � 1
2

1
�2���3 �0



4�c p2 � �2 p2dp � K �

0



p2 � �2 p2dp � KI���, �2. 2. 1�



where � � m0c.From the basic definitions [1]

p � Txx,p��� � 1
2

1
�2���3 �0



uxpx4�p2dp, u � cp

p2 � �2
,uxpx � 1

3
�u, p�

one obtains

p��� � K
3 �0


 p4dp

p2 � �2
� KF���. �2. 2. 2�

Remark 2.2.1.Note that the integral in RHS of the Eq.(2.2.1) and the Eq.(2.2.2)
divergent

and ultraviolet cutoff is needed.
Thus in accordance with [1] we set

���,p0� � KI��,p0�,p��,p0� � KF��,p0�, �2. 2. 3�

where

I��,p0� � �
0

p0

p2 � �2 p2dp,F��,p0� � �
0

p0 p4dp

p2 � �2
, �2. 2. 4�

where p0c � ��.For fermionic quantum field similarly one obtains [1]

���,p0� � �4KI��,p0�,p��� � �4KF��,p0�. �2. 2. 5�

Thus from Eqs.(2.2.3)-(2.2.5) by using formally Pauli-Villars regularization [7],[8] and
regularization by high-energy cutoff the expression for free vacuum energy density �
reads

� ��
i�0

2M

f i I�� i ,p0� �2. 2. 6�

and the expression for pressure p reads

p ��
i�0

2M

f iF�� i ,p0�. �2. 2. 7�

Here � i is a finite positive sequence � i � ��, i � 1, 2, . . . , 2M and f i is a finite sequence
f i � �, f i � 1, i � 1, 2, . . . , 2M.

Definition 2.2.1.We define now discrete distribution fPV : �� 	 � by formula

fPV�� i � � f i , �2. 2. 8�

and we will call it as a full discrete Pauli-Villars masses distribution.
Remark 2.2.2.We assum now that in Eqs.(2.2.6)-(2.2.7): (i) the quantities
� i

s.m � � i , i � 1, 2, . . . ,M is a masses of a physical particles corresponding to standard
matter and (ii) the quantities � i

g.m � � i , i � M � 1, 2, . . . , 2M is a masses of ghost
particles

with a wrong kinetic term and wrong statistics corresponding to a physical dark matter.
Remark 2.2.3.We recall that the Euler-Maclaurin summation formula reads

�
i�1

2M
g��1 � �i � 1�h� � �

�1

�2M

f���d� � A1�g��2M� � g��1�� �

A2h�g���2M� � g���1�� � O�h2�,

f��� � 1
h

g���

�2. 2. 9�



Let g��� be an appropriate continuous function such that: (i) g�� i � � f i , i � 1, 2, . . . , 2M,
(ii) g���2M� � 0,g���1� � 0.
Thus from Eqs.(2.2.6)-(2.2.7) and Eqs.(2.2.9) we obtain

� ��
i�0

2M

f i I�� i ,p0� �

�
�1

�2M

f���I��,p0�d� � A1h�f��2M�I��2M,p0� � f��1�I��1,p0�� � O�h2�

�2. 2. 10�

and

p ��
i�0

2M

f iF�� i ,p0� �

�
�1

�2M

f���F��,p0�d� � A1h�f��2M�F��2M,p0� � f��1�F��1,p0�� � O�h2�.

�2. 2. 11�

Definition 2.2.2.We will call the function f��� as a full continuous Pauli-Villars masses
distribution.
Definition 2.2.3.We define now: (i) discrete distribution fPV

s.m : �� 	 � by formula

fPV
s.m�� i

s.m� � f i , i � 1, 2, . . . ,M �2. 2. 12�

and we will call it as discrete Pauli-Villars masses distribution of the standard matter
and

(ii) discrete distribution fPV
g.m : �� 	 � by formula

fPV
g.m�� i � � f i , i � M � 1, 2, . . . , 2M �2. 2. 13�

and we will call it as discrete Pauli-Villars masses distribution of the ghost matter.
Remark 2.2.4.We rewrite now the Eqs.(2.2.6)-(2.2.7) in the following equivalent form

� ��
i�1

M

fPV
s.m�� i

s.m�I�� i
s.m,p0� � �

j�i ��M�1

2M

fPV
g.m � j�i �

g.m I � j�i �
g.m,p0 �2. 2. 14�

and

p ��
i�1

M

fPV
s.m�� i

s.m�F�� i
s.m,p0� � �

j�i ��M�1

2M

fPV
g.m � j�i �

g.m F � j�i �
g.m,p0 , �2. 2. 15�

where j�i� � i � M, i � 1 � 1, 2, . . . ,M.

Remark 2.2.5.We assume now that: (i) � i
s.m � � j�i �

g.m, (ii) fPV
s.m�� i

s.m� � fPV
g.m � j�i �

g.m 
 1, i.e.,

fPV
s.m�� i

s.m� � �fPV
g.m � j�i �

g.m . �2. 2. 16�

Note that Eq.(2.2.16) meant highly symmetric discrete Pauli-Villars masses
distribution

between standard matter and ghost matter below that scale ��

Thus from Eqs.(2.2.14)-(2.2.15) and Eqs.(2.2.16) we obtain



� ��
i�1

M

fPV
s.m�� i

s.m�I�� i
s.m,p0� � �

j�i ��M�1

2M

fPV
g.m � j�i �

g.m I � j�i �
g.m,p0 �

�
i�1

M

fPV
s.m�� i

s.m� � fPV
g.m � j�i �

g.m I�� i ,p0�

�2. 2. 17�

and

p ��
i�1

M

fPV
s.m�� i

s.m�F�� i
s.m,p0� � �

j�i ��M�1

2M

fPV
g.m � j�i �

g.m F � j�i �
g.m,p0 �

�
i�1

M

fPV
s.m�� i

s.m� � fPV
g.m � j�i �

g.m F�� i ,p0�.

�2. 2. 18�

From Eqs.(2.2.17)-(2.2.18) and Eqs.(2.2.9) finally we obtain

� ��
i�1

M

fPV
s.m�� i

s.m� � fPV
g.m � j�i �

g.m I�� i ,p0� �

�
�1

�eff

fPV
s.m��� � fPV

g.m��� I��,p0�d�

�2. 2. 19�

and

p ��
i�1

M

fPV
s.m�� i

s.m� � fPV
g.m � j�i �

g.m F�� i
s.m� �

�
�1

�eff

fPV
s.m��� � fPV

g.m��� F��,p0�d�,

�2. 2. 20�

where obviously

fPV
s.m��� � fPV

g.m��� � fPV��� � 0. �2. 2. 21�

Definition 2.2.5.We will call fPV
s.m��� and fPV

g.m��� as continuous Pauli-Villars masses
distribution of the standard matter and ghost matter correspondingly.
Thus finally we obtain

���eff,p0� � �
�1

�eff

fPV���I��,p0�d�, �2. 2. 22�

and

p��eff,p0� � �
�1

�eff

fPV���F��,p0�d�, �2. 2. 23�

In order to calculate ���eff,p0� and p��eff,p0� let us evaluate now the following quantities
defined above by Eqs.(2.2.4)

I��,p0� � �
0

p0

p2 p2 � �2 dp � �
0

p�

p2 p2 � �2 dp� �
p�

p0

p2 p2 � �2 dp �

� �
0

p�

p3 1 �
�2

p2 dp� �
p�

p0

p3 1 �
�2

p2 dp

�2. 2. 24�



and

F��,p0� � 1
3 �

0

p0

p4dp

p2 � �2
� 1

3 �
0

p�

p4dp

p2 � �2
� 1

3 �
p�

p0

p4dp

p2 � �2
�

1
3 �

0

p�

p3dp

1 �
�2

p2

� 1
3 �

p�

p0

p3dp

1 �
�2

p2

,
�2. 2. 25�

where p� � r�, r � 1,�/p � 1/r � 1.Note that:

1 �
�2

p2 � 1 � 1
2

�2

p2 � 1
8

�4

p4 � 1
16

�6

p6 �. . . .

p2 p2 � �2 � p3 1 �
�2

p2 � p3 � 1
2
�2p � 1

8
�4

p � 1
16

�6

p3 �. . . .

�2. 2. 26�

By inserting Eq.(2.2.26) into Eq.(2.2.24) one obtains

I��,p0� � C1�4 � 1
4

p0
4 � 1

4
�2p0

2 � 1
8
�4 ln

p0
� � 1

32
�6

p0
2 � p0

�5O��8�, �2. 2. 27�

where C1�4 � �
0

p�

p2 p2 � �2 dp.Note that:

1 �
�2

p2

�1

� 1 � 1
2

�2

p2 � 3
8

�4

p4 � 5
16

�6

p6 �. . . . �2. 2. 28�

By inserting Eq.(2.2.28) into Eq.(2.2.25) one obtains

F��,p0� � C2�4 � 1
12

p0
4 � 1

12
�2p0

2 � 1
8
�4 ln

p0
� � 5

32
�6

p0
2 � p0

�5O��8�. �2. 2. 29�

By inserting Eq.(2.2.27) into Eq.(2.2.22) one obtains

���eff,p0� �

1
4

p0
4 �

0

�eff

fPV���d� � 1
4

p0
2 �

0

�eff

fPV����2d� � C1 � 1
8

lnp0 �
0

�eff

fPV����4d� �

� 1
8 �

0

�eff

fPV����4�ln��d� � 1
p0

2
1

32 �
0

�eff

fPV����6d� � O �
0

�eff

fPV����8 p0
�5.

�2. 2. 30�

By inserting Eq.(2.2.29) into Eq.(2.2.23) one obtains

p��eff,p0� �

1
12

p0
4 �

0

�eff

fPV���d� � 1
12

p0
2 �

0

�eff

fPV����2d� � C2 � 1
8

lnp0 �
0

�eff

fPV����4d� �

� 1
8 �

0

�eff

fPV����4�ln��d� � 5
p0

2
1

32 �
0

�eff

fPV����6d� � O �
0

�eff

fPV����8 p0
�5.

�2. 2. 31�

We formally choose now [1]



�
0

�eff

fPV���d� � �
0

�eff

fPV����2d� � �
0

�eff

fPV����4d� � 0. �2. 2. 32�

By inserting Eq.(2.2.32) into Eqs.(2.2.30)-(2.2.31) one obtains

���eff,p0� � 1
8 �

0

�eff

fPV����4�ln��d� � O�p0
�2�,

p��eff,p0� � � 1
8 �

0

�eff

fPV����4�ln��d� � O�p0
�2�.

�2. 2. 33�

Taking the limit p0 	 
 in Eq.(2.2.33) gives

���eff� � 1
8 �

0

�eff

fPV����4�ln��d�,

p��eff� � � 1
8 �

0

�eff

fPV����4�ln��d�.

�2. 2. 34�

Thus finally we obtain well known Zel’dovich formulas [1]:

���eff� � �p��eff� � 1
8 �

0

�eff

fPV����4�ln��d� � c4�
8�G

. �2. 2. 35�

Remark 2.2.6. If we assume that

fPV
s.m��� � fPV

g.m��� � fPV��� � 0 �2. 2. 36�

instead Eq.(2.2.21) we obtain zero value of the cosmological constant �. In this paper
a small value of the cosmological constant explained by tiny violation of the simmetry
required by Eq.(2.2.16).

2.2.2 Pauli-Villars renormalization.What is wrong with
canonical Pauli-Villars renormalization.Ghost particles as
physical dark matter.

Remark 2.2.7. Remind that canonical Pauli-Villars regularization consists of
introducing a

fictitious mass term. For example, we would replace a propagator 1/ k2 � m0
2 � iϵ , by

the
regulated propagator


�k2� ��
i�0

N ai

k2 � mi
2 � iϵ

� 1
k2 � m0

2 � iϵ
��

i�1

N ai

k2 � mi
2 � iϵ

, �2. 2. 37�

where a0 � 1 and mi , i � 1, 2, . . .N can be thought of as the mass of a fictitious heavy
particle, whose contribution is subtracted from that of an ordinary particle. Assume

that
mi

2/k2 � 1, if we expand each term of this sum (2.2.37) as a power series in k2 � iϵ, i.e.,



ai

k2 � mi
2 � iϵ

� ai

k2 � iϵ
1

1 � mi
2

k2�iϵ

� ai

k2 � iϵ
�

1 �
mi

2

k2 � iϵ
�

mi
4

k2 � iϵ
2 �. . . � ai

k2 � iϵ
�

aimi
2

k2 � iϵ
2 �

aimi
4

k2 � iϵ
3 �. . . ,

�2. 2. 38�

where mi
2/k2 � 1, we get


�k2� ��
i�0

N ai

k2 � iϵ
��

i�0

N aimi
2

k2 � iϵ
2 ��

i�0

N
O 1

k2 � iϵ
3 . �2. 2. 39�

For a renormalizable theory the maximum supercriticial power of divergence of any
Feinman integral is quadratic, so that the O�1/k6� terms are ultraviolet finite. The
finiteness of the regulated Feinman integral is then guaranteed by requiring that

� i�0
N ai � 0,� i�0

N aimi
2 � 0. �2. 2. 40�

Remark 2.2.8. Note that in order to obtain renormalized physical quantities canonical
procedure required take the limits limmi	
mi , i � 1, . . . ,N of the regulated Feinman

integral.
Unfortunately under these limits the expansion (2.2.38) obviously breaks down since

the
inequalities mi

2/k2 � 1, i � 1, . . . ,N in the limits limmi	
mi , i � 1, . . . ,N obviously no longer
holds!Thus canonical Pauli-Villars procedure does not make any rigorous

mathematical
sense.In fact that is formal deletion of the divergences by hands.
Remark 2.2.9. In order to avoid these difficultness mentioned above we have choose
Pauli-Villars masses mPV of order mPV � ��/c2 or m � ��/c2 and therefore there is no
problems arises with unitarity condition,see section V.
Remark 2.2.10.We claim that such sufficiently larges Pauli-Villars masses mPV

corresponds to a physical ghost particles which formed Dark Matter sector of the
Universe.
Remark 2.2.11.Note that in order to aply modified Pauli-Villars renormalization

mentioned
above (see Remarks 2.2.9-2.2.10) to QFT with Lagrangian ���,�,���,���� we would
replace the Lagrangian ���,�,���,���� by Lagrangian � �,�,���,��� ,where [7]:

��x� � ��x� ��n
bn�� n�x,�PV,n

2 �,��x� � ��x� ��n
cn�� n�x,
PV,n

2 �, �2. 2. 41�

and where commutator for �� n and anticommutator for �� n reads

��� m�x,�PV,m
2 �,�� n�x�,�PV,n

2 �� � �i�n
�x � x�,�PV,n
2 �
mn,

��� m�x,
PV,m
2 �,�� n�x�,
PV,n

2 �� � �i�nS�x � x�,
PV,n
2 �
mn.

�2. 2. 42�

From the Eqs.(2.2.41)-Eqs.(2.2.42) one obtains

��x�,��x�� � i�n�0
N �nbn

2
�x � x�,�PV,n
2 �,

��x�,��x�� � �i�n�0
N �nсncnS�x � x�,
PV,n

2 �.
�2. 2. 43�

Assume now that



�n�0
N �nbn

2 � 0,�n�0
N �nbn

2�PV,n
2 � 0,�n�0

N �nсncn � 0,�n�0
N �nсncn
PV,n

2 � 0. �2. 2. 44�

From Eqs.(2.2.44) it follows directly that QFT with Lagrangian � �,�,���,��� is

finite
QFT with indefinite metric [7]. It meant that a "bad ghosts" with Pauli-Villars masses

�PV,n,

PV,n appears in Lagrangian as real quantum fields corresponding to real ghost

particles.
Remark 2.2.12.Thus we argue that UV divergence in fact arises from physically wrong
Lagrangian ���,�,���,���� in which Pauli-Villars ghosts �� are missing.
Remark 2.2.13.Note that "bad ghosts" represent general meaning of the word "ghost"

in
theoretical physics: states of negative norm [7] or fields with the wrong sign of the

kinetic
term, such as Pauli–Villars ghosts �� , whose existence allows the probabilities to be
negative thus violating unitarity.The quadratic lagrangian ���

2 for φ� begins with a wrong
sign kinetic term [in (� � � �) signature]

���
2 � � 1

2
�������� �. . . �2. 2. 45�

Remark 2.2.14.Note that in order to obtain Eqs.(2.2.34), the standard quantum fields
do

not need to couple alwais directly to the ghost sector. In this paper the ghost sector is
considered as real physical mechanism which acts on a function fPV��� in

Eqs.(2.2.34).It
means that there exist the ghost-driven acceleration of the univers hidden in

cosmological
constant �.
Remark 2.2.11.As pointed out in paper [12] even if the standard model fields have no
direct couplings to the ghost sector, they will indirectly interact with it through gravity,

and
the propagation of gravity through the ghost condensate gives rise to a fascinating
modification of gravity in the IR. However,no modifications of gravity can be seen
directly, and no cosmological experiment can distinguish the ghost-driven acceleration
from a cosmological constant.
Remark 2.2.12.In order to obtain desired physical result from Eqs.(2.2.35),i.e.,

�vac � 0. 7 � 10�29gcm�3 � 2. 8 � 10�47Gev4/�3c5 �2. 2. 45�

we assume that

fPV��� � fPV
s.m��� � fPV

g.m.��� � 0, �2. 2. 46�

where fs.m.��� corresponds to standard matter and where fg.m.��� corresponds to a
physical

ghost matter. Obviously Eq.(2.2.46) required tiny violation of the symmetry between
standard matter and ghost matter.
Remark 2.2.13.In additional we assume now that



|fPV���| �
O �eff

�n ,n � 1 m0 � � � �eff

0 � � �eff

�2. 2. 47�

where �eff 
 ��/c � p0.
For definiteness we have chosen now that

fPV��� �
O �eff

�n cos�,n � 1 m0 � � � �eff

0 � � �eff

�2. 2. 48�

where n � � and

p0
4 sin���eff� 
 p0

2, cos��eff � 1, �2. 2. 49�

where � � �.Note that

1
4

p0
4 �

0

�eff

fPV���d� �
�eff
�n

4�
p0

4 sin���eff� 

�eff
�n

4�
p0

2,

1
4

p0
2 �

0

�eff

fPV����2d� �

1
4�3 p0

2���2�2 sin���� � 2 sin���� � 2��cos�����|0
�eff � �

�eff
�n�1

2�2 p0
2,

lnp0 �
0

�eff

fPV����4d� �
lnp0

�5 �

��24 sin���� � 4�3�3 cos���� � 12�2�2 sin���� � �4�4 sin���� � 24��cos�����|0
�eff �

�
4�eff

�n�3

�2 lnp0.

�2. 2. 50�

From Eqs.(2.2.30)-(2.2.31) and Eqs.(2.2.50) one obtains

���eff,p0� � �
�eff
�n�1

2�2 p0
2 �

4�eff
�n�3

�2 lnp0 �2. 2. 50�

and

p��eff,p0� �
�eff
�n�1

6�2 p0
2 �

4�eff
�n�3

�2 lnp0. �2. 2. 51�

Remark 2.2.14.Note that from Eqs.(2.2.50)-(2.2.51) it follows

3p��eff,p0� � ���eff,p0� � �
8�eff

�n�3

�2 lnp0, �2. 2. 52�

and according to Friedman’s equations (2.1.6), it corresponds to an accelerated
expansion

of the cosmological medium.
Remark 2.2.15.Note that from Eq.(2.2.47) and Eqs.(2.2.33) it follows directly that



|p��eff�| � |���eff�| � 1
8 �

0

�eff

f����4�ln��d� � O �eff
�n�5 ln�eff . �2. 2. 53�

Remark 2.2.16.However the Eqs.(2.2.32) required in Zel’dovich paper [1] that is
mathematical abstraction, which arises from Pauli-Villars renormalization procedure

and
nothing more. The Eqs.(2.2.32) in fact demand the unphysical fine tuning of the mass
distribution fPV���,i.e.,

p0
4 �

0

�eff

fPV���d� � 0,p0
2 �

0

�eff

fPV����2d� � 0, �
0

�eff

fPV����4d� � 0. �2. 2. 54�

for any p0. Obviously the Eqs.(2.2.54) unstable relative to arbitrarily small
perturbations of

the mass distribution fPV���.
Remark 2.2.17.Note that:
(i) any Lorentz invariant theory of elementary particles breaks down under physical
conditions of the stability of the Eqs.(2.2.54) relative to arbitrarily small perturbations of
the mass distribution fPV��� because for Lorentz invariant theory the limit p�2 	 
 is
required (ii) in order to obtain physical model of the cosmological constant without fine
tuning fundamental high-energy cutoff ��is required.
Remark 2.2.18.In order to avoid these difficultnes mentioned above we assume that
(i) physics of elementary particles is separated into low/high energy ones,
(ii) the standard notion of smooth spacetime is assumed to be altered at a high energy
cutoff scale and a new treatment based on QFT in a fractal spacetime with negative
dimension is used above that scale
(iii) instead Eqs.(2.2.54) we assume now that

p0
4 �

0

�eff�p0 �

fPV���d� � 0,p�2 �
0

�eff�p0 �

fPV����2d� � 0, �
0

�eff�p0 �

fPV����4d� � 0. �2. 2. 54�

required by Eq.(2.2.16).

2.2.3. Problems from non-renormalizability of canonical
quantum gravity with Einstein-Hilbert action.

Remark 2.2.19.However serious problems arises from non-renormalizability of
canonical

quantum gravity with Einstein-Hilbert action

SEH � 1
16�G � d4x �g R. �2. 2. 55�

For example taking ��
3 particles of energy a per unit volume gives the gravitational

self-energy density of order ��
6 , i.e.,the density ��� diverges as ��

6

��� � G��
6 , �2. 2. 56�

where �� is a high-energy cutoff [5].
In order to avoid these difficulties we apply instead Einstein-Hilbert action (2.2.55) the

gravitational action which include terms quadratic in the curvature tensor



� � �� d4x �g ��R��R�� � 	R2 � 2��2R�, �2. 2. 57�

Remark 2.2.20.Gravitational actions (2.2.57) which include terms quadratic in the
curvature tensor are renormalizable [13]. The requirement that the graviton propagator
behave like p�4 for large momenta makes it necessary to choose the indefinite-metric
vector space over the negative-energy states.These negative-norm states cannot be
excluded from the physical sector of the vector space without destroying the unitarity

of
the S matrix, however, for their unphysical behavior may be restricted to arbitrarily

large
energy scales �� by an appropriate limitation on the renormalized masses m2 and m0.
Remark 2.2.21.We assum that m0c � �eff,m2c � �eff.
Remark 2.2.22.The canonical Quantum Field Theory is widely believed to break down

at
some fundamental high-energy cutoff �� and therefore the quantum fluctuations in the
vacuum can be treated classically seriously only up to this high-energy cutoff, see for
example [14]. In this paper we argue that Quantum Field Theory in fractal space-time

with
negative Hausdorff-Colombeau dimensions [15] gives high-energy cutoff on natural

way.

2.3.Dark matter nature. A common origin of the dark
energy

and dark matter phenomena.
Dark matter is a hypothetical form of matter that is thought to account for

approximately 85% of the matter in the universe, and about a quarter of its total energy
density. The majority of dark matter is thought to be non-baryonic in nature, possibly
being composed of some as-yet undiscovered subatomic particles.Its presence is
implied in a variety of astrophysical observations, including gravitational effects that
cannot be explained unless more matter is present than can be seen. For this reason,
most experts think dark matter to be ubiquitous in the universe and to have had a strong
influence on its structure and evolution. Dark matter is called dark because it does not
appear to interact with observable electromagnetic radiation, such as light, and is thus
invisible to the entire electromagnetic spectrum, making it extremely difficult to detect
using usual astronomical equipment



Fig.2.3.1.Dark matter map for a patch of sky

based on gravitational lensing analysis [18].

Fig.2.3.1.Analysis of a giant new galaxy survey, made with ESO’s VLT Survey
Telescope in Chile, suggests that dark matter may be less dense and more smoothly
distributed throughout space than previously thought. An international team used data
from the Kilo Degree Survey (KiDS) to study how the light from about 15 million distant
galaxies was affected by the gravitational influence of matter on the largest scales in the
Universe. The results appear to be in disagreement with earlier results from the Planck
satellite.

This map of dark matter in the Universe was obtained from data from the KiDS
survey, using the VLT Survey Telescope at ESO’s Paranal Observatory in Chile. It
reveals an expansive web of dense (light) and empty (dark) regions. This image is one
out of five patches of the sky observed by KiDS. Here the invisible dark matter is seen
rendered in pink, covering an area of sky around 420 times the size of the full moon.
This image reconstruction was made by analysing the light collected from over three
million distant galaxies more than 6 billion light-years away. The observed galaxy images
were warped by the gravitational pull of dark matter as the light travelled through the
Universe. Some small dark regions, with sharp boundaries, appear in this image. They
are the locations of bright stars and other nearby objects that get in the way of the
observations of more distant galaxies and are hence masked out in these maps as no
weak-lensing signal can be measured in these areas [16-17].

Fig.2.3.2.A simulation of the dark matter distribution

in the universe13.6 billion years ago.



Fig.2.3.3.Matter and energy distribution in

the universe today.The luminous (light-emitting)

components of the universe only comprise

about 0.4% of the total energy.

The remaining components are dark.

The luminous (light-emitting) components of the universe only comprise about 0.4% of
the total energy. The remaining components are dark. Of those, roughly 3.6% are
identified: cold gas and dust, neutrinos, and black holes. About 23% is dark matter, and
the overwhelming majority is some type of gravitationally self-repulsive dark energy.

Fig.2.3.4.Matter and energy distribution in

the universe 13.7 bullion years ago.

There is no candidate in the standard model of particle physics.In what way does dark
matter extend the standard model?

Remark 2.3.1.In order to explain physical nature of dark matter sector we assume that
main part of dark matter,i.e., � 23% � 4. 6% � 18% (see Fig.2.3.3) formed by
supermassive ghost particles vith masess such that mc2 � ��.
Remark 2.3.2.In order to obtain QFT description of the dark component of matter in
natural way we expand now the standard model of particle physics on a sector of

ghost
particles. QFT in a ghost sector developed in Sect.3.1-3.4 and Sect.4.1-4.8.

2.3.1.The Standard Model of fundamental interactions in
standard matter sector below fundamental high-energy cutoff ��.

Let’s remind that in the Standard Model (SM) of fundamental interactions besides the



gauge interactions and the quartic interaction of the Higgs fields there are also Yukawa
type interactions of the fermion fields with the Higgs field. These interactions are also
renormalizable and is characterized by the Yukawa coupling constants, one for each
fermion field. The peculiarity of the SM is that the masses of the fields appear as a result
of spontaneous symmetry breaking when the Higgs field develops a vacuum expectation
value. As a result the masses are not independent but are expressed via the coupling
constant multiplied by the vacuum expectation value. Another property of the Standard
Model is that it has the gauge group SUc�3� � SUL�2� � UY�1� which is spontaneously
broken to SUc�3� � UEM�1�. In the theories with spontaneously broken symmetry,
according to the Goldstone theorem there are massless particles, the goldstone bosons.
The Lagrangian of the Standard Model in standard matter sector consists of the
following three parts:

Ls.m. � Lgauge
s.m. � LYukawa

s.m. � LHiggs
s.m. , �2. 3. 1�

The gauge part is totally fixed by the requirement of the gauge invariance leaving only
the values of the couplings as free parameters

Lgauge
s.m. � � 1

4
G��

a G��
a � 1

4
W��

i W��
i � 1

4
B��B��

�iL���D�L� � iQ��
�D�Q� � iE���D�E�

�iU���D�U� � iD���D�D� � �D�H���D�H�,

�2. 3. 2�

where the following notation for the covariant derivatives is used

G��
a � ��G�

a � ��G�
a � gsfabcG�

bG�
c,W��

i � ��W�
i � ��W�

i � g� ijkW�
j W�

k,

B�� � ��B� � ��B�,D�L� � �� � i
g
2
� iW�

i � i
g�

2
B� L�,

D�E� � ��� � ig�B��E�,D�Q� � �� � i
g
2
� iW�

i � i
g�

6
B� � i

gs

2
�aG�

a Q�,

D�U� � �� � i 2
3

g�B� � i
gs

2
�aG�

a U�,D�D� � �� � i 1
3

g�B� � i
gs

2
�aG�

a D�.

�2. 3. 3�

The Yukawa part of the Lagrangian which is needed for the generation of the quark
and lepton masses is also chosen in the gauge invariant form and contains arbitrary
Yukawa couplings (we ignore the neutrino masses, for simplicity)

LYukawa
s.m.

� y�	
L L�E	H � y�	

D Q�D	H � y�	
U Q�U	H� � h.c. , �2. 3. 4�

where H� � i�2H�.At last the Higgs part of the Lagrangian contains the Higgs potential
which is chosen in such a way that the Higgs field acquires the vacuum expectation
value and the potential itself is stable

LHiggs
s.m.

� �V � m2H�H � �
2
�H�H�2. �2. 3. 5�

Here there are two arbitrary parameters: m2 and �. The ghost fields and the gauge
fixing terms are omitted.The Lagrangian of the SM contains the following set of free
parameters:

(1) 3 gauge couplings gs,g,g�, (2) 3 Yukawa matrices y�	
L ,y�	

D ,y�	
U ,

(3) Higgs coupling constant �, (4) Higgs mass parameter m2,
(4) the number of the matter fields (generations).
All particles obtain their masses due to spontaneous breaking of the SUleft�2�



symmetry group via a nonzero vacuum expectation value (v.e.v.) of the Higgs field

� H ��
v

0
, v � m

�
. �2. 3. 6�

As a result, the gauge group of the SM is spontaneously broken down to

SUc�3� � SUL�2� � UY�1� � SUc�3� � UEM�1�. �2. 3. 7�

The physical weak intermediate bosons are linear combinations of the gauge ones

W�
� �

W�
1 � iW�

2

2
, Z� � � sin�WB� � cos�WW�

3 �2. 3. 8�

with masses

mW � 1
2

gv, mZ � mW

cos�W
, tan�W �

g�

g , �2. 3. 9�

while the photon field

�� � cos�WB� � sin�WW�
3 �2. 3. 10�

remains massless. The matter fields acquire masses proportional to the corresponding
Yukawa couplings:

M�	
u � y�	

u v, M�	
d � y�	

d v, M�	
l � y�	

l v, mH � 2 m. �2. 3. 11�

The mass matrices have to be diagonalized to get the quark and lepton masses. The
explicit mass terms in the Lagrangian are forbidden because they are not SUleft�2�
symmetric. They would destroy the gauge invariance and, hence, the renormalizability of
the Standard Model. To preserve the gauge invariance we use the mechanism of
spontaneous symmetry breaking which, as was explained above, allows one to get the
renormalizable theory with massive fields.

The Feynman rules in the SM include the ones for QED and QCD with additional new
vertices corresponding to the SU�2� group and the Yukawa interaction, as well as the
vertices with goldstone particles if one works in the renormalizable gauge. We will not
write them down due to their complexity, though the general form is obvious.

Let us consider now the one-loop divergent diagrams in the SM. Besides the familiar
diagrams in QED and QCD discussed below in section IV.5 one has the diagrams
presented in Fig.2.3.5. The diagrams containing the goldstone bosons are omitted. The
calculation of these diagrams is similar to what we have done below in section IV.5.
Therefore, we show only the results for the renormalization constants of the fields and
the coupling constants. They have the form (for the gauge fields we use the Feynman
gauge)



Fig.2.3.5.

Fig.2.3.5.Some divergent one-loop diagrams in the SM. The dotted line denotes the
Higgs

field, the solid line - the quark and lepton fields, and the wavy line - the gauge fields
Remark 2.3.3.In standard sector the renormalization constants of the fields and the
coupling constants reads (see Sect.IV.1-IV.8):



Z2QL��,g����,g���,gs���� �

1 � 1
�

1
16�2

1
36

g�2��� � 3
4

g2��� � 4
3

gs
2��� � 1

2
yU

2 � 1
2

yD
2 ,

Z2uR��,g����,gs���� � 1 � 1
�

1
16�2

4
9

g�2��� � 4
3

gs
2��� � yU

2 ,

Z2dR��,g����,gs���� � 1 � 1
�

1
16�2

1
9

g�2��� � 4
3

gs
2��� � yD

2 ,

Z2LL��, ,g����,g���� � 1 � 1
�

1
16�2 �

1
4

g�2��� � 3
4

g2��� � 1
2

yL
2�,

Z2eR��� � 1 � 1
�

1
16�2 �g

�2��� � yL
2 �,

Z2H��,g����,g���� � 1 � 1
�

1
16�2

1
2

g�2��� � 3
2

g2��� � 3yU
2 � 3yD

2 � yL
2 ,

Z3B��,g����� � 1 � 1
�

1
16�2

20
9

NF � 1
6

NH g�2��� U�1�Y boson

Z3A��,e���� � 1 � 1
�

1
16�2 3 � 32

9
NF e2��� photon

Z3W��,g���� � 1 � 1
�

1
16�2

10
3
� 1

3
�NF � 3NF� � 1

6
NH g2���,

Z3G��,gs���� � 1 � 1
�

1
16�2 5 � 4

3
NF gs

2���,

Zg3
2��,gs���� � 1 � 1

�
1

16�2 ��11 � 4
3

NF�gs
2���,

Zg2
2��,g���� � 1 � 1

�
1

16�2 � 22
3

� 4
3

NF � 1
6

NH g2���,

Zg�2��,g����� � 1 � 1
�

1
16�2

20
9

NF � 1
6

NH g�2���,

ZyU
2 ��,g����,g���,gs���� �

1 � 1
�

1
16�2 � 17

12
g�2��� � 9

4
g2��� � 8gs

2��� � 9
2

yU
2 � 3

2
yD

2 � yL
2 ,

ZyD
2 ��,g����,g���,gs���� �

1 � 1
�

1
16�2 � 5

12
g�2��� � 9

4
g2��� � 8gs

2��� � 3
2

yU
2 � 9

2
yD

2 � yL
2 ,

ZyL
2 ��,g����,g���� �

1 � 1
�

1
16�2 � 15

4
g�2��� � 9

4
g2��� � 9

4 yL
2 � 3yU

2 � 3yD
2 ,

Z���,g����,g���,����� �

1 � 1
�

1
16�2 � 3

2
g�2��� � 9

2
g2��� � 2�3yU

2 � 3yD
2 � yL

2� � 6����

�2�3yU
4 � 3yD

4 � yL
4� � ��1��� �

3
8

g�4��� � 9
8

g4��� � 3
4

g2���g�2��� � ��1��� ,

�2. 3. 12�

where, for simplicity, we ignored the mixing between the generations and assumed the
Since the masses of all the particles are equal to the product of the gauge or Yukawa
couplings and the vacuum expectation value of the Higgs field, in the minimal
subtraction scheme the mass ratios are renormalized the same way as the ratio of
couplings. To find the renormalization of the mass itself, one should know how the v.e.v.
is renormalized or find explicitly the mass counter-term from Feynman diagrams. In this



case, one has also to take into account the tad-pole diagrams shown in Fig.2.3.5,
including the diagrams with goldstone bosons. For illustration we present the
renormalization constant of the b-quark mass in the SM

Zmb��,g����,g���,����� �

1 � 1
�

1
16�2 � l

yl
4

����
� 3�q

yq
4

����
� 3

2
���� � 3

4
�yb

2 � yt
2�

� 3
16

�g2��� � g�2����2

�
� 3

8
g4���
����

� 3Qb�Qb � Tb
3�g�2��� � 4gs

2��� .

�2. 3. 13�

The result for the t-quark can be obtained by replacing b by t. For the light quarks the
Yukawa constants are very small and can be ignored in Eq.(2.3.15).

Remark 2.3.4.In the standard sector the bare Lagrangian reads

Ls.m.Bare � Lgauge
s.m.Bare � LYukawa

s.m.Bare � LHiggs
s.m.Bare, �2. 3. 14�

with renormalization constants of the fields,coupling constants (2.3.12) and masess
(2.3.13) satisfies the following conditions: (see Sect.IV.1-IV.8)

0 � Z2QL
s.m. ��,g����,g���,gs����, 0 � Z2uR

s.m.��,g����,gs����, 0 � Z2dR
s.m.��,g����,gs����,

0 � Z2LL
s.m.��, ,g����,g����, 0 � Z2H

s.m.��,g�����, 0 � Z3B
s.m.��,g�����, 0 � Z3A

s.m.��,e����,

0 � Z3W
s.m.��,g����, 0 � Z3G

s.m.��,gs����, 0 � Zg3
2

s.m.��,gs����, 0 � Zg2
2

s.m.��,g����,

0 � Zg�2
s.m.��,g�����, 0 � ZyU

2
s.m.��,g����,g����,gs����, 0 � ZyD

2
s.m.��,g����,g���,gs����,

0 � ZyL
2

s.m.��,g����,g����, 0 � Z�
s.m.��,g����,g���,�����, 0 � Zmb

s.m.��,g����,g���,�����,

etc.,

�2. 3. 15�

for some � � �0, 1�, see Sec.4.1-4.8.

2.3.2.The Standard Model of fundamental interactions in a ghost
matter sector below fundamental high-energy cutoff ��.

In the extendended Standard Model of fundamental interactions besides the gauge
interactions and the quartic interaction of the Higgs ghost fields there are also Yukawa
type interactions of the fermion ghost fields with the Higgs ghost field. These interactions
are also renormalizable and is characterized by the Yukawa coupling constants, one for
each fermion field. Another property of the Standard Model is that it has the gauge group
SUc�3� � SUL�2� � UY�1� which is spontaneously broken to SUc�3� � UEM�1�. In the
theories with spontaneously broken symmetry, according to the Goldstone theorem
there are massless particles, the goldstone ghost bosons.

The Lagrangian of the extendended Standard Model in a ghost sector consists of the
following three parts:

Lg.s. � Lgauge
g.s. � LYukawa

g.s. � LHiggs
g.s. , �2. 3. 16�

The Lagrangian (2.3.16) is obtained from the Lagrangian (2.3.1) of the Standard Model
as corresponding bare Lagrangian with the renormalization constants of the fields and
the coupling constants given by Eq.(2.3.12).

Lg.s. � Lgauge
Bare � LYukawa

Bare � LHiggs
Bare , �2. 3. 17�

The gauge part is totally fixed by the requirement of the gauge invariance leaving only
the values of the couplings as free parameters



Lg.s. � Lgauge
Bare � � 1

4
Ğ��

a Ğ��
a � 1

4
W� ��

i W� ��
i � 1

4
B� ��B� ��

�iL� ���D� �L� � � iQ� ��
�D� �Q� � � iĔ���D� �Ĕ�

�iŬ���D� �Ŭ� � iD� ���D� �D� � � �D� �H� ���D� �H� �,

�2. 3. 18�

where we abraviate Ğ��
a ,W� ��

i ,B� ��,L� �,Q� �,Ĕ�,Ŭ�,H� for a short instead
G��

a,Bare,W��
i,Bare,B��

Bare, . . . , HBare and where the following notations for the covariant
derivatives are used
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�2. 3. 19�

The Yukawa part of the Lagrangian in a ghost sector, which is needed for the
generation of the ghost quark and ghost lepton masses is also chosen in the gauge
invariant form and contains arbitrary Yukawa couplings (we ignore the neutrino masses,
for simplicity)

LYukawa
Bare � y�	

L L� �Ĕ	H� � y�	
D Q� �D� 	H� � y�	

U Q� �Ŭ	H � h.c. , �2. 3. 20�

where H� � i�2H� �.At last the ghost Higgs part of the Lagrangian contains the Higgs
potential which is chosen in such a way that the ghost Higgs field acquires the vacuum
expectation value and the potential itself is stable

LHiggs
Bare � �VBare � m� 2H� �H� � ��

2
�H� �H� �2. �2. 3. 21�

Here there are two bare parameters m� �
2,�� �.

The Lagrangian of the SM in a ghost sector contains the following set of the bare
parameters:
(1) 3 gauge couplings ğs,ğ,ğ�, (2) 3 Yukawa matrices y�	

L ,y�	
D ,y�	

U ,

(3) Higgs coupling constant �� , (4) ghost Higgs mass parameter m� 2,
(4) the number of the ghost matter fields (generations).
All particles obtain their masses due to spontaneous breaking of the SUleft�2�

symmetry group via a nonzero vacuum expectation value (v.e.v.) of the Higgs field

� H� ��
v�

0
, v� � m�

��
. �2. 3. 22�

As a result, the gauge group is spontaneously broken down to

SUc�3� � SUL�2� � UY�1� � SUc�3� � UEM�1�. �2. 3. 23�

The physical weak intermediate bosons are linear combinations of the gauge ones



W� �
�Bare �

W� �
1Bare � iW� �

2Bare

2
, Z� �Bare � � sin�W� B� �Bare � cos�W� W� �

3Bare �2. 3. 24�

with masses

m� W� � 1
2
ğv, m� Z� �

m� W�

cos�W�
, tan�W� �

ğ�

ğ
, �2. 3. 25�

while the ghost photon field

�� � � cos�W� B� � � sin�W� W� �
3 �2. 3. 26�

remains massless. The matter fields acquire masses proportional to the corresponding
Yukawa couplings:

M� �	
u � y�	

u v�, M� �	
d � y�	

d v�, M� �	
l � y�	

l v�, m� H� � 2 m� . �2. 3. 27�

Remark 2.3.5.In a ghost standard sector the bare Lagrangian reads

Lg.m.Bare � Lgauge
g.m.Bare � LYukawa

g.m.Bare � LHiggs
g.m.Bare, �2. 3. 28�

with renormalization constants of the fields,coupling constants (2.3.12) and masess
(2.3.13) satisfies the following conditions: (see Sect.IV.1-IV.8)

Z2QL

g.m.��,g����,g���,gs���� � 0,Z2uR

g.m.��,g����,gs���� � 0,

Z2dR

g.m.��,g����,gs���� � 0,

Z2LL

g.m.��, ,g����,g���� � 0,Z2H
g.m.��,g����� � 0,Z3B

g.m.��,g����� � 0,

Z3A
g.m.��,e���� � 0,

Z3W
g.m.��,g���� � 0,Z3G

g.m.��,gs���� � 0,Zg3
2

g.m.��,gs���� � 0,

Zg2
2

g.m.��,g���� � 0,

Zg�2
g.m.��,g����� � 0,ZyU

2
g.m.��,g����,g����,gs���� � 0,

ZyD
2

g.m.��,g����,g���,gs���� � 0,

ZyL
2

g.m.��,g����,g���� � 0,Z�
g.m.��,g����,g���,����� � 0,

Zmb
g.m.��,g����,g���,����� � 0,

etc.,

�2. 3. 29�

for some � � �0, 1�.
Remind that vacuum energy density for free scalar quantum field with a wrong statistic

is:

���� � � 1
2

1
�2���3 �0



4�c p2 � �2 p2dp � K� �

0



p2 � �2 p2dp � K�I���, �2. 3. 30�

where � � m0c.From the basic definitions [1]:

p � Txx,p��� � � 1
2

1
�2���3 �0



uxpx4�p2dp, u � cp

p2 � �2
,uxpx � 1

3
�u, p�

one obtains

p��� � K�

3 �0


 p4dp

p2 � �2
� K�F���. �2. 3. 32�

Remark 2.3.6.Note that the integral in RHS of the Eq.(2.3.30) and in the Eq.(2.3.32)



divergent and ultraviolet cutoff is needed.
Thus in accordance with [1] we set

���,p0� � K�I��,p0�,p��,p0� � K�F��,p0�, �2. 3. 33�

where

I��,p0� � �
0

p0

p2 � �2 p2dp,F��,p0� � �
0

p0 p4dp

p2 � �2
, �2. 3. 34�

where p0 � ��/c.For fermionic quantum field with a wrong statistic, similarly one
obtains

���,p0� � �4K�I��,p0�,p��� � �4K�F��,p0�. �2. 3. 35�

Thus from Eqs.(2.3.33)-(2.3.35) by using formally Pauli-Villars regularization [7],[8] and
regularization by high-energy cutoff the expression for free vacuum energy density �
reads

� ��
i�0

2M

f i I�� i ,p0� �2. 3. 36�

and the expression for pressure p reads

p ��
i�0

2M

f iF�� i ,p0�. �2. 3. 37�

Here � i is a finite positive sequence � i � ��, i � 1, 2, . . . , 2M and f i is a finite sequence
f i � �, f i � 1, i � 1, 2, . . . , 2M.

Definition 2.3.1.We define now discrete distribution fPV : �� 	 � by formula

fPV�� i � � f i , �2. 3. 38�

and we will call it as a full discrete Pauli-Villars masses distribution.
Remark 2.3.7.We assum now that in Eqs.(2.3.36)-(2.3.37): (i) the quantities
� i

s.m � � i , i � 1, 2, . . . ,M is a masses of a physical particles corresponding to standard
matter and (ii) the quantities � i

g.m � � i , i � M � 1, 2, . . . , 2M is a masses of ghost
particles

with a wrong kinetic term and wrong statistics corresponding to a physical dark matter.
Remark 2.3.8.We recall that the Euler-Maclaurin summation formula reads

�
i�1

2M
g��1 � �i � 1�h� � �

�1

�2M

f���d� � A1�g��2M� � g��1�� �

A2h�g���2M� � g���1�� � O�h2�,

f��� � 1
h

g���

�2. 3. 39�

Let g��� be an appropriate continuous function such that: (i) g�� i � � f i , i � 1, 2, . . . , 2M,
(ii) g���2M� � 0,g���1� � 0.
Thus from Eqs.(2.3.36)-(2.3.37) and Eqs.(2.3.39) we obtain

� ��
i�0

2M

f i I�� i ,p0� �

�
�1

�2M

f���I��,p0�d� � A1h�f��2M�I��2M,p0� � f��1�I��1,p0�� � O�h2�

�2. 3. 40�



and

p ��
i�0

2M

f iF�� i ,p0� �

�
�1

�2M

f���F��,p0�d� � A1h�f��2M�F��2M,p0� � f��1�F��1,p0�� � O�h2�.

�2. 3. 41�

Definition 2.3.2.We will call the function f��� as a full continuous Pauli-Villars masses
distribution.

Definition 2.3.3.We define now: (i) discrete distribution fPV
b.g.m : �� 	 � by formula

fPV
b.g.m�� i

s.m� � f i , i � 1, 2, . . . ,M �2. 3. 42�

and we will call it as discrete Pauli-Villars masses distribution of the bosonic ghost
matter

and

(ii) discrete distribution fPV
f.g.m : �� 	 � by formula

fPV
f.g.m�� i � � f i , i � M � 1, 2, . . . , 2M �2. 3. 43�

and we will call it as discrete Pauli-Villars masses distribution of the fermionic ghost
matter.
Remark 2.3.9.We rewrite now the Eqs.(2.3.36)-(2.3.37) in the following equivalent

form

� ��
i�1

M

fPV
b.g.m�� i

s.m�I � i
b.g.m,p0 � �

j�i ��M�1

2M

fPV
f.g.m � j�i �

f.g.m I � j�i �
f.g.m,p0 �2. 3. 44�

and

p ��
i�1

M

fPV
b.g.m � i

b.g.m F � i
b.g.m,p0 � �

j�i ��M�1

2M

fPV
f.g.m � j�i �

f.g.m F � j�i �
f.g.m,p0 , �2. 3. 45�

where j�i� � i � M, i � 1 � 1, 2, . . . ,M.
Remark 2.3.10.We assume now that:(i) � i

b.g.m � � j�i �
f.g.m,

(ii) fPV
b.g.m � i

b.g.m � fPV
f.g.m � j�i �

f.g.m 
 1, i.e.,

fPV
b.g.m � i

b.g.m � �fPV
f.g.m � j�i �

f.g.m . �2. 3. 46�

Note that Eq.(2.3.46) meant highly symmetric discrete Pauli-Villars masses
distribution

between bosonic ghost matter and fermionic ghost matter above that scale ��

Thus from Eqs.(2.3.44)-(2.3.45) and Eqs.(2.3.46) we obtain

� ��
i�1

M

fPV
b.g.m � i

b.g.m I � i
b.g.m,p0 � �

j�i ��M�1

2M

fPV
f.g.m � j�i �

f.g.m I � j�i �
f.g.m,p0 �

�
i�1

M

fPV
b.g.m � i

b.g.m � fPV
f.g.m � j�i �

f.g.m I�� i ,p0�

�2. 3. 47�

and



p ��
i�1

M

fPV
b.g.m � i

b.g.m F � i
b.g.m,p0 � �

j�i ��M�1

2M

fPV
f.g.m � j�i �

f.g.m F � j�i �
f.g.m,p0 �

�
i�1

M

fPV
b.g.m � i

b.g.m � fPV
f.g.m � j�i �

f.g.m F�� i ,p0�.

�2. 3. 48�

From Eqs.(2.3.47)-(2.3.48) and Eqs.(2.3.39) finally we obtain

� ��
i�1

M

fPV
b.g.m � i

b.g.m � fPV
f.g.m � j�i �

f.g.m I�� i ,p0� �

�
�1

�eff

fPV
b.g.m��� � fPV

f.g.m��� I��,p0�d�

�2. 2. 49�

and

p ��
i�1

M

fPV
b.g.m�� i

s.m� � fPV
f.g.m � j�i �

f.g.m F�� i ,p0� �

�
�1

�eff

fPV
b.g.m��� � fPV

f.g.m��� F��,p0�d�,

�2. 3. 50�

where obviously

fPV
b.g.m��� � fPV

f.g.m��� � fPV
g.m.��� � 0. �2. 3. 51�

Thus finally we obtain

�g.m. �eff
�1�,�eff

�2�,p0 � �
�eff
�1�

�eff
�2�

fPV
g.m.���I��,p0�d�, �2. 3. 52�

and

pg.m. �eff
�1�,�eff

�2�,p0 � �
�eff
�1�

�eff
�2�

fPV
g.m.���F��,p0�d�, �2. 3. 53�

where �eff
�1�,�eff

�2� � p0. In order to calculate �g.m. �eff
�1�,�eff

�2�,p0 and pg.m. �eff
�1�,�eff

�2�,p0 let us

evaluate now the following quantities defined above by Eqs.(2.3.34)

I��,p0� � �
0

p0

p2 p2 � �2 dp � �
0

p0

�p2 1 �
p2

�2 dp �2. 3. 54�

and

F��,p0� � 1
3 �

0

p0

p4dp

p2 � �2
� 1

3 �
0

p0

p4��1dp

1 �
p2

�2

, �2. 3. 55�

where p0/� 
 1.Note that



1 �
p2

�2 � 1 � 1
2

p2

�2 �
1
8

p4

�4 � 1
16

p6

�6 �. . . .

p2 p2 � �2 � p2� 1 �
p2

�2 � p2� 1 � 1
2

p2

�2 �
1
8

p4

�4 � 1
16

p6

�6 �. . . . �

p2� � 1
2

p4

� � 1
8

p6

�3 � 1
16

p8

�5 �. . . .

�2. 3. 56�

By inserting Eq.(2.3.56) into Eq.(2.3.54) one obtains

I��,p0� � �
0

p0

p2� � 1
2

p4

� � 1
8

p6

�3 � 1
16

p8

�5 �. . . . dp �

1
3

p0
3� � 1

10
p0

5

� � 1
7 	 8

p0
7

�3 � 1
9 	 16

p0
9

�5 �. . . .

�2. 3. 56�

Note that

1 �
p2

�2

�1/2

� 1 � 1
2

p2

�2 � 3
8

p4

�4 �. . .

p4��1 1 �
p2

�2

�1/2

�
p4

� � 1
2

p6

�3 � 3
8

p8

�5 �. . .

�2. 3. 57�

By inserting Eq.(2.3.57) into Eq.(2.3.55) one obtains

F��,p0� � 1
3 �

0

p0

p4��1dp

1 �
p2

�2

� 1
3 �

0

p0

p4

� � 1
2

p6

�3 � 3
8

p8

�5 �. . . dp �

p0
5

3 	 5�
� 1

2 	 3 	 7
p0

7

�3 � 1
8 	 9

p0
9

�5 �. . .

�2. 3. 58�

By inserting Eq.(2.3.56) into Eq.(2.3.52) one obtains

�g.m. �eff
�1�,�eff

�2�,p0 � �
�eff
�1�

�eff
�2�

fPV
g.m.���I��,p0�d� �

�
�eff
�1�

�eff
�2�

fPV
g.m.��� 1

3
p0

3� � 1
10

p0
5

� � 1
7 	 8

p0
7

�3 � 1
9 	 16

p0
9

�5 �. . . . d� �

p0
3

3 ��eff
�1�

�eff
�2�

fPV
g.m.����d� �

p0
5

10 ��eff
�1�

�eff
�2�

fPV
g.m.���d�

� � p0
7

7 	 8 ��eff
�1�

�eff
�2�

fPV
g.m.���d�

�3 �. . . .

�2. 3. 59�

By inserting Eq.(2.3.58) into Eq.(2.3.52) one obtains



pg.m. �eff
�1�,�eff

�2�,p0 � �
�eff
�1�

�eff
�2�

fPV
g.m.���F��,p0�d� �

�
�eff
�1�

�eff
�2�

fPV
g.m.���

p0
5

3 	 5�
� 1

2 	 3 	 7
p0

7

�3 � 1
8 	 9

p0
9

�5 �. . . d� �

p0
5

3 	 5 ��eff
�1�

�eff
�2�

fPV
g.m.���d�

� � p0
7

2 	 3 	 7 ��eff
�1�

�eff
�2�

fPV
g.m.���d�

�3 �
p0

9

8 	 9 ��eff
�1�

�eff
�2�

fPV
g.m.���d�

�5 �. . .

�2. 3. 53�

Remark 2.3.11.We assume now that

fPV
g.m.��� �

O �eff
�1� �n

,n � 7 �eff
�1� � � � �eff

�2�

0 � � �eff
�2�

�2. 3. 60�

Note that under assumption (2.3.60) the quantities �g.m. �eff
�1�,�eff

�2�,p0 and

pg.m. �eff
�1�,�eff

�2�,p0 can not contribute in the value of the cosmological constant.

3. Pauli-Villars ghosts as physical dark matter.

3.1.Pauli–Villars renormalization of the ��4 field
theory.What is wrong with Pauli-Villars renormalization of
the ��4.New physical interpretation Pauli–Villars ghost
fields.

Before explaining the role of PV ghosts,etc.as physical dark matter remind the idea of
PV renormalization as a conventional UV renormalization.We consider, as an example,
the scalar field theory with the interaction ��4. Lagrangian density of this theory reads

� � 1
2
������ �

m0
2

2
�2 � ��4. �3. 1. 1�

This theory requires UV renormalization (e.g. in (2�1) and (3�1) dimensions). Let us
show that it is sufficient to introduce N extra fields with large mass playing the role of the
regularization parameter. Lagrangian density can be rewritten as follows

� ��
i�0

N
��1� i 1

2
������ �

mi
2

2
� i

2 � � : �4 :,

� � �0 � �� � � i�0
N � i ,�� � � i�1

N ai� i .
�3. 1. 2�

Here the symbol ”::” means that in perturbation theory we drop Feynman diagrams with
loops containing only one vertex. The �0 is usual field with mass m0 and the
� i , i � 1, . . . ,N is the extra field with mass mi , i � 1, . . . ,N. It can be shown that in
(3�1)-dimensional theory the introduction of one PV field is sufficient for the ultraviolet
regularization of perturbation theory in �. One can show that momentum space
Feynman diagrams in the original theory with Lagrangian density (2.1.1) diverge no
more than quadratically [19]-[20] (beside of vacuum diagrams) shown in Fig.3.1.1.



Fig.3.1.1.One-loop massive vacuum diagram.

If we consider now Feynman diagrams in the theory with Lagrangian density (3.1.2)
we see that propagators of fields �0 and �� sum up in corresponding diagrams so that we
obtain the following expression which plays the role of regularized propagator


�k2� ��
j�0

N aj

k2 � mj
2 � i0

� 1
k2 � m0

2 � i0
��

j�1

N aj

k2 � mj
2 � i0

, �3. 1. 3�

where k2 � k0
2 � k1

2 � k2
2 � k3

2. Integral corresponding to vacuum diagram is

� � � d4k
�2��4 
�k

2� � � d4k
�2��4 � j�0

N aj

k2 � mj
2 � i0

. �3. 1. 4�

To do this integral, since it is convergent, we can Wick rotate.
Remark 3.1.1. All the integrals in quantum field theory are written in Minkowski space,

however, the ultraviolet divergence appears for large values of modulus of momentum
and it is useful to regularize it in Euclidean space [20].Transition to Euclidean space can
be achieved by replacing the zeroth component of momentum k0 	 ik4, so that the
squares of all momenta and the scalar products change the sign k2 � k0

2 � k�2

	 �k4
2 � k�2 � �kE

2 and the measure of integration becomes equal to d4k 	 id4kE, where
the integration over the fourth component of momenta goes along the imaginary axis. To
go to the integration along the real axis, one has to perform the (Wick) rotation of the
integration contour by 90� (see.Fig.3.1.2). This is possible since the integral over the big
circle vanishes and during the transformation of the contour it does not cross the poles.

Fig.3.1.2.The Wick rotation of the integration contour.

Then we get
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�E � i
8�2 �0



dkE�

j�0

N ajkE
3

kE
2 � mj

2 . �3. 1. 5�

To do this integral, since it is convergent, we can dealing with regularized integral

���,�� � i
8�2 ��

�
dkE�

j�0

N ajkE
3

kE
2 � mj

2 , �3. 1. 6�

where � � 0,� � 
, i.e. ���,�� � �E.We assume now that Pauli-Villars conditions given
by Eqs.(2.2.39) holds.Let us consider now the quantity

�� � ����,�� � i
8�2 ��

�
dkE�

j�0

N ajkE
3

kE
2 � �mj

2 , �3. 1. 7�

where � � �0, 1�,and therefore from Eq.(3.1.7) we obtain

�� |��0 � i
8�2 ��

�
dkE�

j�0

N
ajkE � i

8�2 � j�0

N
aj �

�

�
kEdkE � 0, �3. 1. 8�

since Eqs.(2.2.39) holds.From Eq.(3.1.7) by differentiation we obtain

d
d�

�� � i
8�2 ��

�
dkE�

j�0

N ajmj
2kE

3

�kE
2 � �mj

2�2 , �3. 1. 9�

and therefore from Eq.(3.1.9) by using Eq.(2.2.39) we obtain

d
d�

��
��0

� i
8�2 ��

�
dkE�

j�0

N ajmj
2kE

3

�kE
2 � �mj

2�2

��0

�

� i
8�2 � j�0

N
ajmj

2 �
�

�
kE
�1dkE � 0,

�3. 1. 10�

since Eqs.(2.2.39) holds.From Eq.(3.1.9) by differentiation we obtain

d2

d�2 �� ��
j�0

N
� j��� � i

4�2 ��
�

dkE�
j�0

N ajmj
4kE

3

�kE
2 � �mj

2�3 ,

� j��� �
ia jmj

4

4�2 ��
�

dkE
kE

3

�kE
2 � �mj

2�3 .

�3. 1. 11�

Note that

� j��� �
ia jmj

4

4�2 �0



dkE

kE
3

�kE
2 � �mj

2�3 �
ia jmj

4

4�2
�i

4�mj
2 �

ajmj
2

16�2�
. �3. 1. 12�

Thus

d
d�

�� ��
j�0

N �
0

1
� j���d� ��

j�0

N ajmj
2

16�2 ln� �3. 1. 13�

and

�� ��
j�0

N ajmj
2

16�2 �� ln� � ��, �3. 1. 14�

Therefore

���,�� � �� |��1 � ��
j�0

N ajmj
2

16�2 � 0, �3. 1. 15�

since Eqs.(2.2.39) holds.Thus integral (3.1.4) corresponding to vacuum diagram by



using Pauli-Villars renormalization identically equal zero,i.e.

RenPV��� � � d4k
�2��4 
�k

2� � � d4k
�2��4 � j�0

N aj

k2 � mj
2 � i0

� 0. �3. 1. 16�

Let us consider now how this method works in the case of the simplest scalar diagram
shown in Fig.3.1.3. The corresponding Feinman integral has the form

Fig.3.1.3

��p2� � 1
�2��4 � d4k

�k2 � m0
2 � i0���p2 � k2� � m0

2 � i0�
. �3. 1. 17�

Regularized Feinman integral (3.1.17) reads

�reg�p2� � 1
�2��4 �� j�0

N ajd4k

�k2 � mj
2 � i0���p2 � k2� � mj

2 � i0�
, �3. 1. 18�

where N � 1.To do this integral, since it is convergent, we can Wick rotate [20]. Then we
get

�reg�p2� � i
�2��4 �� j�0

N ajd4k

�k2 � mj
2���p2 � k2� � mj

2 �
. �3. 1. 19�

The integral (3.1.19) can be written as

�reg�p2� � i
�2��4 �

0

1

dx��
j�0

N ajd4k

�k2 � p2x�1 � x� � mj
2 �2 �

i
8�2 �

0

1

dx��
j�0

N ajkE
3 dkE

�kE
2 � p2x�1 � x� � mj

2 �2 .

�3. 1. 20�

To do this integral, since it is convergent, we can dealing with regularized integral

�reg�p2,�,�� � i
8�2 �

0

1

dx�
�

�

�
j�0

N ajkE
3 dkE

�kE
2 � p2x�1 � x� � mj

2 �2 . �3. 1. 21�

Let us consider now the quantity

���p2,�,�� � i
8�2 �

0

1

dx�
�

�

�
j�0

N ajkE
3 dkE

�kE
2 � p2x�1 � x� � �mj

2 �2 . �3. 1. 22�

where � � �0, 1�,and therefore from Eq.(3.1.22) we obtain �0�p2,�,�� � 0,since
Eqs.(2.2.39) holds.From Eq.(3.1.22) by differentiation we obtain



d
d�

���p2,�,�� �

� i
4�2 �

0

1

dx�
�

�

�
j�0

N ajmj
2kE

3 dkE

�kE
2 � p2x�1 � x� � �mj

2 �3 �

� i
4�2 � j�0

N
ajmj

2� j�p2,�,�,��,

� j�p2,�,�,�� � �
0

1

dx� kE
3 dkE

�kE
2 � p2x�1 � x� � �mj

2 �3 � 1
4 �

0

1

dx
p2x�1 � x� � �mj

2 .

�3. 1. 23�

From Eq.(3.1.23) we obtain

d
d�

���p2,�,�� � � i
4�2 � j�0

N
ajmj

2� j�p2,�,�,�� �

� i
16�2 � j�0

N
aj �

0

1

dx
mj
�2p2x�1 � x� � �

.
�3. 1. 24�

From Eq.(2.1.24) we obtain

�reg�p2� � � i
16�2 � j�0

N
aj �

0

1

dx�
0

1
d�

mj
�2p2x�1 � x� � �

. �3. 1. 25�

Note that

�
0

1
d�

mj
�2p2x�1 � x� � �

�

�mj
�2p2x�1 � x� � �� ln�mj

�2p2x�1 � x� � ��|
0

1 � 1 �

�mj
�2p2x�1 � x� � 1� ln�mj

�2p2x�1 � x� � 1� �

��mj
�2p2x�1 � x�� ln�mj

�2p2x�1 � x�� � 1.

�3. 1. 26�

Thus



�reg�p2� � � i
16�2 � j�0

N�1
aj �

0

1

dx�
0

1
d�

mj
�2p2x�1 � x� � �

�

� i
16�2 � j�0

N�1
aj �

0

1

dx��mj
�2p2x�1 � x� � 1� ln�mj

�2p2x�1 � x� � 1� �

��mj
�2p2x�1 � x�� ln�mj

�2p2x�1 � x��� � i
16�2 � j�0

N�1
aj �

� i
16�2 � j�0

N�1
aj �

0

1

dx��mj
�2p2x�1 � x� � 1� ln�mj

�2p2x�1 � x� � 1� �

��mj
�2p2x�1 � x�� ln�mj

�2p2x�1 � x��� �

� i
16�2 �

0

1

dx��m0
�2p2x�1 � x� � 1� ln�m0

�2p2x�1 � x� � 1� �

��m0
�2p2x�1 � x�� ln�m0

�2p2x�1 � x��� �

� i
16�2 �

0

1

dx��m1
�2p2x�1 � x� � 1� ln�m1

�2p2x�1 � x� � 1� �

��m1
�2p2x�1 � x�� ln�m1

�2p2x�1 � x���.

�3. 1. 27�

From Eq.(3.1.27) we obtain

�reg�p2,m0,m1� �

� i
16�2 �

0

1

dx��m0
�2p2x�1 � x� � 1� ln�m0

�2p2x�1 � x� � 1� �

��m0
�2p2x�1 � x�� ln�m0

�2p2x�1 � x��� �

� i
16�2 �

0

1

dx��m1
�2p2x�1 � x� � 1� ln�m1

�2p2x�1 � x� � 1� �

��m1
�2p2x�1 � x�� ln�m1

�2p2x�1 � x���.

�3. 1. 28�

We assume now that m1
�2p2 
 1 and from Eq.(3.1.28) finally we obtain

�reg�p2,m0,m1� �

� i
16�2 �

0

1

dx��m0
�2p2x�1 � x� � 1� ln�m0

�2p2x�1 � x� � 1� �

��m0
�2p2x�1 � x�� ln�m0

�2p2x�1 � x��� � O�m1
�2p2�.

�3. 1. 29�

Remark 3.1.2.Note that by taking the limit: limm1	
�reg�p2,m0,m1� from Eq.(3.1.28)
one

obtains instead Eq.(3.1.29) the following purely formal result:



�reg�p2,m0� � limm1	
�reg�p2,m0,m1� �

� i
16�2 �

0

1

dx��m0
�2p2x�1 � x� � 1� ln�m0

�2p2x�1 � x� � 1� �

��m0
�2p2x�1 � x�� ln�m0

�2p2x�1 � x���.

�3. 1. 30�

However this result completely wrong and mathematically is not sound!!!
Remark 3.1.3.Note that in the limit: mi 	 
, i � 1, . . ,N the expansions

ai

k2 � mi
2 � iϵ

� ai

k2 � iϵ
1

1 � mi
2

k2 � iϵ

� ai

k2 � iϵ
�

1 �
mi

2

k2 � iϵ
�

mi
4

k2 � iϵ
2 �. . . �

ai

k2 � iϵ
�

aimi
2

k2 � iϵ
2 �

aimi
4

k2 � iϵ
3 �. . . ,

�3. 1. 31�

obviously breaks down (see Remark 2.2.8) and therefore the Eq.(3.1.32) is not holds


�k2, ,m0,m1, . . . ,mN� �

�
i�0

N ai

k2 � iϵ
��

i�0

N aimi
2

k2 � iϵ
2 ��

i�0

N
O 1

k2 � iϵ
3 .

�3. 1. 32�

But therefore the Eq.(3.1.29) also is not holds and Pauli–Villars procedure completely
breaks down.
Remark 3.1.4.It follows from consideration above that we cannot deleted from final

result
Pauli–Villars masses mi , i � 1, . . . ,N which appeas in Lagrangian density (3.1.1).
Remark 3.1.5. Note that one can dealing instead regularized integral (3.1.21) with the
following Colombeau integral

��reg�p2,�,
��� � i
8�2 �

0

1

dx�
�

1/

�

j�0

N ajkE
3 dkE

�kE
2 � p2x�1 � x� � mj

2 �2




, �3. 1. 32�


 � �0, 1�,see [21]-[26].

3.2.Pauli–Villars renormalization of QED3.What is wrong
with Pauli–Villars renormalization of QED3.New physical
interpretation Pauli–Villars ghost fields.

3.2.1.Pauli–Villars renormalization of QED3.What is wrong
with Pauli–Villars renormalization of QED3.

Let us consider now the conditions that must be required on the masses and coupling
constants of the regulator fields such that a regularized closed fermion loop in 2 � 1
dimensions is rendered finite in the calculations.Thus corresponding Feynman integral is
proportional to



���p,m�d3p �

� d3p
Tr���1�m� p� ���2�m� p� � k� 1�. . .��n�m� p� �. . .�k� n�1��

�m2 � p2 � i�� m2 � �p � k1�2 � i� . . . m2 � �p � kn�1�2 � i�
,

�3. 2. 1�

so,for large |p|,its integrand behaves like |p|�n, whereas for n � 4 the integral (3.2.1)

diverges as �
0


 p2dp
pn ~ �

0


 dp

pn_2 .We apply now the momentum �-cutoff regularization |p| � �

and have to replaced ill defined formal expression (3.2.1) by the well defined Integral

���k1, . . . ,kn�1,m� � �
�
��p,m�d3p �

�
|p|��

d3p
Tr���1�m� p� ���2�m� p� � k� 1�. . .��n�m� p� �. . .�k� n�1��

�m2 � p2 � i�� m2 � �p � k1�2 � i� . . . m2 � �p � kn�1�2 � i�
.

�3. 2. 2�

Remark 3.2.1.Note that �-cutoff regularization meant lattice QED3 on a lattice at
length

scales a � ��1.However quantity �� behaves as � �
�

p�n�2dpand therefore gives

unphysical result which strictly depends on parametr �.
Remark 3.2.2.In order obtain physical result we apply now Pauli–Villars

renormalization.
The integrand ��p,m� in (3.2.2) can be written as

��p,m� � �k
mkan�k � p��n�k�. �3. 2. 3�

Therefore, in making the canonical substitution ��p,m� 	 � i�0
ns ci��p,M i � where

M i
2/|p|2 
 1, �3. 2. 4�

and where ns is the number of auxiliary spinor fields, we must impose in the vacuum
polarization case (n � 2) the following conditions

�a�� i�0
ns ci � 0, �b�� i�0

ns ciM i � 0. �3. 2. 5�

in order to eliminate the linear and logarithmic divergences, respectively. Let us calculate
of the vacuum polarization tensor in spinor QED3. In the standard notation, the
regularized expression for the vacuum polarization tensor reads

�
��

M
�k,�� � ie2

�2��3 � i�0
ns ci �

�
d3p

P�M i �
�M i

2 � p1
2��M i

2 � p2
2�

, �3. 2. 6�

where c0 � 1,M0 � m,M i � m� i , i � 1, . . . ,nf,p1,2 � p � 1
2 k and

P�M i � � Tr����p� 1 � M i ����p� 2 � M i �� �

2�M i
2g�� � p1�p2� � p1�p2� � g���p1 	 p2� � iM i����k� �.

�3. 2. 7�

We choose now both the electron mass and that of the auxiliary field M1 to be positive.
Using now the canonical Feynman parametrization ��M i

2 � p1
2��M i

2 � p2
2���1 �

�
0

1
d��M i

2 � p1
2 � �p2

2 � p1
2����1and performing the momentum shift p� 	 p��1/2 � ��k� we

obtain



���
M �k,�� � g�� �

k�k�

k2 �1
M�k2,�� � im����k��2

M�k2,�� � �3
M�k2,��, �3. 2. 8�

where

�1
M�k2,�� � 4ie2k2� i�0

ns ci �
0

1
d���1 � �� �

�

d3p

�2��3
1

�Qi
2��� � p2�2 ,

�2
M�k2,�� � � 2ie2

m � i�0
ns ci �

0

1
d� �

�

d3p

�2��3
1

�Qi
2��� � p2�2 ,

�3
M�k2,�� � 2

3
ie2g��� i�0

ns ci I i,�
�1� � I i,�

�2� ,

I i,�
�1� � 3 �

0

1
d� �

�

d3p

�2��3
1

�Qi
2��� � p2�

, I i
�2� � 2 �

0

1
d� �

�

d3p

�2��3
1

�Qi
2��� � p2�2 ,

Qi
2��� � M i

2 � ��1 � ��k2.

�3. 2. 9�

If we carry out the momentum integrations in Eqs.(3.2.9), it is straightforward to arrive at
�3

M�k2� � 0, as expected by gauge invariance.Let us take now
c1 � � � 1,c2 � ��,cj�0, j � 2, where the parameter � can assume any real value except
zero and unity, so that condition given by Eq.(3.2.5.a) is satisfied.From Eqs.(3.2.9) for
instance we find for a sufficiently large value of the parametr � :

�2
M�k2,�� �

e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
� e2

4�m �0

1
d�

�� � 1�M1

�M1
2 � ��1 � ��k2 �1/2

�

� e2

4�m �0

1
d� �M2

�M2
2 � ��1 � ��k2 �1/2

� e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
�

�1�M1,�� � �2�M2,��,

�3. 2. 10�

where

�1�M1,�� � e2

4�m �0

1
d�

�� � 1�M1

�M1
2 � ��1 � ��k2 �1/2

,

�2�M2,�� � � e2

4�m �0

1
d� �M2

�M2
2 � ��1 � ��k2 �1/2

.
�3. 2. 11�

Note that for M1,M2 � m from Eq.(3.2.5.b) follows that M2 � M1�1 � ��1� and therefore
from Eq.(3.2.11) for k2/M1 
 1 we obtain

�1�M1,�� � e2

4�m �0

1
d�

�� � 1�

1 � ��1 � �� k
M1

2 1/2
�

�
e2�� � 1�

4�m
� e2

4�m
�� � 1�

2
k

M1

2

�
0

1
d���1 � �� � O k4

M1
4

�3. 2. 12�

and



�2�M2,�� � � e2

4�m �0

1
d�

��sign�1 � ��1��

1 � ��1 � �� k
M2

2 1/2
�

� �
e2��sign�1 � ��1��

4�m
�

�
e2��sign�1 � ��1��

8�m
k

M1�1 � ��1�

2

�
0

1
d���1 � ��

�O k4

M1
4�1 � ��1�4 .

�3. 2. 13�

From Eq.(3.2.8) and Eq.(3.2.10)-(3.2.13) we obtain

�2
M�k2,�� �

e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
�

e2�� � 1�
4�m

�
e2��sign�1 � ��1��

4�m
�

� e2

4�m
�� � 1�

2
k

M1

2

�
0

1
d���1 � �� �

�
e2��sign�1 � ��1��

8�m
k

M1�1 � ��1�

2

�
0

1
d���1 � �� � O k4

M1
4 .

�3. 2. 14�

For � � 1/2 we obtain

�2
M�k2,�� �

e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
� 1

2
e2

4�m
� 1

2
e2

4�m
�

� e2

16�m
k

M1

2

�
0

1
d���1 � �� �

� e2

16�m
k

M1

2

�
0

1
d���1 � �� � O k4

M1
4 �

�3. 2. 15�

For instance for k � 0 and � � 1/2 one obtains

�2
M�0� � e2

4�m
. �3. 2. 16�

Remark 3.2.3.Note that when using canonical QFT in order to recover the original
theory

without physical ghost matterthe absolute values of the coefficients � i ultimately alwais
go

to infinity � i 	 
. However under limit: � i 	 
 the inequality (3.2.4) is not holds and
therefore Pauli–Villars procedure completely breaks down!

3.2.2.New physical interpretation Pauli–Villars ghost fields.
Remark 3.2.4.These PV-renormalizable models with finite mases mi , i � 1, . . . ,N,

which
we have considered in this section many years regarded only as constructs for a study

of
the ultraviolet problem of QFT. The difficulties with unitarity appear to preclude their



direct
acceptability as canonical physical theories in locally Minkowski space-time. However,

for
their unphysical behavior may be restricted to arbitrarily large energy scales ��

mentioned above by an appropriate limitation on the finite masses mi such that

m 
 mi � ��, i � 1, . . . ,N. �3. 2. 17�

Remark 3.2.5.We have aplied now the Colombeau approach [21]-[26] and replaced ill
defined formal expression (3.2.1) by well defined Colombeau generalized function

[21]-
[26]:

����k1, . . . ,kn�1,m��� � �
�1/�

1/�
��p,k1, . . . ,kn�1,m�d3p

�
�

�
0

1/�
d3p

Tr���1�m� p� ���2�m� p� � k� 1�. . .��n�m� p� �. . .�k� n�1��

�m2 � p2 � i�� m2 � �p � k1�2 � i� . . . m2 � �p � kn�1�2 � i�
,

�3. 2. 18�

where � � �0, 1�.
Remark 3.2.6.Note that �����k1, . . . ,kn�1,m��� � � G��4�n�1�� and for any (n-1)-tuple

�k1, . . . ,kn�1� obviously ����k1, . . . ,kn�1,m��
�
� � (see [23]) and any

����k1, . . . ,kn�1,m��
�

are infinite large Colombeau generalized numbers [23],[26].

Remark 3.2.7.The integrand ��p,k1, . . . ,kn�1,m� in (3.2.18) for any m � �mi,��� � � can
be

written as

��p,k1, . . . ,kn�1,mi,�� �

Pn�p� � mi,�Pn�1�p� � mi,�
2 Pn�2�p� �. . .�mi,�

n

P2n�p� � mi,�
2 Pn�2�p� �. . .�mi,�

2n ,
�3. 2. 19�

where Pi�p� stands for a polynomial of degree i in the components of p. We can write
the

denominator of ��p,k1, . . . ,kn�1,mi,�� in the following form

Pn�2�p� 1 � mi,�
2 P2n�2�p�

P2n�p�
�. . .�mi,�

2n 1
P2n�p�

�3. 2. 20�

and, for sufficiently large p � p��� � mi,�, i � 0, 1, . . . ,ns and for any � � �0, 1� perform
the

expansions

1 � mi,�
2 P2n�2�p�

P2n�p�
�. . .�mi,�

2n 1
P2n�p�

�1

�

1 � mi,�
2 P2n�2�p�

P2n�p�
�. . .�mi,�

2n 1
P2n�p�

� mi
2 P2n�2�p�

P2n�p�
�. . .�mi

2n 1
P2n�p�

2

�. . .

�3. 2. 21�

so that the integrand ��p,k1, . . . ,kn�1,mi,�� behaves like



��p,k1, . . . ,kn�1,mi,�� �
Pn�p�
P2n�p�

� mi,�
Pn�1�p�
P2n�p�

�

�mi,
2 Pn�p�

P2n�p�
Pn�2�p�
Pn�p�

� P2n�2�p�
P2n�p�

� mi,�
3 Pn�1�p�

P2n�p�
Pn�3�p�
Pn�1�p�

� P2n�2�p�
P2n�p�

�

� �k
mi,�

k p��n�k�.

�3. 2. 22�

Therefore, in making the substitution in Colombeau integral (3.2.18)

��p,k1, . . . ,kn�1,m� 	 � i�0
ns ��p,k1, . . . ,kn�1,mi,��, �3. 2. 23�

where �m0,��� � m � � for any � � �0, 1� and where ns is the number of auxiliary spinor
fields, we obtain

����k1, . . . ,kn�1,m��� 	 ����k1, . . . ,kn�1,�mi,�� i�0
ns ���, �3. 2. 24�

where

����k1, . . . ,kn�1,�mi� i�0
ns ��� �

� � i�0
ns ci����k1, . . . ,kn�1,mi,���� � � i�0

ns �
�1/�

1/�
��p,k1, . . . ,kn�1,mi,��d3p

�
�

�
0

1/�
��p,k1, . . . ,kn�1,m0�d3p

�
� �

�1/�

1/�
� i�1

ns ��p,k1, . . . ,kn�1,mi,��d3p
�

�3. 2. 25�

Remark 3.2.8.Note that Colombeau integral ����k1, . . . ,kn�1,�mi� i�0
ns ��

�
for any

(n-1)-tuple
�k1, . . . ,kn�1� is infinite large Colombeau generalized number, however we can impose

the
following conditions:

�a�� i�0
ns ci � 0, �b�� i�0

ns ci�mi,��� � 0, . . . ,� i�0
ns ci�mi,�

q �� � 0,

c0 � 1, �m0,��� � m � �,
�3. 2. 26�

in order to eliminate the infinite large Colombeau generalized quantities � �ln��1��,

���1��, . . . , ���q�, respectively from Colombeau integral (3.2.25),i.e., make it finite in
canonical sense.
Using now the canonical Feynman parametrization in the following Colombeau form

��M i,�
2 � p1

2��M i,�
2 � p2

2���1

�
� �

0

1
d��M i,�

2 � p1
2 � �p2

2 � p1
2����1

�
�3. 2. 27�

and performing the momentum shift p� 	 p��1/2 � ��k� we obtain instead Eq.(3.2.8)

����
M �k,���� � g�� �

k�k�

k2 ��1
M�k2,���� � im����k���2

M�k2,���� � ��3
M�k2,����, �3. 2. 28�

where



��1
M�k2,���� � 4ie2k2� i�0

ns ci �
0

1
d���1 � �� �

�1/�

1/� d3p

�2��3
1

�Qi,�
2 ��� � p2�2

�

,

��2
M�k2,���� � � 2ie2

m � i�0
ns ci �

0

1
d� �

�1/�

1/� d3p

�2��3
1

�Qi,�
2 ��� � p2�2

�

,

��3
M�k2,���� � 2

3
ie2g��� i�0

ns ci I i,�
�1�

�
� I i,�

�2�

�
,

I i,�
�1�

�
� 3 �

0

1
d� �

�1/�

1/� d3p

�2��3
1

�Qi,�
2 ��� � p2� �

,

I i,�
�2�

�
� 2 �

0

1
d� �

�1/�

1/� d3p

�2��3
1

�Qi,�
2 ��� � p2�2

�

,

�Qi,�
2 ����� � �M i,�

2 �� � ��1 � ��k
2.
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Carry out the momentum integrations in Eqs.(3.2.29), it is straightforward to arrive at
��3

M�k2,���� � 0,as expected by gauge invariance.Let us take now c1 � � � 1,c2 � ��,

cj�0, j � 2, where the parameter � can assume any real value except zero and unity, so
that condition given by Eq.(3.2.26.a) is satisfied.From Eqs.(3.2.29) for instance we find

��2
M�k2,���� ��

e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
� e2

4�m �
0

1
d�

�� � 1�M1,�

�M1,�
2 � ��1 � ��k2 �1/2

�

�

� e2

4�m �
0

1
d� �M2,�

�M2,�
2 � ��1 � ��k2 �1/2

�

� e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
�

��1�M1,�,���� � ��2�M2,�,����,

�3. 2. 30�

where

��1�M1,�,���� ��
e2

4�m �
0

1
d�

�� � 1�M1,�

�M1,�
2 � ��1 � ��k2 �1/2

�

,

��2�M2,�,���� ��
� e2

4�m �
0

1
d� �M2,�

�M2,�
2 � ��1 � ��k2 �1/2

�

.
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If we chose now infinite large Pauli-Villars masses �M1,��� � �, �M2,��� � �\� we obtain

��1�M1,�,���� ��

e2

4�m �
0

1
d��� � 1� 1 � ��1 � �� k

M1,�

2 �1/2

�

�
�

e2�� � 1�
4�m

�3. 2. 32�

and



��2�M2,���� ��

� e2

4�m �
0

1
d���sign�1 � ��1�� 1 � ��1 � �� k

M2,�

2 �1/2

�

�
�

�
�
�

e2��sign�1 � ��1��
4�m

.
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From Eq.(3.2.30) and Eq.(3.2.32)-(3.2.33) we obtain canonical result

ren��2
M�k2�� � ��2

M�k2,���� ��

e2

4� �
0

1 d�

�m2 � ��1 � ��k2 �1/2
�

e2�� � 1�
4�m

�
e2��sign�1 � ��1��

4�m
� �.
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Remark 3.2.9.Note that in order to obtain finite physical result (3.2.33) using infinite

large Pauli-Villars masses �M1,���, �M2,��� � �\� mentioned above, one needs write
down

a Pauli-Villars Lagrangian density for QED3, which works for instance at the 1-loop
level,

as

��ren
PV����� � � 1

4
�F��,�

2 �� �

�� i�� � eA� � � eA�,�
gh � m ��

�
� 1

4
F��,�

gh

�

2
� 1

2
M1,�A�,�

gh

�

2
�

��
gh i�� � eA� � � eA�,�

gh � M2,� ��
gh

�
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with A�,�
gh

�
the ghost photon and ��

gh

�
the ghost electron and

F��,�
gh

�
� ��A�,�

gh

�
�

��A�,�
gh

�
. We assume in (3.2.35) that both the ghost photon and ghost electron have

bosonic statistics and the ghost photon has a wrong-sign kinetic term,
Remark 3.2.10.In contast with canonical interpetation of the renormalization constant

as
formal infinite quantities, in this paper we argue that only finite physical quantity can
appears in physical Pauli-Villars Lagrangian density and therefore Pauli-Villars

masses
�M1,���, �M2,���can be choosen arbitraly large but finite. Thus true physical result is

given
by Eq.(3.2.15).

3.3.High covariant derivatives renormalization as
Pauli–Villars renormalization of non-Abelian gauge
theories.New physical interpretation.

The standard approach to regularization of non-Abelian gauge theories is dimensional
regularization but this of course is inherently perturbative [27]. However, the ordinary PV
renormalization of non-Abelian theories fails. Gauge invariance is violated, is blocking



any hope of BRST invariance, which confounds proofs of renormalizability.
Remark 3.3.1.Note that the existence of interesting non-perturbative phenomena in

gauge
theories requires the introduction of a non-perturbative regularization. Discretization of
space-time leads in a natural way to lattice regularizations which preserve gauge
invariance and have a non-perturbative meaning. The construction of a

non-perturbative
gauge invariant regularization of gauge theories in a continuum space-time has been

a
challenging problem in gauge theories. A natural candidate has always been a gauge
invariant generalization of Pauli-Villars methods involving high derivatives in the

action.
Recall that the euclidean action of Yang-Mills theory is given by

S�A� � 1
g2 � d4xF��

a Fa
��, �3. 3. 1�

where F��
a � ��A�

a � ��A�
a � f abcA�

bA�
c is a strength of the gauge field A�

a.Recall that the
high covariant derivatives method proposed in papers [28]-[30] proceeds by two steps.
The Yang-Mills action is replaced by its regularized version

S�A,��� � 1
g2 � d4xF��

a ��I � 
���
�2�n�a� �

a��Fa
��, �3. 3. 2�

where 
� � �
��a�� �
a� � �Da�

2a
� �
� � 2�fa�c

a F� �
c� is the covariant differential operator given in

terms of the covariant derivative D�b
a � ��
b

a � fbc
a A�

c and λ � � is an arbitrary real
constant.Then the partition function for the regularized action in α0–gauge reads

Z�A,��� �

��
x

D�A�x��det���D��exp �S�A,��� � 1
2α0
� d4x��A�

a�I � �2��
�2�n��A�

a . �3. 3. 3�

In this way, provided n 	 2, all 1PI diagrams with more than one loop acquire a
negative degree of divergence by power counting.However, the degree of divergence of
one-loop 1PI diagrams is unchanged by the addition of covariant derivatives.Therefore
the theory is not completely regularized by the simple fact of adding higher covariant
derivatives to the action as for the case of scalar field theories,however, that due to the
regular behaviour of the gluonic propagator the contributions in the effective action to the
ghost two point function and gluon-ghost vertex are finite at one loop. This implies that
one loop divergences exclusively arise in diagrams with only external gluon lines, and
are given by the following product of determinants

Zdiv � det����D��det�1/2���, �3. 3. 4�

where

det�1/2��� � ��
x

D�q�x��exp � 1
2

d4xd4yq�
a�x�


2S�A,���

A�

a�x�
A�
b�y�

q�
b�y� �

� 1
2α0
� d4x��q�

a�I � �2��
�2�n��q�

a

�3. 3. 5�

Since Faddeev-Popov ghost fields only get finite renormalizations at one loop, the



divergences of Z can be written in a gauge invariant way.Recall that one loop
divergences of Yang-Mills theory Zdiv are formally equal to those of [28]

Zdiv � det����D��det�1/2��0
L�, �3. 3. 6�

with

det�1/2��0
L� �

��
x

D�q�x��
�D�q�x��exp � 1
2

d4xd4yq�
a�x�


2S�A,���

A�

a�x�
A�
b�y�

q�
b�y� �3. 3. 7�

Remark 3.3.2.Note that the that all the determinants in (3.3.6) are explicitly gauge
invariant. This fact can be understood as a consequence of the absence of divergent
radiative corrections to the interaction of Faddeev-Popov ghost fields, which also implies
that the BRST symmetry is only renormalized by finite radiative corrections.

Remark 3.3.3.Note that gauge invariance is not lost when we add mass terms in
(3.3.6).

Then, it seems natural to use these determinants as the Pauli-Villars counterterms
that

subtract divergences at one loop in a gauge invariant way. This is the Slavnov
approach

introduced in Ref.[28] where the Slavnov introduced the following Pauli-Villars
regulator

det�1/2��m� � det���
2m2 � D2�det�1/2��m

L � �3. 3. 8�

with

det�1/2��m� �

��
x

D�q�x��
�D�q�x��exp � 1
2

d4xd4yq�
a�x�


2S�A,���

A�

a�x�
A�
b�y�

q�
b�y� �

� 1
2

m2��
2 � d4xq2�x�.

�3. 3. 9�

The regularized partition function reads [28]

Z�A,��� �

��
x

D�A�x��exp �S�A,��� � 1
2α0
� d4x��A�

a�I � �2��
�2�n��A�

a �

det����D���
j

det�sj /2��mj �.

�3. 3. 10�

is, then, free of divergences at one loop provided the sj parameters are chosen so that

1 �� j
sj � 0. �3. 3. 11�

Remark 2.2.4.Note that Pauli-Villars conditions do not involve the masses as it is
usually

the case. This is due to gauge invariance and the high derivative terms in the action
that

make finite the terms depending on m.



The problem is that Pauli-Villars determinants det�1/2��m� do not converge formally to
a

constant, as they should, when the cutoff is removed. In fact, we have that [31]

��	

lim det�1/2��m� � ��

x

D�q�x��
�D�q�x��exp � 1
2 � d4xq2�x� . �3. 3. 12�

that depends on A through the delta functional 
�D�q�x��.These difficulties mentioned
above has been resolved in paper [31].

3.4.Pauli–Villars renormalization of QED4via Colombeau
generalized functions.What is the physical significance of
Pauli-Villars renormalization?

The regularization method of Pauli–Villars (PV) subtraction is of long standing in
quantum field theory.In the more common dimensional regularization the properties of
for instance the Dirac algebra are dimension dependent (and in particular the treatment
of γ5 is not unambiguous), and hence problems may arise in the study of chiral
phenomena.

Recall that Pauli-Villars regularization requires that for each particle of mass m a new
ghost particle of mass MPV be added with either the wrong statistics or the wrong-sign
kinetic term. These new particles are designed to cancel exactly loop amplitudes with
physical particles at asymptotically large loop momentum. For example, one can write
down a Pauli-Villars Lagrangian for QED4, which works at the 1-loop level, as

�ren
PV � � 1

4
F��

2 � � i�� � eA� � eA�
gh � m � � 1

4
F��

gh 2
� 1

2
M1,PV

2 A�
gh 2

�

� i�� � eA� � eA�
gh � M2,PV

2 �
�3. 4. 1�

with A�
gh the ghost photon and �gh the ghost electron and F��

gh � ��A�
gh � ��A�

gh. We
assume that both the ghost photon and ghost electron have bosonic statistics; the ghost
photon has a wrong-sign kinetic term.For example, �ren

PV leads to a Feynman-gauge
ghost-photon propagator of the form

0 T A�
gh�x�,A�

gh�y� 0 � � d4p

�2��4 exp�ip�x � y��
ig��

p2 � MPV
2 � i�

. �3. 4. 2�

Remark 3.4.1.(i) Since this has the opposite sign from the photon propagator, it will
cancel the photon’s contribution, for example, to the electron self-energy loop for loop
momenta k� � M. The ghost electron propagator is the same as the regular electron
propagator; however, ghost electron loops do not get a factor of �1 (since they are
bosonic) and therefore cancel regular electron loops when k� � MPV.
(ii) At the end of the calculation the limit MPV 	 
 is implied.
For example from Eq.(3.2.13) by taking the limit MPV 	 
 we get the canonical result
independent on Pauli-Villars mas MPV :

�2�k2� � limMPV	
�2
MPV�k2� �

e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
�

e2�� � 1�
4�m

�
e2��sign�1 � ��1��

4�m
.

�3. 4. 3�

Remark 3.4.2.The sign of the residue of the propagator is normally dictated by



unitarity -
a particle whose propagator has the sign in Eq.(2.3.2) has negative norm, and would
generate probabilities greater than 1.So, A�

gh cannot create or destroy physical on-shell
particles. Thus, fields such as A�

gh are said to be associated with Pauli-Villars ghosts.
Remark 3.4.3.Indeed, the introduction of Pauli-Villars ghosts is much more clearly a
deformation in the UV, relevant at energy scales � of order the Pauli-Villars mass MPV

or
larger, than analytically continuing to 4 � � dimensions.
Remark 3.4.4.In order to avoid difficulties with unitarity mentioned above, we assume
that:(i) physics of elementary particles is separated into low/high energy ones,
(ii) the standard notion of smooth spacetime is assumed to be altered at a high energy
cutoff scale and a new treatment based on QFT in a fractal spacetime with negative
dimension is used above that energy scale �� � MPV � m
(iii) at the end of the calculation the limit MPV 	 
 is not implied.For example instead
Eq.(3.4.3) we set

�2�k2� � �2
MPV�k2� �

e2

4�m �0

1
d� m

�m2 � ��1 � ��k2 �1/2
�

e2�� � 1�
4�m

�
e2��sign�1 � ��1��

4�m
�

� e2

4�m
�� � 1�

2
k

MPV

2

�
0

1
d���1 � �� �

�
e2��sign�1 � ��1��

8�m
k

MPV�1 � ��1�

2

�
0

1
d���1 � �� � O k4

MPV
4 .
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In N. N. Bogoliubov handbook [8] Pauli–Villars renormalization of QED4 is considered.

Fig.3.4.1.

The term of the scattering matrix corresponding to the diagram of Fig.3.4.1a) reads
[8]:

�e2 : ��x��nSc�x � y��nDc
0�x � y���y� :�

�i : ��x���x � y���y� :
�3. 4. 5�

where

��x � y� � �ie2�nSc�x � y��nDc
0�x � y�. �3. 4. 6�

The formal Fourier transform ��p� of the operator (3.4.6) reads



��p� � e2

i�2��4 � dkD� c
0�k��n



S

c
�p � k��n �

e2

i�2��4 � d4k
k2 � i�

�n

p �



k � m

�p � k�2 � m2 � i�
�n,

��x � y� � 1
�2��4 � exp��ip�x � y����p�d4p,

�3. 4. 7�

where

Dc
0�x � y� � � 1

�2��4 �
d4kexp��ip�x � y��

k2 � i�

S�	
c �x � y� � 1

�2��4 �
d4k �m� 
p��	 exp��ip�x � y��

m2 � p2 � i�

�3. 4. 8�

So that the integrand in (3.4.7) behaves like |k|�3 the integral (3.4.7) diverges.
Remark 3.4.5.In fact, the causal Green function (3.4.8) of the QED4 is the classical
Schwartz distribution which is defined on a test smooth functions. It has the δ-function

like
singularities and needs an additional definition for the product of several such

functions at
a single point.The discussed above diagram (see Fig.3.4.1) is precisely this product.
Remark 3.4.6.In his handbook [8] N. N. Bogoliubov argue that a problem of the

ultraviolet
divergences arises exactly from the Schwartz Impossibility Theorem [32].In fact
N. N.Bogoliubov argue that these problems has only purely mathematical

nature.However
this Bogoliubov statement completely wrong but holds from Bogoliubov time until
nowodays.
Remark 3.4.7.In particular N. N. Bogoliubov wroted [8]: "We thus see that the purely
formal rules for dealing with products of causal functions, which we adopted earlier,

lead
to a meaningless result in this case.This is essentially a manifestation of the fact that

we
did not define the product of singular functions as an integrable singular function. In

order
to solve the problem of determining the coefficients of the chronological product
T���x1�����x2�� as integrable improper functions, we use the method of transition to

the
limit similar to that used in §18 (see [8],§18). In order to do this, we first consider an
auxiliary fictitious case in which the field operator functions satisfy commutation

relations
in which the causal 
c-functions are replaced by reg�
c�."
Remark 3.4.8.Recall that classical Schwartz distribution is defined as linear

functionals
on a test smooth functions [32]. Schwartz distributions may be multiplied by real

numbers



and added together, so they form a real vector space. Schwartz distributions may also
be

multiplied by infinitely differentiable functions, but it is not possible to define a product
of

general distributions that extends the usual pointwise product of functions and has the
same algebraic properties. This result was shown by Schwartz (1954), and is usually
referred to as the Schwartz Impossibility Theorem [32].
Remark 3.4.9.Note that:(i) by using linear homomorphism (a) Dc

0�x2� 	 Dc
0�x2;�� �

Dc
0�x2 � i�� and (b) S�	

c �x2� 	 S�	
c �x2;�� � S�	

c �x2 � i��
adapted to the Lorentz invariance of the Schwartz distributions Dc

0�x2� and S�	
c �x2�

we can embed these distributions into Colombeau algebra G��x
4� :

Dc
0�x2� � �Dc

0�x2;������0,1� � G��x
4�,

S�	
c �x2� � �S�	

c �x2;���
���0,1�

� G��x
4�.

�3. 4. 9�

Remark 3.4.10. Note that in contrast with Schwartz distributions Dc
0�x2� and S�	

c �x2�
Colombeau distributions �Dc

0�x2;���� and �S�	
c �x2;���

�
on the light cone are well

defined

in the sense of Colombeau generalized numbers,i.e., �Dc
0�0;����, �S�	

c �0;���
�
� �.

Thus there is no any mathematical problems for dealing with products and convolution
of

Colombeau causal generalized functions �Dc
0�x2;���� and �S�	

c �x2;���
�
.

We rewrite now the Eqs.(3.4.8) in the following equivalent form by using Colombeau
integration

�Dc
0�x � y;���� �

� 1
�2��4 ��1/�

1/�
dk�0� �

�1/�

1/�
dk�1� �

�1/�

1/�
dk�2� �

�1/�

1/�
dk�3�

exp��ip�x � y��
k2 � i� �

�

� 1
�2��4 ��1/�

1/� d4kexp��ip�x � y��
k2 � i� �

,

�3. 4. 10�

and

�S�	
c �x � y;���

�
� 1

�2��4 �

�
�1/�

1/�
dk�0� �

�1/�

1/�
dk�1� �

�1/�

1/�
dk�2� �

�1/�

1/�
dk�3�

�m� 
p��	 exp��ip�x � y��

m2 � p2 � i�
�

� 1
�2��4 �

�1/�

1/� d4k �m� 
p��	 exp��ip�x � y��

m2 � p2 � i�
�

.

�3. 4. 11�

Therefore term of the scattering matrix corresponding to the diagram of Fig.3.4.1a)
reads:

�e2 : ��x��n��Sc�x � y;���� ��
n��Dc

0�x � y;���� ���y� :�

�i : ��x�����x � y;���� ���y� :
�3. 4. 11�



where

���x � y;����� � �ie2�n��Sc�x � y;���� ��n��Dc
0�x � y;���� �. �3. 4. 12�

From Eqs.(3.4.10)-(3.4.11) and Eq.(3.4.12) we find that

���x � y;���� � 1
�2��4 ��1/�

1/�
exp��ip�x � y����p;��d4p

�
, �3. 4. 13�

where

��p;��
�
� e2

i�2��4 ��1/�

1/�
dkD� c

0�k;���n


S

c
�p � k;�� �n

�
�

e2

i�2��4 �
�1/�

1/� d4k
k2 � i�

�n

p �



k � m

�p � k�2 � m2 � i�
�n

�

,
�3. 4. 14�

Note that in contrast with ill defined formal expressions (3.4.7) the expressions
(3.4.14) gives a well defined Colombeau generalized functions: ���x � y;���� � G��4�

and ��p;��
�
� G��p

4�.Note that for any p � �p
4 obviously ��p;��

�
� � and any

��p;��
�
is infinite large Colombeau generalized number [26].In order to eliminate the

infinite large Colombeau generalized quantities � �ln��1��, ��
�1��, respectively from

Colombeau integral (3.4.14),i.e., make it finite, we apply Pauli–Villars renormalization via
Colombeau generalized functions,see sect.3.2. Finally we get

ren ��p;��
�

�

e2

8�2 �
0

1

d��2m� 
p�� ln m2

m2 � �p2

�MPV
2 � �1 � ��m2 � ��1 � ��p2

��MPV
2 � �2�1 � ��p2 �

�

e2

8�2 �
0

1

d��2m� 
p�� ln m2

m2 � �p2 � O
p2

MPV
2 .

�3. 4. 15�

where MPV � �� is arbitraly large but finite Pauli–Villars mass.
Remark 3.4.11.Note that in contrast with canonical formal approuch [8],[33-36] we
cannot taking the limit MPV 	 
 in (3.4.15) ,see sect.3.2.
Remark 3.4.12. It is clear from consideration above that problem with ultraviolet
divergences arises not from the Schwartz Impossibility Theorem [32], as Bogoliubov
mistakenly has claimem many years ago [8],but exactly from physically wrong

canonical
Lagrangian of QED4 in which physical ghost fields was missing.This is essentially a
manifestation of the fact that Pauli–Villars renormalization via Colombeau generalized
functions (see sect.3.2) signals about real physical nature of the ghost fields.

4.OFT in a ghost sector via dimensional renormalization.

4.1.Dimensional Regularization via Colombeau
generalized functions.

The most popular in gauge theories is the so-called dimensional regularization. In this



case, one modifies the integration measure: d4q 	 ��2��d4�2�q where μ is a parameter of
dimensional regularization with dimension of a mass.In this case, all the ultraviolet and
infrared singularities manifest themselves as pole terms in �.Consider the earlier
discussed example see Fig.3.1.3 and using the Euclidean representation rewrite it
formally in D-dimensional space

I�p2,m2;D� � �
0

1
dx� dDk

�k2 � 
�2 �

�D

2 �0

1
dx�

0


 �k2�
D
2
�1dk

�k2 � 
�2 � �
2�
D
2
�2 �

D
2 � D

2 � 2
��2�

,


 � 
�p2,m2� � p2x�1 � x� � m2,

�4. 1. 1�

where we assume that the dimension D is such that the integral exists. In this case this
is 2 and 3. The main formula (4.1.1) allows one to perform the analytical continuation
over D � 4 into the region D � 4 � 2�,� � �0, 1�. For � � 0, i.e., in 4 dimensions, the
integral does not exist since the �-function has a pole at zero argument. However, in the
vicinity of zero we get a regularized expression.From Eq.(4.1.1) we get

I�p2,m2;D� � i
�2��D

�D

2 �0

1
dx

� D
2 � D

2 � 2

�p2x�1 � x� � m2 �
D
2
�2

. �4. 1. 2�

Substituting now D � 4 � 2� in RHS of the Eq.(4.1.2) and transforming back into the
pseudo-Euclidean space we get

I ��p2,m2� � I ��p2,m2; 4 � 2�� �
i����2��

�2��4�2� ���� �0

1
dx

��2��

�p2x�1 � x� � m2 ��
. �4. 1. 3�

The formula (4.1.3) allows one to define the integral I�p2,m2;D � 4� as Colombeau
generalized function (see [21]-[22]) I�p2,m2;D � 4� � �I ��p2,m2�����0,1� � G��x

D� :

I�p2,m2;D � 4� � �I ��p2,m2��� � I ��p2,m2; 4 � 2�� �

i ����2��
�

�2��4�2�
�

������� �
0

1
dx

��2��

�p2x�1 � x� � m2 �� �

.
�4. 1. 4�

Expanding the denominator of the integrand into the series over �, finally we get

I�p2,m2;D � 4� � �I ��p2,m2���

i
16�2 ���1 � ���� ���1�� � �0

1
dxln

p2x�1 � x� � m2

��2 � ln�4�� �
�

�
�

i
16�2 ��

�1�� �
i

16�2 ln�4�� � �
0

1
dxln

p2x�1 � x� � m2

��2 .

�4. 1. 5�

We see that the classical ultraviolet divergence now takes the rigorous mathematical

form of the infinite large Colombeau generalized number ���1�� � �,see [23].

We present below the main Colombeau integrals needed for the one-loop calculations.
They can be obtained via the analytical continuation from the integer values of D. We
will write them down directly in the pseudo-Euclidean space. First note that
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�4. 1. 6�
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������� � ���1��,� � �0, 1�.

�4. 1. 7�

The key formula is (4.1.6). These integrals remain Colombeau generalized functions
from
G��4� and G��4 � �4�.

4.2.The scalar theory ��D�4
4 in a ghost sector via Colombeau

generalized functions.The one-loop approximation.
Let us consider the theory described by the Lagrangian

� � 1
2
�����2 � m2

2
�2 � �

4!
�4. �4. 2. 1�

The propagator: In the first order there is only one diagram of the tad-pole type
shown

in Fig.4.2.1.

Fig.4.2.1.The one-loop propagator diagram.

The corresponding Colombeau integral is

�J1�p2,���� � �i�
�2��4�2�

i
2 � d4�2�k��2��

k2 � m2
�
, �4. 2. 2�

where 1/2 is the combinatoric factor and � � �0, 1�. Calculating the Colombeau integral
(4.2.2), according to (4.1.7), we get



�J1�p2,���� � �i�
��4��2����

����1 � ����
2��1�

m2 �2

m2

�

�
�

i�
32�2 m2 1

� �
� 1 � �E � log�4�� � log m2

�2 .
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The fact that the Colombeau integral (4.2.2) well defined but contains infinite

Colombeau generalized number ���1�� � �.

The vertex: Here one also has only one diagram but the external momenta can be
adjusted in several ways (see Fig.4.2.2). As a result the total contribution to the vertex
function consists of three parts I�s, t,u� � I 1�s� � I 1�t� � I 1�u�,where we introduced the
commonly accepted notation for the Mandelstam variables (we assume here that the
momenta p1 and p2 are incoming and the momenta p3 and p4 are outgoing)
s � �p1 � p2�2 � �p3 � p4�2, t � �p1 � p3�2 � �p2 � p4�2, u � �p1 � p4�2 � �p2 � p3�2,and the
integral equals

Fig.4.2.2.The one-loop vertex diagram

and the Colombeau integral reads

I 1�s� �
��i��2

48
���2����

��2��4�2���
i 2 � d4�2�k

�k2 � m2���p � k�2 � m2� �

, �4. 2. 3�

where 1/48 is the combinatoric coefficient.
Recall that the key formula is the Fourier-transformation (in the sense of generalized

functions) of the propagator of a massless particle for D � 4 reads [32]

� d4p eipx

p2 � i�2

x2 , �4. 2. 4�

which holds in arbitrary noncritical dimension D and any power of the propagator as
follows [32]:

� dDp eipx

�p2��
� i����D/2 ��D/2 � ��

����
1

�x2�D/2�� . �4. 2. 5�

In the case of the integral (4.2.3) for m � 0 one first has to mentally transform both the

propagators into coordinate space which, according to (4.2.6), gives the factor ��1���
��1�

2
,

then multiply the obtained propagators (this gives 1/�x2�2�2��) and transform the obtained
result back into momentum space that gives the factor ����

��2�2��
and the power of

momenta 1/�p2�� (the same as in the argument of the last �-function). Besides this, each
loop contains the factor i����2��. Collecting all together one obtains
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The four-point vertex in the one-loop approximation reads
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We are interested now in the Colombeau singular parts, i.e.,infinite part in rigorous
Colombeau sense.They are given by Eqs.4.2.7 and 4.2.8

Sing �J1�p2,���� � �im2 �
16�2 � 1

2� �
,

Sing ����4�s, t,u;������ � �i� �
16�2 � 3

2� �
.

�4. 2. 8�

Note that the singular parts do not depend on momenta, i.e. their Fourier-transform has
the form of the 
-function in coordinate space.In order to remove the obtained
Colombeau singularities we add to the Lagrangian (4.2.1) extra terms, the counter-terms
equal to the Colombeau singular parts with the opposite sign (the factor i belongs to the
S-matrix and does not enter into the Lagrangian),namely,

�
L��� � 1
2� �

�
16�2 � m2

2
�2 � �

16�2
3
2� �

� �
4!

�4 . �4. 2. 9�

These counter-terms correspond to additional vertices shown in Fig.4.2.3.

Fig.4.2.3.The one-loop counter-terms

in the scalar theory ��4
4.

With account taken of the these new diagrams the expressions for the propagator
(4.2.3) and the vertex (4.2.7) become

�J1�p2,���� � i�
32�2 m2�1 � �E � log�4�� � log�m2/�2�� �4. 2. 10�

and

��4,��� � i� �
16�2 3 � 3

2
�E � 3

2
log�4�� � 1

2
ln

�2

�s � 1
2

ln
�2

�t � 1
2

ln
�2

�u �4. 2. 11�



correspondingly.Notice that the obtained expressions have no Colombeau infinities but
contain the dependence on the regularization parameter �2 which was absent in the
initial theory. The appearance of this dependence on a dimensional parameter is
inherent in any regularization and is called the dimensional transmutation,i.e., an
appearance of a new scale in a theory. We write the counter-term in the following way


L�
�1�

�
� ���Z��� � 1� m2

2
�2 � ��Z4,��� � 1� �

4!
�4, �4. 2. 12�

where for different subtraction schemes one has

�Z�
MS�� � 1 � 1

2� �

�
16�2 , Z�
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� 3�E � 3 log�4�� �

16�2 ,
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MOM�� � 1 � 3

2� �
� 3 � 3�E � 3 log�4�� � 3

2
ln

�2

ł 2
�

16�2 .

�4. 2. 13�

The Lagrangian (4.2.1) together with the Colombeau counter-terms (4.2.12) can be
written as

L � 
�
�1�

�
� �Z2,���

1
2
�����2 � �Z���

m2

2
�2 � �Z4,���

�
4!

�4 � �L�
Bare��, �4. 2. 14�

where the renormalization Colombeau constants �Z��� � � and �Z4,��� � � are given by
Eqs.(4.2.13) and the renormalization Colombeau constant �Z2,��� in the one-loop
approximation equals 1,i.e.,

�L�
ren�� � L � 
L�

�1�

�

� 1
2
�Z2,��������

2 � �Z���
m2

2
�2 � �Z4,���

�
4!

�4 � �L�
Bare��,

�4. 2. 15�

Writing the "bare" Lagrangian in the same form as the initial one but in terms of the
"bare" fields and couplings

�L�
Bare�� � 1

2
����B�2 �

�mB,�
2 ��
2

�B
2 �

��B,���
4!

�B
4 , �4. 2. 16�

where �mB,���, ��B,��� � � are infinite Colombeau constants, and comparing it with
(4.2.15), we get the connection between the ”bare” and renormalized Colombeau
quantities

�B � �, �mB,�
2 �� � m2�Z���, ��B,��� � ��Z4,���, �4. 2. 17�

where �Z��� � 1 � O����1���, �Z4,��� � 1 � O����1��� positive infinite Colombeau constants.
Equations (4.2.16) and (4.2.17) imply that the one-loop radiative corrections calculated
from the Lagrangian (4.2.16) with parameters chosen according to (4.2.17) and (4.2.13)
are finite.

Remark 4.2.1. Note that: (i) in one-loop approximation the all renormalization
Colombeau

constants are strictly positive:

�Z��� � 0, �Z2,��� � 0, �Z4,��� � 0, �4. 2. 18�

(ii) it follows from (4.2.18) in one-loop approximation a ghost sector is absent
completely.



4.3.The scalar theory��D�4
4 in a ghost sector via Colombeau

generalized functions.The two-loop approximation
Consider now the two-loop diagrams.The propagator: In this order of PT there is only

one diagram shown in Fig.4.3.1.

Fig.4.3.1.The two-loop propagator type diagram.

The corresponding Colombeau integral reads
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i 3���2�2���
��2��8�4���

� � d4�2�kd4�2�q
q2�k � q�2�p � k�2

�

, �4. 3. 1�

One has to transform each of the propagators into coordinate space, multiply them
and transform back to momentum space. This reduces to writing down the
corresponding transformation factors. Thus
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6
��i�2�2����
��2��8�4���
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i
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� 13
2

� 2 ln
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where the Euler constant and ln 4� are omitted. The appeared ultraviolet divergence,
the pole in �, can be removed via the introduction of the (quasi) local Colombeau
counter-term


L�
�2�

�
� 1

2
��Z2,��� � 1�����2, �4. 3. 3�

where the wave function renormalization constant �Z2,��� in the MSscheme is obtained
by taking the infinite large part of the Colombeau integral with the opposite sign

�Z2,��� � 1 � 1
24� �

�
16�2

2

. �4. 3. 4�

After that the propagator in the massless case reads

� i
p2 1 � 1
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�16�2�2
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� 2 ln
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�4. 3. 5�



The vertex: In the given order there are two diagrams (remind that in the massless

case the tad-poles equal to zero) shown in Fig.4.3.2.

Fig.4.3.2.The two-loop vertex diagrams

The first diagram by analogy with the one-loop case equals the sum of s, t and u
channels �I 21�s, t,u;���� � �I 21�s;���� � �I 21�t;���� � �I 21�u;����, where each integral is
nothing else but the square of the one-loop integral

�I 21�s;���� �
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�4. 3. 6�

In the same order of �3 one gets additional diagrams presented in Fig.4.3.3.

Fig.4.3.3.The diagrams with the counter-terms in

the two-loop approximation

These diagrams lead to the subtraction of divergences in the subgraphs (left and right)
in the first diagram of Fig.4.3.2. The subtraction of divergent subgraphs (the R-operation
without the last subtraction called the R �-operation) looks like

Fig.4.3.4.

where the subgraph surrounded with the dashed line means its singular part, and the
rest of the graph is obtained by shrinking down the singular subgraph to a point. The
result has the following form
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Notice that after the subtractions of subgraphs the Colombeau singular part is local,
i.e. in momentum space does not contain lnp2. The terms with the single pole �1/��� are
absent since the diagram can be factorized into two diagrams of the lower order. The
contribution of a given diagram to the vertex function equals

Fig.4.3.5.
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The contribution to the renormalization constant of the four-point vertex in the MS
scheme is equal to the singular part with the opposite sign

�
Z4,��� � 3
4�2

�

�
16�2

2

. �4. 3. 9�

The second diagram with the crossed terms contains 6 different cases. Consider one
of them. Since we are interested here in the singular parts contributing to the
renormalization constants, we perform some simplification of the original integral. We
use a very important property of the minimal subtraction scheme that the
renormalization constants depend only on dimensionless coupling constants and do not
depend on the masses and the choice of external momenta. Therefore, we put all the
masses equal to zero, and to avoid artificial infrared divergences, we also put equal to
zero one of the external momenta. Then the diagram becomes the propagator type one:

Fig.4.3.6.

The corresponding Colombeau integral is:
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(1/48 is the combinatorial coefficient). Since putting one of the momenta equal to zero
we reduced the diagram to the propagator type, we can again use the advocated
method to calculate the massless integral. Therefore
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As one can see, in this case we again have the second order pole in � and,
accordingly, the single pole with the logarithm of momentum. The reason of their
appearance is the presence of the divergent subgraph. Here we again have to look at
the counter-terms of the previous order which eliminate the divergence from the
one-loop subgraph. The subtraction of divergent subgraphs (the R-operation without the
last subtraction) looks like

Fig.4.3.7.
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Once again, after the subtraction of the divergent subgraph the singular part is local,
i.e. in momentum space does not depend on lnp2.The contribution to the vertex function
from this diagram is:
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and, accordingly,
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Thus, due to (4.2.13) and (4.3.14) in the two-loop approximation the quartic vertex
renormalization constant in the MSscheme reads:
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With taking account of the two-loop renormalization of the propagator (4.3.4) one has:
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The Lagrangian (4.2.1) together with the counter-terms (4.3.13)-(4.3.13) can be written
as
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�4. �4. 3. 17�

Remark 4.3.1. Note that: (i) if �Z2,��� � 0 the ”bare” Lagrangian reads

�L�
Bare�� � 1

2
�����B,����

2 � 1
4!

��B,�����B,�
4 �� �4. 3. 18�

and by using ”bare” Lagrangian (4.3.18) we obtain the scalar theory ��4
4 in standard

sector such that that the two-loop radiative corrections calculated from the Lagrangian
(4.3.18) with Colombeau parameters chosen according to (4.3.20),
(ii) if �Z2,��� � 0 the ”bare” Lagrangian reads

�L�
Bare�� � � 1

2
�����B,����

2 � 1
4!

��B,�����B,�
4 ��. �4. 3. 19�

Lagrangian (4.3.19) contain wrong kinetic term,i.e.,kinetic term with a wrong sign
corresponding to a "bad" ghosts and therefore by using ”bare” Lagrangian (4.3.19) we



obtain the scalar theory ��4
4 in a ghost sector such that the two-loop radiative

corrections calculated from the Lagrangian (4.3.19) with Colombeau parameters
chosen

according to (4.3.20), where
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�Z2,��� � 1 � 1
24� �

�������
16�2

2

,

�Z4,��� � 1 � 3
2� �

�������
16�2 �

�������
16�2

2
9

4�2
�
� 3

2� �
.

�4. 3. 20�

Remark 4.3.2. Note that: (i) if �Z2,��� � 0, i.e.,

1
24� �

�������
16�2

2

� 1 �4. 3. 21�

and therefore we get

��B,��� �

� ������� �
3
2� �

��2�����
16�2 �

��3�����
162�4

9
4�2

�
� 3

2� �
�

1 � 1
24� �

�������
16�2

2 �2

�4. 3. 22�

with ������� � 8� 6 ��1/2��,� � �0, 1�,

(ii) ander condition (4.3.21) Lagrangian (4.3.17) obviously contain wrong kinetic term,
i.e.,kinetic term with a wrong sign corresponding to a "bad" ghosts and therefore
in two-loop approximation we obtain the scalar theory ��4

4 in a ghost sector.
Remark 4.3.2. Note that: (i) if �Z2,��� � 0, i.e.,

1
24� �

�������
16�2

2

� 1 �4. 3. 23�

and therefore we get

��B,��� � ������� �
3
2� �

��2�����
16�2 �

��3�����
162�4

9
4�2

�
� 3

2� �
�

1 � 1
24� �

�������
16�2

2 �2 �4. 3. 24�

with ������� � 8� 6 ��1/2��,� � �0, 1�,

(ii) ander condition (4.3.23) we obtain the scalar theory ��4
4 in standard sector.

The statement is that the counter-terms introduced this way eliminate all the ultraviolet
infinite large Colombeau objects up to two-loop order and make the Green functions



and
hence the radiative corrections finite. In the case of nonzero mass, one should also

add
the mass counter-term.
The Lagrangian (4.2.1) together with the counter-terms in this case can be written as

�L�
ren�� � �Z2,���

1
2
�����2 � �Z���

m2

2
�2 � �Z4,���

�
4!

�4 �4. 3. 25�

Remark 4.3.3. Note that: (i) if we assume that �Z2,��� � 0 we obtain the Lagrangian
�L�

ren,s.m.s.�� corresponding to standard matter sector and the ”bare” Lagrangian
corresponding to standard matter sector reads

�L�
Bare,s.m.s�� �

1
2
�����B,�

s.m.s���
2 �

�mB,�
s.m.s.�2

�

2
��B,�

s.m.s.�2

�
� 1

4!
��B,�

s.m.s�� ��B,�
s.m.s�4

�
,

�4. 3. 26.a�

and by using ”bare” Lagrangian (4.3.26) we obtain the scalar theory ��4
4 in standard

sector, where

��B,�
s.m.s.�� � Z2,� �

� if �Z2,��� � 0

�mB,�
s.m.s.�2

�
� �Z����Z2,�

�1 �� m2 if �Z2,��� � 0

��B,��� � Z4,�Z2,�
�2����

�
.

�4. 3. 26.b�

(ii) if if we assume that �Z2,��� � 0 we obtain the Lagrangian �L�
ren,g.m.s.�� corresponding

to
a ghost matter sector and the ”bare” Lagrangian corresponding to a ghost matter

sector
reads

L�
Bare,g.m.s.

�
�

� 1
2
�����B,�

g.m.s.���
2 �

�mB,�
g.m.s.�2

�

2
��B,�

g.m.s.�2

�
� 1

4!
��B,�

g.m.s.�� ��B,�
g.m.s.�4

�

�4. 3. 27�

and by using ”bare” Lagrangian (4.3.27) we obviously obtain the scalar theory ��4
4 in a

ghost sector,where

��B,�
g.m.s.�� � �Z2,� �

� if �Z2,��� � 0

�mB,�
g.m.s.�2

�
� �Z�����Z2,�

�1 �� m2 if �Z2,��� � 0

��B,�
g.m.s.�� � Z4,�Z2,�

�2����
�
.

�4. 3. 28�

Remark 4.3.4. Recall that classical Schwartz distribution is defined as linear
functionals

on a test smooth functions [32]. Schwartz distributions may be multiplied by real
numbers

and added together, so they form a real vector space. Schwartz distributions may also
be



multiplied by infinitely differentiable functions, but it is not possible to define a product
of

general distributions that extends the usual pointwise product of functions and has the
same algebraic properties. This result was shown by Schwartz (1954), and is usually
referred to as the Schwartz Impossibility Theorem [32].
Remark 4.3.5.In coordinate space the large values of momenta correspond to the

small
distances. Hence, the ultraviolet divergences allow for the singularities at small

distances.
Indeed, the simplest divergent loop diagram (Fig.3.1.3) in coordinate space is the

product
of two propagators. Each Euclidean propagator 
�x � � 
�r� � D���4�, x � �4, r � �x�

is
uniquely defined in momentum as well as in coordinate space, but the square of the
propagator has already an ill-defined Fourier transform, it is ultraviolet divergent. The
reason is that the square of the propagator is singular as r 2 	 0 and behaves like

�
�r��2 � 1/r 4. �4. 3. 29�

In fact, the causal Green function of the QFT is the classical Schwartz distribution
which

is defined on a test smooth functions. It has the δ-function like singularities and needs
an

additional definition for the product of several such functions at a single point.The
discussed above diagram (see Fig.3.1.3) is precisely this product.
Remark 4.3.6. In handbook [8] N. N. Bogoliubov argue that a problem of the ultraviolet
divergences arises exactly from the Schwartz Impossibility Theorem [32].
Remark 4.3.7. Note that:(i) by gomomorfism 
�r 2� 	 
�r 2;�� � 
�r 2 � �� we can

embed
the distribution 
�r 2� into the Colombeau algebra G��x

4� :

�r 2� � �
�r 2;������0,1� � G��x

4�,

(ii) in Colombeau algebra G��x
4� the square of the propagator is �
2�r 2;���� � G��x

4�

�
2�r 2;���� � 1/�r 2 � ��2 � G��x
4�, �4. 3. 30�

(iii) Colombeau Fourier transform C��
2�r 2;��� � � ���
2�r 2;����� (see [21-22]) of the
square of the propagator well defined and C��
2�r 2;��� � � G��p

4�.

Remark 4.3.8. Note that in sect.IV Colombeau Fourier transform of the square of the
propagator has been defined directly in momentum space by using dimensional
regularization see Eq.(4.1.7).
Remark 4.3.9.Note that:(i) by using Colombeau algebra G��x

4� and Colombeau Fourier
transform C� : G��x

4� 	 G��p
4� there is no any problem arises from the Schwartz

Impossibility Theorem, (ii) classical ill-defined ultraviolet divergences replased by well
defined infinite large Colombeau generalized numbers.
Remark 4.3.10. Thus by using Colombeau algebra G��x

4� (see [21-22]) of the
Colombeau

generalized functions instead classical Schwartz distribution and Colombeau
generalized



numbers � (see [21]-[22],[23]-[26]) there is no any problem arises from the Schwartz
Impossibility Theorem.

4.4.Quantum electrodynamics in a ghost sector via Colombeau
generalized functions.

Let us consider now the calculation of the diagrams in the gauge theories. We start
with quantum electrodynamics. The QED4 Lagrangian has the form

LQED � � 1
4

F��
2 � �� �i���� � m�� � e�� ��A�� � 1

2�
���A��2, �4. 4. 1�

where the electromagnetic stress tensor is F�� � ��A� � ��A�, and the last term in (4.4.1)
fixes the gauge. In what follows we choose the Feynman or the diagonal gauge
�� � 1�.The Feynman rules corresponding to the Lagrangian (4.4.1) are shown in
Fig.4.4.1.

Fig.4.4.1.

In quantum electrodynamics the divergences appear only in the photon propagator,
the

electron propagator, and the triple vertex. The one-loop divergent diagrams are shown
in

Fig.4.4.2.

Fig.4.4.2.Theone-loop divergent diagrams in QED

We begin with the vacuum polarization graph. It is given by the diagram shown in
Fig.4.4.2a). The corresponding formal expression is

����p� � ��� e2

�2��4 � d4k
Tr����m� k�����m� k� � p���
�m2 � k2��m2 � �k � p�2�

, �4. 4. 2�

where the "-" sign comes from the fermion loop and q� � ��q�. We set now D � 4 � 2�,
� � �0, 1�.Then the integral (4.4.2) becomes to Colombeau

����
Dim�p;���� � ���

e2���2����
��2��4�2���

� d4�2�k
Tr����m� k�����m� k� � p���
�m2 � k2��m2 � �k � p�2� �

, �4. 4. 3�

where ����
Dim�p;���� � G��p

4�.We put now m � 0 for simplicity. From (4.4.3) one obtains



����
Dim�p;���� �

i 4e2

16�2 ��4��
��� � �2

p2

�

�

�2�2 � ������
��4 � 2�� �

�2p�p� � g��p2 � g��p2 �

� �i 8e2

16�2 ��4��
��� � �2

p2

�

�

�g��p2 � p�p��
�2�2 � ������
��4 � 2�� �

.

�4. 4. 4�

Expanding now over � with the help of Eqs.(4.4.5)

������� � 1
� �

���1 � ����, ���2 � ���� � ��1 � ����1 � ����,

���4 � 2���� � ��3 � 2���2 � 2���1 � 2�������1 � 2����,

� � �0, 1�,

�4. 4. 5�

we obtain

����
Dim�p;���� �

�i e2

16�2 ��4��
��� � �2

p2

�

�

�g��p2 � p�p��
4�1 � 5/3��

3� �
e���

� �ie2 g��p2 � p�p�

16�2
4
3

1
� �

� �E � log4� � log
��2

p2 � 5
3

� i�g��p2 � p�p����Dim�p2;����,

�4. 4. 6�

where

��Dim�p2;���� � � e2

16�2
4
3

1
� �

� �E � log4� � log
��2

p2 � 5
3

. �4. 4. 7�

Given the expression for the vacuum polarization one can construct the photon
propagator as shown in Fig.4.4.3.

Fig.4.4.3.The photon propagator in QED

One has

�G���p;���� � �i
p2 g�� � �i

p2 g������,���
�i
p2 g�� � �

� �i
p2 g�� �

���
����
p4 � � � �i

p2 g�� � i�g�� � p�p�/p2�
p2 ���p2;���� � �

� �i
p2 �g

�� � p�p�

p2 ��1 � ���p2;���� � �� � i
p2

p�p�

p2 ,

�4. 4. 8�

where ���p2;���� is given by eq.(4.4.7). Notice that the radiative corrections are always
proportional to the transverse tensor P�� � g�� � p�p�/p2. This is a consequence of the
gauge invariance and follows from the Ward identities

Let us consider now the electron self-energy graph Fig.4.4.2.b). The corresponding
formal expression is



��p�� � � e2

�2��4 � d4k
���p� � k� � m���

k2��p � k�2 � m2�
. �4. 4. 9�

Acting in a usual way we go to fractal dimension D � 4 � 2�,� � �0, 1� convert the
indices of the �-matrices and introduce the Feynman parametrization. The result is

��Dim�p� ;���� � �
e2���2����
��2��4�2���

�
0

1
dx � d4�2�k��2�1 � ���p� � k�� � �4 � 2��m�

�k2 � 2kpx� p2x � m2x�2
�

�4. 4. 10�

The integral over k can now be evaluated according to the standard formulas

��Dim�p� ;���� �

�i e2

16�2

����2����
��4������

������� �
0

1
dx
�2�1 � ��p��1 � x� � �4 � 2��m

�p2x�1 � x� � m2x�� �

.
�4. 4. 11�

This expression can be expanded in series in �,� � �0, 1�

��Dim�p� ;���� � �i e2

16�2 � p� � 4m
�

�
� p� � 2m� �p� � 4m����E � log�4���

��
0

1
dx�2p��1 � x� � 4m� log

p2x�1 � x� � m2x
��2 .

�4. 4. 12�

At last, consider the vertex function Fig.4.4.2c). The corresponding formal expressionis
is

�1�p,q� � e3

�2��4 � d4k
���p� � k� � q� � m����p� � k� � m���

��p � k � q�2 � m2���p � k�2 � m2�k2 . �4. 4. 13�

Transfer (4.4.13) to dimension 4 � 2�,� � �0, 1� and introduce the Feynman
parametrization. This gives corresponding Colombeau integral

��1�p,q;���� �
�e3��2����
��2��4�2���

��3� �
0

1
dx�

0

x
dy

� � d4�2�k����p� � k� � q� � m����p� � k� � m����
���p � k � q�2 � m2�y � ��p � k�2 � m2��x � y� � k2�1 � x��3

�

.

�4. 4. 14�

The integral over k is straightforward and reads

��1
Dim�p,q;���� � ie e2

16�2

����2����
��4������

�
0

1
dx�

0

x
dy

���1 � ����
����p��1 � x� � q��1 � y� � m����p��1 � x� � q�y � m����

���p � q�2y�1 � x� � p2�1 � x��x � y� � q2y�x � y� � m2x�1����

�
�������

2
����������

���p � q�2y�1 � x� � p2�1 � x��x � y� � q2y�x � y� � m2x����
.

�4. 4. 15�

As one can see, the first integral is finite Colombeau quantity and the second one is
logarithmically divergent. Expanding in series in �,� � �0, 1� we obtain



��1�p,q;���� � ie e2

16�2

��

�
�
� 2�� � ����E � ln�4���

�2�� �
0

1
dx�

0

x
dy ln

�p � q�2y�1 � x� � p2�1 � x��x � y� � q2y�x � y� � m2x
��2

��
0

1
dx�

0

x
dy

���p��1 � x� � q��1 � y� � m����p��1 � x� � q�y � m���

�p � q�2y�1 � x� � p2�1 � x��x � y� � q2y�x � y� � m2x

�4. 4. 16�

Quantum electrodynamics (4.4.1) is a renormalizable theory; hence, the Colombeau
counter-terms repeat the structure of the Lagrangian. They can be written as


L�
QED

�
�

�
�Z3,��� � 1

4
F��

2 � ��Z2,��� � 1�i�� ��� � m��Z��� � 1���� � e��Z1,��� � 1���Â�.
�4. 4. 17�

The term that fixes the gauge is not renormalized. In the leading order of perturbation
theory we calculated the corresponding diagrams with the help of dimensional
regularization mentioned above. Their infinite large Colombeau parts with the opposite
sign give the proper Colombeau renormalization constants. They are, respectively,

�Z1,��� � 1 � e2

16�2
1
� �

, �Z2,��� � 1 � e2

16�2
1
� �

,

�Z3,��� � 1 � e2

16�2
4
3� �

, �Z��� � 1 � e2

16�2
4
� �

.
�4. 4. 18�

Remark 4.4.1. We assume now that

�Z1,��� � 0, �Z2,��� � 0, �Z3,��� � 0, �Z��� � 0. �4. 4. 19�

Adding (4.4.1) with (4.4.17) from (4.4.19) we obtain the QED4 bare Lagrangian in
standard matter sector

LQED,�
Bare,s.m.s.

�
� LQED � 
L�

QED

�
� �

�Z3,���
4

F��
2 � �Z2,���i�� ��� � m�Z������ �

e�Z1,�����Â� � 1
2�

���A��2 �

� � 1
4

�F��B,�
s.m.s. �

2

�
� i��� B,�

s.m.s.���
� ��B,�

s.m.s.�� � m�Z�Z2,�
�1 ����� B,�

s.m.s.����B,�
s.m.s.�� �

e Z1,�Z2,�
�1 Z3,�

�1/2

�
��� B,�

s.m.s.�� ÂB,�
s.m.s.

�
��B,�

s.m.s.�� �
�Z3,�

�1 ��
2�

����A�B,�
s.m.s.�

�
�2 �

� 1
4

�F��B,�
s.m.s �

2

�
� i��� B,�

s.m.s���
� ��B,�

s.m.s�� � �mB,�
s.m.s����� B,�

s.m.s.����B,�
s.m.s.�� �

�eB,�
s.m.s.����� B,�

s.m.s.�� ÂB,�
s.m.s.

�
��B,��� �

1
2 �B,�

s.m.s.
�

����A�B,�
s.m.s.�

�
�2,

�4. 4. 20�

where

��B,�
s.m.s�� � Z2,�

1/2

�
�, �AB,�

s.m.s�� � Z3,�
1/2

�
A,

�mB,�
s.m.s�� � �Z�Z2,�

�1 ��m, �eB,�
s.m.s�� � Z1,�Z2,�

�1 Z3,�
�1/2

�
e,

�B,�
s.m.s

�
� �Z3,����.

�4. 4. 21�

Remark 4.4.2. We assume now that



�Z1,��� � 0, �Z2,��� � 0, �Z3,��� � 0, �Z��� � 0. �4. 4. 22�

Adding (4.4.1) with (4.4.17) from (4.4.19) we obtain the QED4 bare Lagrangian in a
ghost

matter sector

LQED,�
Bare,g.m.s.

�
� LQED � 
L�

QED

�
� �

�Z3,���
4

F��
2 � �Z2,���i�� ��� � m�Z������ �

e�Z1,�����Â� � 1
2�

���A��2 �

� 1
4

�F��B,�
g.m.s. �

2

�
� i��� B,�

g.m.s.���
� ��B,�

g.m.s.�� � m�Z�Z2,�
�1 ����� B,�

g.m.s.����B,�
g.m.s.�� �

e Z1,�Z2,�
�1 Z3,�

�1/2

�
��� B,�

g.m.s.�� ÂB,�
g.m.s.

�
��B,�

g.m.s.�� �
�Z3,�

�1 ��
2�

����A�B,�
g.m.s.�

�
�2 �

� 1
4

�F��B,�
g.m.s �

2

�
� i��� B,�

g.m.s���
� ��B,�

g.m.s�� � �mB,�
s.m.s����� B,�

g.m.s.����B,�
g.m.s.�� �

�eB,�
g.m.s.����� B,�

g.m.s.�� ÂB,�
g.m.s.

�
��B,�

g.m.s.�� �
1

2 �B,�
g.m.s.

�

����A�B,�
g.m.s.�

�
�2

�4. 4. 23�

From (4.4.23) we finally obtain the QED4 bare Lagrangian in a ghost matter sector

LQED,�
Bare,g.m.s.

�
�

1
4

�F��B,�
g.m.s. �

2

�
� i��� B,�

g.m.s.���
� ��B,�

g.m.s.�� � �mB,�
g.m.s.����� B,�

g.m.s.����B,�
g.m.s.�� �

��eB,�
g.m.s.����� B,�

g.m.s.�� ÂB,�
g.m.s.

�
��B,�

g.m.s.�� �
1

2 �B,�
g.m.s.

�

����A�B,�
g.m.s.�

�
�2,

�4. 4. 24�

where

��B,�
g.m.s.�� � ��Z2,��1/2

�
�, �AB,��� � ��Z3,��1/2

�
A,

�mB,��� � �Z�Z2,�
�1 ��m, �eB,��� � Z1,�Z2,�

�1 ��Z3,���1/2
�
e,

�B,� �
� �Z3,����.

�4. 4. 25�

The gauge invariance connects the vertex Green function and the fermion propagator
(the Ward identity), which leads to the identity �Z1,��� � �Z2,���.

4.5.Quantum chromodynamics in a ghost sector via Colombeau
generalized functions.

Consider now the non-Abelian gauge theories and, in particular, QCD. The Lagrangian
of QCD has the form

LQÑD � � 1
4 �F��

a �2 � �� �i���� � m�� � g�� ��A�
aTa� � 1

2�
���A�

a�2

���c� a��c2 � gfabc��c� aA�
bcc,

�4. 5. 1�

where the stress tensor of the gauge field is now F��
a � ��A�

a � ��A�
a � gfabcA�

bA�
c and the

last terms represent the Faddeev-Popov ghosts.



Fig.4.5.1.The vacuum polarization diagrams in the

Yang-Mills theory

The complications which appear in non-Abelian theories are caused by the presence
of many vertices with the same coupling as it follows from the gauge invariance. Hence,
they have to renormalize the same way, i.e there appear new identities, called the
Slavnov-Taylor identities. The full set of the counter-terms in QCD are


L�
QCD

�
� �

�Z3,��� � 1
4

���A�
a � ��A�

a�2 � g��Z1,��� � 1�fabcA�
aA�

b��A�
c �
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Remark 4.5.1. We assume now that

�Z�
s.m.s.�� � 0, �Z1,�

s.m.s.�� � 0,
�
Z1,�

s.m.s.

�
� 0, �Z2,�

s.m.s.�� � 0,

�Z3,�
s.m.s.�� � 0,

�
Z3,�

s.m.s.

�
� 0, �Z4,�

s.m.s.�� � 0.
�4. 5. 3�

Where we abraviate �Z�
s.m.s.��, �Z1,�

s.m.s.��,etc., instead �Z���, �Z1,���,etc., in standard
matter

sector.
Adding (4.5.2) to the initial Lagrangian (4.5.1) from (4.5.2) we obtain the QCD4 bare
Lagrangian in standard matter sector
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This results in the relations between the renormalized and the bare fields and couplings

��B,�
s.m.s.�� � Z2

1/2�, AB,�
s.m.s.

�
� Z3

1/2A, �cB,�
s.m.s.�� � Z� 3

1/2c,
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�3/2g, �B,�
s.m.s.

�
� Z3�,

Z1Z3
�1 � Z� 1Z� 3

�1, Z4 � Z1
2Z3

�1, Z1�Z2
�1 � Z1Z3

�1.

�4. 5. 4�

The last line of equalities follows from the requirement of identical renormalization of
the coupling in various vertices and represents the Slavnov-Taylor identities for the
singular parts.The explicit form of the renormalization constants in the lowest
approximation follows from the one-loop diagrams of QCD. Aa usual, one has to take the
singular part with the opposite sign. For instance one has in the MSscheme:
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16�2
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where the following notation for the Casimir operators of the gauge group is used

fabcfdbc � CA
ad, �TaTa� ij � CF
 ij , Tr�TaTb� � Tf
ab. �4. 5. 6�

For the SU�N� group and the fundamental representation of the fermion fields they are
equal to



CA � N, CF � N2 � 1
2N

, Tf � 1
2

. �4. 5. 7�

Remark 4.5.2. We assume now that

�Z�
g.m.s.�� � 0, �Z1,�

g.m.s.�� � 0, �Z2,�
g.m.s.�� � 0,

�Z3,�
g.m.s.�� � 0, �Z4,�

g.m.s.�� � 0.
�4. 5. 8�

Where we abraviate �Z�
g.m.s.��, �Z1,�

g.m.s.��,etc., instead �Z���, �Z1,���,etc., in ghost matter
sector.
Adding (4.5.2) to the initial Lagrangian (4.5.1) from (4.5.5) we obtain the QCD4 bare
Lagrangian in a ghost matter sector
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The relations between the renormalized and the bare fields and couplings reads
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4.6.The general structure of the R-operation via Colombeau
generalized functions.

The structure of the counter-terms as functions of the field operators depends on the
type of a theory. According to the canonical classification [8],[20],the QFT theories are
divided into three classes: superrenormalizable (a finite number of divergent diagrams),
renormalizable (a finite number of types of divergent diagrams) and non-renormalizable
(a infinite number of types of divergent diagrams). Accordingly, in the first case one has
a finite number of counter-terms; in the second case, a infinite number of counter-terms



but they repeat the structure of the initial Lagrangian, and in the last case, one has an
infinite number of structures with an increasing number of the fields and derivatives.

Remark 5.6.1.In the case of renormalizable and superrenormalizable theories, since
the Colombeau counter-terms repeat the structure of the initial Lagrangian, the result of
the introduction of counter-terms can be represented as

�L��� � �
L��� � �L�
Bare�� � L���B,���,��gB,����,��mB,�����, �4. 6. 1�

i.e., �L�
Bare�� is the same Lagrangian �L��� but with the fields, masses and coupling

constants being the "bare" ones related to the renormalized quantities by the
multiplicative equalities.

Remark 5.6.2. Note that: (i) for standard sector �Zi,���g�, �1/������ � 0 and
corresponding

equalities reads

� i,�
Bare,s.m.s.

�
� �Zi,���g��, �1/���1/2�� �,

gi,�
Bare,s.m.s.

�
� �Zg,�

i,s.m.s.��g��, 1/���� �gi,���,

mi,�
Bare,s.m.s.

�
� �Zm,�

i,s.m.s.��g�, �1/������ mi ,

�4. 6. 2.a�

(ii) for a ghost sector �Zi,���g�, �1/������ � 0 and corresponding equalities reads

� i,�
Bare,g.m.s.

�
� �Zi,�

i,g.m.s.��g��, �1/���1/2
�

�,

gi,�
Bare,g.m.s.

�
� Zg,�

i,g.m.s.��g��, 1/��
�

�gi,���,

mi,�
Bare,g.m.s.

�
� Zm,�

i,g.m.s.��g��, �1/���� �
mi ,

�4. 6. 2.b�

where the Colombeau renormalization constants �Zi,��� depend on the renormalized
parameters and the parameter of regularization, where for definiteness we have chosen

�1/��� � �. In some cases the renormalization can be nondiagonal and the
renormalization constants become matrices.The renormalization constants are not
unique and depend on the renormalization scheme. This arbitrariness, however, does
not influence the observables expressed through the renormalized quantities. We will
come back to this problem later when discussing the group of renormalization. In the
gauge theories �Zi,��� may depend on the choice of the gauge though in the minimal
subtraction scheme the renormalizations of the masses and the couplings are gauge
invariant.In the minimal schemes the renormalization constants do not depend on
dimensional parameters like masses and do not depend on the arrangement of external
momenta in the diagrams. This property allows one to simplify the calculation of the
counter-terms putting the masses and some external momenta to zero, as it was
exemplified above by calculation of the two-loop diagrams. In making this trick, however,
one has to be careful not to create artificial infrared divergences. Since in dimensional

regularization they also have the form of poles in ���� � �, this may lead to the wrong
answers.In renormalizable theory the finite Green function is obtained from the "bare"
one, i.e., is calculated from the "bare" Lagrangian by multiplication on the corresponding
Colombeau renormalization constant

�����p2�,�2,g�,���� � ��Z�,��1/�,g�,���� ����
Bare��p2�, 1/�,g�

Bare���, �4. 6. 3�

where in the n-th order of perturbation theory the "bare" parameters in the RHS of the



Eq.(4.6.3) have to be expressed in terms of the renormalized ones with the help of
relations (4.6.2.a) or (4.6.2.b) taken in the (n � 1)-th order. The remaining constant
�Z�,��� creates the counter-term of the n-th order of the form
�
L��� � ��Z�,��� � 1��O�,���, where the Colombeau generalized operator �O�,��� reflects
the corresponding Green function. If the Green function is finite by itself (for instance,
has many legs), then one has to remove the divergences only in the subgraphs and the
corresponding renormalization Colombeau constant �Z�,��� � 1.

Note that since the propagator is inverse to the operator quadratic in fields in the
Lagrangian, the renormalization of the propagator is also inverse to the renormalization
of the 1-particle irreducible two-point Green function:(i) for standard sector

Ds.m.s.�p2,�2, �g�,���� � �D�
s.m.s.�p2,�2,g�,���� �

Z2,�
s.m.s.��1/���,g�,��

�

�1
DBare,s.m.s.�p2, �1/���, �g�

Bare,s.m.s.���.
�4. 6. 4.a�

and (ii) for a ghost sector

Dg.m.s.�p2,�2, �g�,���� � �D�
g.m.s.�p2,�2,g�,���� �

�Z2,�
g.m.s.��1/���,g�,����

�1
DBare,g.m.s.�p2, �1/���, g�

Bare,g.m.s.

�
�.

�4. 6. 4.b�

correspondingly. The propagator renormalization constant is also the renormalization
constant of the corresponding field, but the fields themselves, contrary to the masses
and couplings, do not enter into the expressions for observables.

We would like to stress once more that the R-operation works independently on the
fact renormalizable or non-renormalizable the theory is. In local theory the counter-terms
are local anyway. But only in renormalizable theory the counter-terms are reduced to the
multiplicative renormalization of the finite number of fields and parameters.

One can perform the R-operation for each diagram separately. For this purpose one
has first of all to subtract the divergences in the subgraphs and then subtract the
divergence in the diagram itself which has to be local. This serves as a good test that
the divergences in the subgraphs are subtracted correctly. In this case the R-operation
can be symbolically written in a factorized form

R�G��� � �div.subgraphs
�1 � �M�,�����G���, �4. 6. 5�

where �G��� is the initial diagram, M� is the �-subtraction operator (for instance,
subtraction of the �-singular part of the regularized diagram) and the product goes over
all divergent subgraphs including the diagram itself. By a subgraph we mean here the
1-particle irreducible diagram consisting of the vertices and lines of the diagram which is
UV divergent. The 1-particle irreducible is called the diagram which can not be made
disconnected by deleting of one line.

We have demonstrated above the application of the R-operation to the two–loop
diagrams in a scalar theory. Consider some other examples of diagrams with larger
number of loops shown in Fig.4.6.1. They appear in the �4

4 theory in the three-loop
approximation.



Fig.4.6.1.The multiloop diagrams in the φ
4

theory

In order to perform the R-operation for these diagrams one first has to find out the
divergent subgraphs. They are shown in Fig.4.6.2.

Fig.4.6.2.The divergent subgraphs in the diagrams of Fig.4.6.1.

Let us use the factorized representation of the R-operation in the form of (4.6.5). For
the three chosen diagrams one has, respectively,

�RGa,��� � �1 � �MG� ����1 � M�1��1 � M�1,�
�

�
��Ga,���,

�RGb,��� � �1 � �MG� ����1 � M�2��1 � �M�1,� ����Gá,���,

�RGc,��� � �1 � �MG� ����1 � �M�2,� ����1 � M�2,�
�

�
��1 � �M�1,� ����Gâ,���,

�4. 6. 6�

where �1 and �2 are the one- and two-loop divergent subgraphs shown in Fig.4.6.2.The
result of the application of the R-operation without the last subtraction ( R �-operation) for
the diagrams of interest graphically is as follows:

Fig.4.6.3.The R�-operation for the multiloop diagrams.

Here, as before, the graph surrounded with the dashed circle means its singular part



and the remaining graph is obtained by shrinking the singular subgraph to a point.
Let us demonstrate how the R �-operation works for the diagram Fig.4.6.1a). Since the

result of the R �-operation does not depend on external momenta, we put two momenta
on the diagonal to be equal to zero so that the integral takes the propagator form. Then
we can use the method based on Fourier-transform, as it was explained above. One has

� ��1 � �� �
2�1 � ������
��2 � 2�� �

2

and

� ��1 � �� �
2�1 � ������
��2 � 2�� �

2

��1 � �� �2�1 � 2����3��
�2�1 � ����2 � 4�� �

�2

p2

3�

�

�

1
��3�1 � 2��2�1 � 4����

�2

p2

3�

�

.

Where we use the angular integration measure in the 4 � 2� dimensional space
accepted above, which results in the multiplication of the standard expression by ��1 � ��
in order to avoid the unwanted transcendental functions. Following the scheme shown in
Fig.4.6.3 we get

� 1
� ��1 � ��

�2�1�������
��2�2��



� 1
� ��1 � ��

�2�1�������
��2�2��

��1 � �� ��1�����1�2����2��
��1�����2�3��

� �2

p2 �
2� � 1

�3�1�2���1�3��
� �2

p2 �
2�.

� 1
�2 ��1 � ��

�2�1�������
��2�2��

� �2

p2 �
� � 1

�3�1�2��
� �2

p2 �
�.

Combining all together we get

� 1
�3�1�2��2�1�4��

� �2

p2 �
3� � 2 1

�3�1�2��
� �2

p2 �
� � 1

�3�1�2��
� �2

p2 �
�

� 1����2

�3 .

Note the cancellation of all nonlocal contributions. The singular part after the

R�-operation is always local.
The realization of the R �-operation for each diagram �G��� allows one to find the

contribution of a given diagram to the corresponding counter-term and, in the case of a
renormalizable theory, to find the renormalization constant equal to

�Z��� � 1 � K� R
�G�

�

, �4. 6. 7�

where K� means the �-extraction of the �-singular part. Adding the contribution of
various diagrams we get the resulting counter-term of a given order and, accordingly, the
renormalization constant.



4.7.Renormalization Group in a ghost sector.
The procedure formulated above allows one to eliminate the ultraviolet divergences

and get the finite expression for any Green function in any local quantum field theory. In
renormalizable theories this procedure is reduced to the multiplicative renormalization of
parameters (masses and couplings) and multiplication of the Green function by its own
renormalization constant. This is true for any regularization and subtraction scheme.
Thus, for example, in the canonical cutoff regularization and dimensional regularization
via Colombeau generalized functions the relation between the "bare" and renormalized
Green functions for standard matter sector looks like

�s.m.s��p2�,�2,�g��� � Z�s.m.s��2/�2,�g����Bare
s.m.s��p2�,�,�gBare

s.m.s�� �4. 7. 1�

and

�s.m.s��p2�,�2,��g�,����� � Z�s.m.s��1/���,��g�,������Bare
s.m.s��p2�, �1/���,��gBare,�

s.m.s ����, �4. 7. 2�

correspondingly and for a ghost sector looks like

�g.m.s��p2�,�2,�g��� � Z�s.m.s��2/�2,�g����Bare
s.m.s��p2�,�,�gBare

s.m.s�� �4. 7. 3�

and

�g.m.s��p2�,�2,��g�,�
s.m.s���� � Z�g.m.s��1/���,��g�,�

s.m.s�����Bare
g.m.s��p2�, �1/���,��gBare,�

g.m.s ����, �4. 7. 4�

where �p2� is the set of external momenta, �g� is the set of masses and couplings for
standard matter sector

gBare
s.m.s � Zg

s.m.s���2/�2,�g�
s.m.s��g, �4. 7. 5�

gBare
s.m.s � Zg

s.m.s���1/���,��g�,�
s.m.s����g. �4. 7. 6�

and for a ghost sector

gBare
g.m.s � Zg

g.m.s.���2/�2,�g�
g.m.s��g, �4. 7. 7�

gBare
g.m.s � Zg

g.m.s.���1/���,��g�,�
g.m.s����g. �4. 7. 8�

correspondingly.In what follows we stick to dimensional regularization and rewrite
relation (4.7.2) and (4.7.4) in the commun form

�Bare
� ��p2�, �1/���,�gBare

� �� � Z��
��1��1/���,�g�������p2�,�2,�g��� �4. 7. 9�

and

gBare
� � Zg

����1/���,��g�,�
� �����g�

���, �4. 7. 10�

where ��,�Bare
� and gBare

� stand for standard sector /ghost sector.
It is obvious that the LHS of this equation does not depend on the parameter of

dimensional transmutation � and, hence, the r.h.s. should not also depend on it. This
allows us to write the functional equation for the renormalized Green function.
Differentiating it with respect to the continuous parameter � one can get the differential
equation which has a practical value: solving this equation one can get the improved
expression for the Green function which corresponds to summation of an infinite series
of Feynman diagrams.

Consider an arbitrary Green function ���
���p2�,�2,�g�,�

� ���� obeying equation (4.7.4)

with the normalization condition

���
���p2�,�2, 0��� � 1. �4. 7. 11�



Differentiating the Eq.(4.7.4) with respect to �2 we get:

�2 d
d�2 ���

��� � �2 �
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� ��

d�2 �Z��
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�
���,Bare

� ��,

�4. 7. 12�

or

�2 �
��2 ���

���p2�,�2,g�,���� � �	��g����
�
�g�
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���p2�,�2,g�,�

� �
�

�����
�
� ��

���p2�,�2,g�,�
� ��

�
� 0,

�4. 7. 13�

where we have introduced the so-called beta function �	�g�
���� and the anomaly

dimension of the Green function ����
�
� �g�

���
�

defined as

�	��g�
���� � �2 dg�

�

d�2
� g�,bare

�
�

, �4. 7. 14�

and

����
�
� �g�

���
�
� ��2 dlnZ��

�
�

d�2
� g�,bare

�
�

. �4. 7. 15�

Equation (4.7.13) is called the renormalization group equation in Colombeau generalized
functions.The solution of the renormalization group equation can be written in terms of
characteristics:

��
� et �p2�

�2 ,g�
�

�

� ��
� �p2�

�2 ,g��t,g�
��

�

exp �
0

t

����
�
� �g��t,g�

����
�

dt , �4. 7. 16�

where the characteristic equation is (for definiteness we restrict ourselves to a single
coupling)

d
dt

�g��t,g�
���� � �	��g� �����, �g� ���0,g�

���� � �g�
���. �4. 7. 17�

Consider now the product

��g�
��� � ��

� �p2�
�2 ,g�

�

�

. �4. 7. 18�

If ���
��� is the n-point function, then the renormalization of the coupling �g�

��� is given
by

�gBare,�
� �� � �Z��

�
� �

�
Z2,�
��n/2

�
�g�
���, �4. 7. 19�

and the product (4.7.18) is renormalized as

�g�
������

��� � Z2,�
�n/2

�
�gBare,�
� ����Bare,�

� ��. �4. 7. 20�

Hence, one has the same equation as (4.7.9) with solution (4.7.16) but with
�Z��

�
� �

�
� Z2,�

�n/2 and ����
�
� �

�
� �n/2��2,�

� ��. (Recall that the anomalous dimension ��2,�
� �� is

defined with respect to the Colombeau renormalization constant �Z2,�
��1��.)

Furthermore, one can construct the so-called invariant charge by multiplying the
product (4.7.18) by the corresponding propagators



���
��� � �g�

��� ��
� �p2�

�2 ,g�
�

�

� i�1
n D�

�1/2 pi
2

�2 ,g�
�

�

. �4. 7. 21�

The invariant charge ���
���, being RG-invariant, obeys the RG equation without the

anomalous dimension and plays an important role in the formulation of the
renormalization group together with the effective charge. In some cases, for instance in
the MOM subtraction scheme, the effective and invariant charges coincide.

The usefulness of solution (4.7.16) is that it allows one to sum up an infinite series of
logs coming from the Feynman diagrams in the infrared (t 	 �
) or ultraviolet (t 	 
)
regime and improve the usual perturbation theory expansions. This in its turn extends
the applicability of perturbation theory and allows one to study the infrared or the
ultraviolet asymptotics of the Green functions.

To demonstrate the power of the RG, let us consider the invariant charge in a theory
with a single coupling and restrict ourselves to the massless case. Let the perturbative
expansion be

��
� p2

�2 ,g�
�

�

� �g�
����1 � b�g�

��� ln
p2

�2 �. . . �. �4. 7. 22�

The 	� function in the one-loop approximation is given by

�	��g�
���� � b�g�

�2��. �4. 7. 23�

Notice that the coefficient b of the logarithm in Eq.(4.7.22) coincides with that of the 	�

function. Alternatively the 	� function can be defined as the derivative of the invariant
charge with respect to logarithm of momentum

�	��g�
���� � p2 d

dp2 ��
� p2

�2 ,g�
�

p2��2
�

�4. 7. 24�

This definition is useful in the MOM scheme where the mass is not considered as a
coupling but as a parameter and the renormalization constants depend on it. We will
come back to the discussion of this question below when considering different definitions
of the mass. According to Eq.(4.7.16) (with vanishing anomalous dimension) the
RG-improved expression for the invariant charge corresponding to the perturbative
expression (4.7.22) is:

�RG,�
� p2

�2 ,g�
�

�

� �PT,� 1,g� ��
p2

�2 ,g�
�

�

� g� ��
p2

�2 ,g�
�

�

, �4. 7. 25�

where we have put in eq.(4.7.16) p2 � �2 and then replaced t by t � lnp2/�2. The
effective coupling is a solution of the characteristic equation

d
dt

g� ���t,g�
��

�
� b�g� ��2��, g� ���0,g�

��
�
� �g�

���, t � ln
p2

�2 . �4. 7. 26�

The solution of this equation is

�g� ���t,g�
���� �

�g�
���

1 � bt�g�
���

. �4. 7. 27�

Being expanded over t, the geometrical progression (4.7.27) reproduces the
expansion (4.7.22); however, it sums the infinite series of terms of the form ��g�

�n�� �t
n.

This is called the leading log approximation (LLA) in QFT. To get the correction to the
LLA, one has to consider the next term in the expansion of the 	� function. Then one



can sum up the next series of terms of the form ��g�
�n�� �t

n�1 which is called the next to
leading log approximation (NLLA), etc. This procedure allows one to describe the
leading asymptotics of the Green functions for t 	 �
.Let us consider now the Green
function with non-zero anomalous dimension. Let its perturbative expansion be

��
� p2

�2 ,g�
�

�

� 1 � ��g�
��� �cln

p2

�2 �. . . �4. 7. 28�

Then in the one-loop approximation the anomalous dimension is

����g�
���� � c�g�

���. �4. 7. 29�

Again the coefficient of the logarithm coincides with that of the anomalous dimension.
In analogy with Eq.(4.7.24) the anomalous dimension can be defined as a derivative with
respect to the logarithm of momentum

����g�
���� � p2 d

dp2 ln��
� p2

�2 ,g�
�

p2��2
�

. �4. 7. 30�

Substituting (4.7.29) into Eq.(4.7.16), one has in the exponent

�
0

t
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�4. 7. 31�

This gives for the Green function the improved expression

��RG,�
� �� �

g� ��

g�
�

�

�c/b

� 1
1 � bt�g�

���

c/b

� 1 � ct �. . . �5. 7. 32�

Thus, one again reproduces the perturbative expansion, but expression (4.7.32) again
contains the whole infinite sum of the leading logs. To get the NLLA, one has to take into
account the next term in eq.(4.7.29) together with the next term of expansion of the 	�

function. All the formulas can be easily generalized to the case of multiple couplings and
masses.

The effective coupling in a ghost sector
By virtue of the central role played by the effective coupling in RG formulas, consider it

in more detail. The behaviour of the effective coupling is determined by the 	� function.
Qualitatively, the 	� function can exhibit the behaviour shown in Fig.4.7.1. We restrict
ourselves to the region of small couplings.In the first case, the 	�-function is positive.
Hence, with increasing momentum the effective coupling unboundedly increases. This
situation is typical of most of the models of QFT in standard matter sector in the
one-loop approximation when �	��g�

���� � b�g�
�2�� and b � 0. The solution of the RG

equation for the effective coupling in this case has the form of a geometric progression
(4.7.27).



Fig.4.7.1.The possible form of the β�-function.

The arrows show the behaviour of the

effective coupling in the UV regime: t 	 
.

In the second case, the 	-function is negative and, hence, the effective coupling
decreases with increasing momentum. This situation appears in the one-loop
approximation when b � 0, which takes place in the gauge theories. Here we also have a
pole but in the infrared region.

In the third case, the 	-function has zero: at first, it is positive and then is negative.
This means that for small initial values the effective coupling increases; and for large
ones, decreases. In both the cases, with increasing momentum it tends to the fixed
value defined by the zero of the 	-function. This is the so-called ultraviolet stable fixed
point. It appears in some models in higher orders of perturbation theory.

4.8.Dimensional regularization and the MSscheme in a ghost
sector

Consider now the calculation of the �	��g�
���� function and the anomalous dimensions

in some particular models within the dimensional regularization and the minimal
subtraction scheme. Note that in transition from dimension 4 to 4 � 2� the dimension of
the coupling is changed and the "bare" coupling acquires the dimension �gB,�

� � � 2�. That
is why the relation between the "bare" and renormalized coupling contains the factor
��2��

�gB,�
� �� � ���2��Zg�

�g�
���. �4. 8. 1�

Hence, even before the renormalization when Zg � 1, in order to compensate this factor
the dimensionless coupling g should depend on �. Differentiating Eq.(4.8.1) with respect
to �2 one gets
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dlogZg�
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, �4. 8. 2�

i.e.,
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���
dlogZg�

�

dlog�2
�

� ��g�
� � 	4�g�

���. �4. 8. 3�

In the MSscheme the renormalization constants are given by the pole terms in 1/�
expansion and so does the bare coupling. They can be written as

�Z��
� �� � 1 ��n�1
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. �4. 8. 4�



And similarly
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�4. 8. 5�

Differentiating eq.(4.8.4) with respect to ln�2 and having in mind the definitions
(4.7.14) and (4.7.15), one has:
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Equalizing the coefficients of equal powers of �, one finds
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�4. 8. 7�

One sees that the coefficients of higher poles �cn�g�
����, n 	 2 are completely defined by

that of the lowest pole �c1�g�
���� and the 	� function. In its turn the 	�-function is also

defined by the lowest pole. To see this, consider Eq.(4.7.20). Differentiating it with
respect to ln�2 one has
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Equalizing the coefficients of equal powers of �, one finds

�	��g�
���� � �g�

���
d

dg�
� a1�g�

��
�
� �a1�g�

����, �4. 8. 9�

and
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d
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�
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���� � �	�g�
����

d
dg�

� an�1�g�
��

�
, n 	 2. �4. 8. 10�

Thus, knowing the coefficients of the lower poles one can reproduce all the higher
order divergences. This means that they are not independent, all the information about
them is connected in the lowest pole. In particular, substituting in (4.8.10) the
perturbative expansion given by Eq.(4.8.5) one can solve the recurrent equation and find
for the highest pole term

�ann�g�
���� � �a11

n �g�
����, �4. 8. 11�

i.e. in the leading order one has the geometric progression



�gBare,��� �
�g�
�����

2���
1 � ���1���g����a11�g�

����
, �4. 8. 12�

which reflects the fact that the effective coupling in the leading log approximation (LLA)
is also given by a geometric progression (4.8.12).The pole equations are easily
generalized for the multiple couplings case, the higher poles are also expressed through
the lower ones though the solutions of the RG equations are more complicated.

Consider now some particular models and calculate the corresponding 	�-functions
and the anomalous dimensions.

The �4
4 theory

Standard matter sector
We remind that standard matter sector of the �4 theory defined by the inequality

1 � 1
24

g�
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� 0. �4. 8. 13�

i.e.,
1

24
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� 1. �4. 8. 14�
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� 1 � 1

24
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�. . . �4. 8. 15�

The renormalization constants in the MSscheme up to two loops are given by

Eq.(4.3.14) -Eq.(4.3.16), where �g��� �
�����
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�4. 8. 16�

Notice that the higher pole coefficient a22 � 9/4 in the last expression is the square of
the lowest pole one a11 � 3/2 in accordance with Eq.(4.8.11).Applying now Eq.(4.8.7)
and Eq.(4.8.9) we get

�4�g� � 3
2

g � 3g2,

�2�g� � 1
12

g2,

	�g� � g��4 � 2�2� � 3
2

g2 � 17
6

g2.

�4. 8. 17�

One can see from Eqs.(4.8.17) that the first coefficient of the 	-function is 3/2, i.e., the
�4 theory in standard sector belongs to the type of theories shown in Fig.4.7.1a). In the
leading log approximation (LLA) one has a Landau pole behaviour. In the two-loop
approximation (NLLA) the 	-function gets a non-trivial zero and the effective coupling
possesses an UV fixed point like the one shown in Fig.4.7.1). However, this fixed point is
unstable with respect to higher orders and is not reliable. Here we encounter the
problem of divergence of perturbation series in quantum field theory, they are the
so-called asymptotic series which have a zero radius of convergence.



The �4
4 theory

Ghost matter sector
We remind that ghost matter sector of the �4 theory defined by the inequality

1 � 1
24
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� 0, �4. 8. 17�

i.e.,
1
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The renormalization constants in the MSscheme up to two loops are given by Eq.

(4.3.14)- Eq.(4.3.16), where �g��� �
�����
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Applying now Eq.(4.8.7) and Eq.(4.8.9) we get

�	�g���� � �
9
4
�g�

2��. �5. 8. 21�

One can see from Eqs.(4.8.21) that the first coefficient of the 	-function is �9/4, i.e.,
the �4 theory in a ghost sector belongs to the type of theories shown in Fig.4.7.1b).

5.Renormalizability-of-Higher-Derivative-Quantum-Gravity.

5.1.The Higher-Derivative Theories of Gravitation.Green’s
functions.

Adding quadratic products of the curvature tensor to the gravitational action leads to
field equations in which some terms involve four derivatives. While it is not the purpose
of this paper to investigate the novel consequences of these classical field equations, a
brief summary of some of the salient features is in order to give a grounding to the
following discussion of renormalization.

Gravitational actions which include terms quadratic in the curvature tensor are
renormalizable. The necessary Slavnov identities are derived from Becchi-Rouet-Stora
(BRS) transformations of the gravitational and Faddeev-Popov ghost fields. In general,
non-gauge-invariant divergences do arise, but they may be absorbed by nonlinear
renormalizations of the gravitational and ghost fields and of the BRS transformations



[13].The generic expression of the action reads

I sym � �� d4x �g ��R��R�� � 	R2 � 2��2R�, �5. 1. 1�

where the curvature tensor and the Ricci is defined by R���
� � �����

� and R�� � R���
�

correspondingly, �2 � 32�G, we used the signature �� � � ��. The convenient definition
of the gravitational field variable in terms of the contravariant metric density reads

�h�� � g�� �g � ���. �5. 1. 2�

Analysis of the linearized radiation shows that there are eight dynamical degrees of
freedom in the field. Two of these excitations correspond to the familiar massless spin-2
graviton. Five more correspond to a massive spin-2 particle with mass m2. The eighth
corresponds to a massive scalar particle with mass m0. Although the linearized field
energy of the massless spin-2 and massive scalar excitations is positive definite, the
linearized energy of the massive spin-2 excitations is negative definite. This feature is
characteristic of higher-derivative models, and poses the major obstacle to their physical
interpretation.

In the quantum theory, there is an alternative problem which may be substituted for
the negative energy. It is possible to recast the theory so that the massive spin-2
eigenstates of the free-fieid Hamiltonian have positive-definite energy, but also negative
norm in the state vector space.

These negative-norm states cannot be excluded from the physical sector of the vector
space without destroying the unitarity of the S matrix. The requirement that the graviton
propagator behave like p�4 for large momenta makes it necessary to choose the
indefinite-metric vector space over the negative-energy states.

The presence of massive quantum states of negative norm which cancel some of the
divergences due to the massless states is analogous to the Pauli-Villars regularization of
other field theories. For quantum gravity, however, the resulting improvement in the
ultraviolet behavior of the theory is sufficient only to make it renormalizable, but not
finite.

The gauge choice which we adopt in order to defining the quantum theory is the
canonical harmonic gauge: ��h�� � 0. Corresponding Green’s functions are then given
by a generating functional

Z�T��� � N� �
���

dh�� �dC� ��dC� �
4�F��

exp i I sym� � d4xC�F���
� D�

��C� � � � d4xT��h�� .
�5. 1. 3�

Here F� � F���
� h��,F���

� � 
�
r �� � and the arrow indicates the direction in which the derivative

acts. N is an normalization constant. C� is the Faddeev-Popov ghost field, and C� is the
antighost field. Notice that both C� and C� are anticommuting quantities. D�

�� is the
operator which generates gauge transformations in h��, given an arbitrary
spacetime-dependent vector ���x� corresponding to x� �

� x� � ��� and where

D�
�����x� � ���� � ���� � ������� � ������h�� � ����h�� � ����h�� � ����h��. � �5. 1. 4�

In the functional integral (5.1.3), we have written the metric for the gravitational field as

���� dh�� without any local factors of g � det�g���. Such factors do not contribute to

the Feynman rules because their effect is to introduce terms proportional to




4�0� �d4xln��g� into the effective action and 
4�0� is set equal to zero in dimensional

regularization.
In calculating the generating functional (5.1.3.) by using the loop expansion, one may

represent the 
-function which fixes the gauge as the limit of a Gaussian, discarding an
infinite normalization constant


4�F�� �

	0
lim exp i 1

2 

�1 �d4xF�F� . �5. 1. 5�

In this expression, the index � has been lowered using the flat-space metric tensor ���.
For the remainder of this paper, we shall adopt the standard approach to the covariant
quantization of gravity, in which only Lorentz tensors occur, and all raising and lowering
of indices is done with respect to flat space. The graviton propagator may be calculated
from I sym� 1

2 

�1 �d4xF�F� in the usual fashion, letting 
 	 0 after inverting. The

expression 1
2 


�1 �d4xF�F� contains only two derivatives. Consequently, there are parts

of the graviton propagator which behave like p�2 for large momenta. Specifically, the p�2

terms consist of everything but those parts of the propagator which are transverse in all
indices. These terms give rise to unpleasant infinities already at the one-loop order. For
example, the graviton self-energy diagram shown in Fig.5.1.1 has a divergent part with
the general structure ��4h�2. Such divergences do cancel when they are connected to
tree diagrams whose outermost lines are on the mass shell, as they must if the S matrix
is to be made finite without introducing counterterms for them. However, they greatIy
complicate the renormalization of Green’s functions.

Fig.5.1.1.The one-loop graviton self-energy diagram.

We may attempt to extricate ourselves from the situation described in the last
paragraph by picking a different weighting functional. Keeping in mind that we want no
part of the graviton propagator to fall off slower than p�4 for large momenta, we now
choose the weighting functional [12]

�4�e�� � exp i 1
2 


�1 �d4xe�
2e� , �5. 1. 6�

where e� is any four-vector function.The corresponding gauge-fixing term in the effective
action is

� 1
2 �

2
�1 �d4xF�
2F�. �5. 1. 7�

The graviton propagator resulting from the gauge-fixing term (5.1.7) is derived in [13].
For most values of the parameters � and 	 in I sym it satisfies the requirement that all its
leading parts fall off like p�4 for large momenta. There are, however, specific choices of
these parameters which must be avoided. If � � 0, the massive spin-2 excitations



disappear, and inspection of the graviton propagator shows that some terms then
behave like k�2. Likewise, if 3	 � � � 0, the massive scalar excitation disappears, and
there are again terms in the propagator which behave like p�2. However, even if we avoid
the special cases � � 0 and 3	 � � � 0, and if we use the propagator derived from
(5.1.7), we still do not obtain a clean renormalization of the Green’s functions. We now
turn to the implications of gauge invariance.Before we write down the BRS
transformations for gravity, let us first establish the commutation relation for gravitational
gauge transformations, which reveals the group structure of the theory. Take the gauge
transformation (5.1.4) of h��, generated by �� and perform a second gauge
transformation, generated by ��, on the h�� fields appearing there. Then antisymmetrize
in �� and ��.The result is


D�
��


h�� D	
������	 � ���	� � �D�

��������� � �������, �5. 1. 8�

where the repeated indices denote both summation over the discrete values of the
indices and integration over the spacetime arguments of the functions or operators
indexed.

The BRS transformations for gravity appropriate for the gauge-fixing term (5.1.6) are
[13]

�a� 
BRSh�� � �D�
��C�
�, �b� 
BRSC� � ��2�	C�C	
�,

�c� 
BRSC� � ��3
�1
2F�
�,
�5. 1. 9�

where 
� is an infinitesimal anticommuting constant parameter.The importance of these
transformations resides in the quantities which they leave invariant. Note that


BRS��	C�C	� � 0 �5. 1. 10�

and


BRS�D�
��C�� � 0. �5. 1. 11�

As a result of Eq. (5.1.11), the only part of the ghost action which varies under the
BRS transformations is the antighost C�. Accordingly, the transformation (2.2.9c) has
been chosen to make the variation of the ghost action just cancel the variation of the
gauge-fixing term. Therefore, the entire effective action is BRS invariant:


BRS I sim � 1
2 �

2
�1F�
2F� � C�F��
� D�

��C� � 0. �5. 1. 12�

Equations (5.1.9), (5.1.10), and (5.1.12) now enable us to write the Slavnov identities in
an economical way. In order to carry out the renormalization program, we will need to
have Slavnov identities for the proper vertices.

5.1.1. Slavnov identities for Green’s functions
First consider the Slavnov identities for Green’s functions.

Z�T��,	�,	�,K��,L�� � N� �
���

dh�� �dC� ��dC� �

exp i��h��,C�,C�,K��,L�,	�C�� � 	�C� � C�	� � �T��h�� .
�5. 1. 13�

Anticommuting sources have been included for the ghost and antighost fields, and the

effective action � has been enlarged by the inclusion of BRS invariant couplings of the



ghosts and gravitons to some external fields K�� (anticommuting) and L� (commuting),

� � I sim � 1
2 �

2
�1F�
2F� � C�F���
� D�

��C� � �K��D�
�� � �2L��	C�C	. �5. 1. 14�

� is BRS invariant by virtue of Eq.(5.1.9), Eq.(5.1.10), and Eq.(5.1.12). We may use the
new couplings to write this invariance as


�

K��


�

h�� � 
�


L�


�

C� � �3
�1
2F�


�

C�

. �5. 1. 15�

In this equation, and throughout this subsection, we use left variational derivatives with
respect to anticommuting quantities: 
f�C�� � 
C�
f/
C�. Equation (2.2.15) may be
simplified by rewriting it in terms of a reduced effective action,

� � � � 1
2 �

2
�1F�
2F�. �5. 1. 16�

Substitution of (5.1.16) into (5.1.15) gives

�

K��


�

h�� � 
�


L�


�

C� � 0, �5. 1. 17�

where we have used the relation

��1F���
� 
�


K��
� 
�


C�
� 0. �5. 1. 18�

Note that a measure

�
���

dh�� �dC� ��dC� � �5. 1. 19�

is BRS invariant since for infinitesimal transformations, the Jacobian is 1, because of the
trace relations

�a� 
2�

K����
h����

� 0,

�b� 
2�

C�
L�

� 0,

�5. 1. 20�

both of which follow from � d4x��C� � 0. The parentheses surrounding the indices in

(5.1.20a) indicate that the summation is to be carried out only for � � �.
Remark 5.1.1.Note that the Slavnov identity for the generating functional of Green’s

functions is obtained by performing the BRS transformations (5.1.9) on the integration
variables in the generating functional (5.1.13). This transformation does not change the
value of the generating functional and therefore we obtain

N� �
���

dh�� �dC� ��dC� � �

�2T��D�
�� � �2	��	C�C	 � �3
�1	�
2F ���h�� �

exp i � � �T��h�� � 	�C� � C�	� � 0.

�5. 1. 21�

Another identity which we shall need is the ghost equation of motion. To derive this
equation, we shift the antighost integration variable C� to C� � 
C�, again with no
resulting change in the value of the generating functional:

N� �
���

dh�� �dC� ��dC� � 
�

C� � 	� exp i � � �T��h�� � 	�C� � C�	� �5. 1. 22�



We define now the generating functional of connected Green’s functions as the
logarithm of the functional (5.1.13),

W�T��,	�,	�,K��,L� � � �i lnZ�T��,	�,	�,K��,L� �. �5. 1. 23�

and make use of the couplings to the external fields K�� and L� to rewrite (5.1.22) in
terms of W

�T��

W

K��

� 	�

W

L�

� �2
�1	�
2F ���

W

T��

� 0. �5. 1. 24�

Similarly, we get the ghost equation of motion:

��1F���
� 
W


K��
� 	� � 0. �5. 1. 25�

5.1.2. Proper vertices
A Legendre transformation takes us from the generating functional of connected

Green’s functions (2.2.23) to the generating functional of proper vertices. First, we define
the expectation values of the gravitational, ghost, and antighost fields in the presence of
the sources T��,	�, and 	� and the external fields K�� and L�

�a� h���x� � 
W
�
T���x�

, �b� C��x� � 
W

	��x�

, �c� C��x� � 
W

	��x�

. �5. 1. 26�

We have chosen to denote the expectation values of the fields by the same symbols
which were used for the fields in the effective action (5.1.14).

The Legendre transformation can now be performed, giving us the generating
functional of proper vertices as a functional of the new variables (5.1.26) and the
external fields K�� and L�

��h��,C�,C�,K��,L� � � W�T��,	�,	�,K��,L� � � �T��h�� � 	�C� � C�	�. �5. 1. 27�

In this equation, the quantities T��, 	�, and 	� are given implicitly in terms of
h��,C�,C�,K��, and L� by Eq.(5.1.26).The relations dual to (5.1.26) are

�a� �T���x� � � 
�

h���x�

, �b� 	��x� � 
�

C��x�

, �c� 	��x� � � 
�

C��x�

. �5. 1. 28�

Since the external fields K�� and L� do not participate in the Legendre transformation
(5.1.26), for them we have the relations

�a� 
�

K���x�

� 
W

K���x�

, �b� 
�

L��x�

� 
W

L��x�

. �5. 1. 29�

Finally, the Slavnov identity for the generating functional of proper vertices is obtained
by transcribing (5.1.24) using the relations (5.1.26), (5.1.28), and (5.1.29)


�

K��


�

h�� � 
�


L�


�

C� � �3
�1
2F ���h�� 
�


C� � 0. �5. 1. 30�

We also have the ghost equation of motion,

��1F���
� 
�


K��
� 
�


C� � 0. �5. 1. 31�

Since Eq. (5.1.30) has exactly the same form as (5.1.15), we follow the example set by
(5.1.16) and define a reduced generating functional of the proper vertices,

� � � � 1
2 �

2
�1 F ���h�� 
2 F���
� h�� . �5. 1. 32�



Substituting this into (5.1.30) and (5.1.31), the Slavnov identity becomes

�

K��


�

h�� � 
�


L�


�

C� � 0. �5. 1. 33�

and the ghost equation of motion becomes

��1F���
� 
�


K��
� 
�


C�
� 0. �5. 1. 34�

Equations (5.1.33) and (5.1.34) are of exactly the same form as (5.5) and (5.6). This is
as it should be, since at the zero-loop order

��0� � �. �5. 1. 35�

5.1.3. Structure of the divergences and renormalization
equation.

The Slavnov identity (5.1.33) is quadratic in the functional �. This nonlinearity is
reflected in the fact that the renormalization of the effective action generally also
involves the renormalization of the BRS transformations which must leave the effective
action invariant.

The canonical approach uses the Slavnov identity for the generating functional of
proper vertices to derive a linear equation for the divergent parts of the proper vertices.
This equation is then solved to display the structure of the divergences. From this
structure, it can be seen how to renormalize the effective action so that it remains
invariant under a renormalized set of BRS transformations [13].

Suppose that we have successfully renormalized the reduced effective action up to
n � 1 loop order; that is, suppose we have constructed a quantum extension of � which
satisfies Eqs. (5.1.17) and (5.1.18) exactly, and which leads to finite proper vertices
when calculated up to order n � 1. We will denote this renormalized quantity by ��n�1�. In
general, it contains terms of many different orders in the loop expansion, including
orders greater than n � 1. The n � 1 loop part of the reduced generating functional of
proper vertices will be denoted by ��n�1�.

When we proceed to calculate ��n�, we find that it contains divergences. Some of
these come from n-loop Feynman integrals. Since all the subintegrals of an n-loop
Feynman integral contain less than w loops, they are finite by assumption. Therefore,
the divergences which arise from w-Ioop Feynman integrals come only from the overall
divergences of the integrals, so the corresponding parts of ��n� are local in structure. In
the dimensional regularization procedure, these divergences are of order ��1 � �d � 4��1,
where d is the dimensionality of spacetime in the Feynman integrals.

There may also be divergent parts of ��n� which do not arise from loop integrals, and
which contain higher-order poles in the regulating parameter �. Such divergences comes
from n-loop order parts of ��n�1� which are necessary to ensure that (5.1.17) is satisfied.
Consequently, they too have a local structure. We may separate the divergent and finite
parts of ��n�:

��n� � �div
�n� � �finite

�n� . �5. 1. 36�

If we insert this breakup into Eq. (5.1.20), and keep only the terms of the equation which
are of n-loop order, we get




�div
�n�


K��


��0�


h�� � 
��0�


K��


�div
�n�


h�� �

�div

�n�


L�


��0�


C� � 
��0�


L�


�div
�n�


C� �

��
i�0

n 
�finite
�n�i �


K��


�finite
�i �


h�� �

�finite

�n�i �


L�


�finite
�i �


C� .

�5. 1. 37�

Since each term on the right-hand side of (5.1.37) remains finite as � 	 0, while each
term on the left-hand side contains a factor with at least a simple pole in e, each side of
the equation must vanish separately. Remembering the Eq.(5.1.35), we can write the
following equation, called the renormalization equation:

��div
�n� � 0, �5. 1. 38�

where

� � 
�

h��




K��

� 
�

C�




L�

� 
�

K��




h�� � 
�


L�




C� . �5. 1. 39�

Similarly by collecting the n-loop order divergences in the ghost equation of motion
(5.1.34) we get

��1F���
� 
�div

�n�


K��
� 
�div

�n�


C�
� 0. �5. 1. 40�

In order to construct local solutions to Eqs. (5.1.38) and (5.1.40) remind that the operator
� defined in (5.1.39) is nilpotent [13]:

�2 � 0. �5. 1. 41�

Equation (5.1.41) gives us the local solutions to Eq.(5.1.38) of the form

�div
�n� � ��h��� � ��X�h��,C�,C�,K��,L���, �5. 1. 42�

where � is an arbitrary gauge-invariant local functional of h�� and its derivatives, and X is
an arbitrary local functional of h��,C�,C�,K�� and L� and their derivatives. In order to
satisfy the ghost equation of motion (5.1.40) we require that

�div
�n� � �div

�n� h��,C�,K�� � ��1C�F���
� ,L� . �5. 1. 43�

5.1.4. Ghost number and power counting
Structure of the effective action (5.1.14) shows that we may define the following

conserved quantity, called ghost number [13]:

Nghost�h�� � � 0,Nghost�C� � � �1,Nghost�C� � � �1,

Nghost�K�� � � �1,Nghost�L� � � �2.
�5. 1. 44�

From Eqs.(2.2.44) follows that

Nghost��� � Nghost��� � 0. �5. 1. 45�

Since

Nghost��� � �1, �5. 1. 46�

we require of the functional X�	� that

Nghost�X� � �1. �5. 1. 47�

In order to complete analysis of the structure of �div
�n�, we must supplement the symmetry

equations (5.1.42), (5.1.43), and (5.1.47) with the constraints on the divergences which



arise from power counting. Accordingly, we introduce the following notations:
nE � number of graviton vertices with two derivatives,
nG � number of antighost-graviton-ghost vertices,
nK � number of K-graviton-ghost vertices,
nL � number of L-ghost-ghost vertices,
IG � number of internal-ghost propagators,
EC�number of external ghosts,
EC�number of external antighosts.
Since graviton propagators behave like p�4, and ghost propagators like p�2, we are led

by standard power counting to the degree of divergence of an arbitrary diagram,

D � 4 � 2nE � 2IG � 2nG � 3nL � 3nK � EC. �5. 1. 48�

The last term in (5.1.48) arises because each external antighost line carries with it a
factor of external momentum. We can make use of the topological relation

2IG � 2nG � 2nL � nK � EC � EC �5. 1. 49�

Fig.5.1.2.The three types of divergent diagram

which involve external ghost lines. Arbitrarily

many gravitons may emerge from each of the

central regions,(a) Ghost action type,(b) K type,

(c) L type.

to write the degree of divergence as

D � 4 � 2nE � nL � 2nK � EC � 2EC. �5. 1. 50�

Together with conservation of ghost number,Eq. (5.1.50) enables us to catalog three
different types of divergent structures involving ghosts. These are illustrated in Fig.5.1.2.
Each of the three types has degree of divergence D � 1 � 2nE. Consequently, all the
divergences which involve ghosts have nE � 0.Since the degree of divergence is then
1, the associated divergent structures in �div

�n� have an extra derivative appearing on one
of the fields. Diagrams whose external lines are all gravitons have degree of divergence
D � 4 � 2nE. Combining (5.1.50) with (5.1.47), (5.2.43), and (5.1.42), we can finally write
the most general expression for �div

�n� which satisfies all the constraints of symmetries and
power counting:

�div
�n� � ��h��� � � K�� � ��1C�F���

� P���h�	� � L�Q�
��h�	�C� , �5. 1. 51�

where P���h�	� and Q�
��h�	� are arbitrary Lorentz-covariant functions of the gravitational



field h��, but not of its derivatives, at a single spacetime point. ��h��� is a local
gauge-invariant functional of h�� containing terms with four, two, and zero
derivatives.Expanding (5.1.51), we obtain an array of possible divergent structures:

�div
�n� � ��h��� �


I sym


h�� P�� � �K�� � C�F���
� 
D�

��


h�� C� P�� �

� �K�� � C�F���
� 
P��


h�� D�
��C� � �K�� � C�F���

� D�
���Q�

�C�� � �2L��	�Q�
�C��C	

��2L��	C�Q�
	C� � �L�


Q�
�


h�� C�D�
��C� � �2L�Q�

��	C�C	.

�5. 1. 52�

The breakup between the gauge-invariant divergences S and the rest of (5.1.52) is
determined only up to a term of the form [13]

� d4x���� � �h���

I sym

�
h�� , �5. 1. 53�

which can be generated by adding to P�� a term proportional to ��� � �h�� � g g��.The

profusion of divergences allowed by (5.1.52) appears to make the task of renormalizing
the effective action rather complicated. Although the many divergent structures do pose
a considerable nuisance for practical calculations, the situation is still reminiscent in
principle of the renormalization of Yang-Mills theories. There, the non-gauge-invariant
divergences may be eliminated by a number of field renormalizations. We shall find the
same to be true here, but because the gravitational field h�� carries no weight in the
power counting, there is nothing to prevent the field renormalizations from being
nonlinear, or from mixing the gravitational and ghost fields. The corresponding
renormalizations procedure considered in [13].

Remark 5.1.2.We assume now that:
(i) The local Poincaré group of momentum space is deformed at some fundamental
high-energy cutoff �� [9],[10].
(ii) The canonical quadratic invariant �p�2 � �abpapb collapses at high-energy cutoff ��

and being replaced by the non-quadratic invariant:

�p�2 �
�abpapb

�1 � l��p0�
. �5. 1. 54�

(iii) The canonical concept of Minkowski space-time collapses at a small distances
l�� � ��

�1 to fractal space-time with Hausdorff-Colombeau negative dimension and
therefore the canonical Lebesgue measure d4x being replaced by the

Colombeau-Stieltjes
measure (see section III)

�d��x,���� � �v��s�x��d4x��, �5. 1. 55�

where

�v��s�x���� � �v��x��� � |s�x�||D
_

| � �
�1

�
,

s�x� � x�x� ,D
_
� 0,

�5. 1. 56�

see subsection IV.2.
(iv) The canonical concept of local momentum space collapses at fundamental high-

energy cutoff �� to fractal momentum space with Hausdorff-Colombeau negative
dimension and therefore the canonical Lebesgue measure d3k,where k ��kx,ky,kz� being



replaced by the Hausdorff-Colombeau measure

dD�,D�k � 
�D��dD�k
|k||D

_
| � �

�

�

�D��
�D��pD��1dp

�p|D
_

| � ���
, �5. 1. 57�

see subsection 3.3-3.4. Note that the integral over measure dD�,D
_

k is given by formula
(3.3.16).

Remark 5.1.3.Note that by assumption (iii) mentioned above, the generic expression
(2.2.1) of the action becomes to the following form

�I sym����� � � � d4xv��x� �g ��R��R�� � 	R2 � 2��2R�
�

� �� d4x�v��x��� �g ��R��R�� � 	R2 � 2��2R��.
�5. 1. 58�

Corresponding Green’s functions are then given by a generating functional

�Z��T����� � N� �
���

dh�� �dC� ��dC� �
�
4�F��

exp i �I sym����� � ���v��x����d
4xC�F���

� D�
��C� � � ���v��x����d

4xT��h�� .
�5. 1. 59�

Remark 5.1.4.(I)The renormalizable models which we have considered in this section
many years regarded only as constructs for a study of the ultraviolet problem of
quantum gravity. The difficulties with unitarity appear to preclude their direct acceptability
as canonical physical theories in locally Minkowski space-time. In canonical case they do
have only some promise as phenomenological models.

(II) However, for their unphysical behavior may be restricted to arbitrarily large energy
scales �� mentioned above by an appropriate limitation on the renormalized masses m2

and m0. Actually, it is only the massive spin-two excitations of the field which give the
trouble with unitarity and thus require a very large mass. The limit on the mass m0 is
determined only by the observational constraints on the static field.

5.2.Cleaner methods
The renormalization procedure described in the last section is sufficiently complicated

to make practical calculations unappealing. We now turn to other choices of the
gauge-fixing term which greatly simplify matters by eliminating the need for the field and
transformation renormalizations.

A. Unweighted gauge condition
Explicit calculations of samples of the nongauge-invariant divergences allowed by

(6.17) reveal that they depend upon the gauge-fixing parameter 
 which was introduced
into the effective action by the weighting functional (3.6). This suggests that if we take
the limit 
 	 0, all the field and transformation renormalizations may disappear. This
limit as 
 	 0 returns us to the unweighted gauge condition

��h�� � 0 �5. 2. 1�

with the same Feynman rules as those obtained using the simple Gaussian
representation (3.4) of the gauge-fixing 
-function.The graviton propagator in the limit

 	 0 maybe calculated as suggested above, setting 
 � 0 in the propagator calculated
for finite 
 (cf. sec.6.4), or by substituting the gauge condition (8.1) into the linearized
classical field equations and then inverting. The resulting propagator is constructed
entirely from projectors which are transverse in all their indices:



D����

�0 � 1

�2��4i

2P����
�2� �k�

k2���2k2 � ��
� 2P����

�0�s��k�
k2��3	 � ����2k2 � 1

2 �
. �5. 2. 2�

The definitions of the projectors P�2� and P�0�s� are given in sec.6.4.The
antighost-graviton- ghost interaction is

VChC � ��C���h��C� � ��C���h��C� � ���2 C�h��C�. �5. 2. 3�

The first two terms in this expression contain the gauge condition (5.2.1), and
consequently do not connect to the graviton propagator (5.2.2). Similarly, integration by
parts in the remaining term can be used to move the derivatives onto the ghost field C�.
When these derivatives fall on h�� they form the gauge condition (5.2.1) again,so we
have effectively

VChC � ��2 C���h��C� � C���h����2 C�. �5. 2. 4�

The symbol � is used to indicate that terms containing ��h�� hpo or ���2 h�� have been
dropped, since they do not connect to the graviton propagator.

The power-counting rule given in Sec. 5.1 must be modified as a results of (5.2.4). In
one-particle-irreducible (1PI) diagrams, there is a separate vertex VChC for each external
ghost and antighost line. Consequently, each of these lines carries with it two factors of
external momentum. The resulting degree of divergence of an arbitrary 1PI diagram is

D�
�0�
1PI � 4 � 2nE � nL � 2nK � 3EC � 3EC. �5. 2. 5�

This result would hold even if we had not chosen (2.2) as our definition of the
gravitational field variable. However, the simple relation (5.2.4) is dependent upon that
choice, which accords with the harmonic gauge condition (5.2.1). Otherwise there would
be a complicated cancellation between vertices.

From the power-counting rule (5.2.5), we see that each of the three types of diagrams
shown in Fig. 5.1.2 is now convergent: The ghost action type has D�
�0�

1PI � �2 � 2nE, the

K type has D�
�0�
1PI � �1 � 2nE and the L type has D�
�0�

1PI � �3 � 2nE Therefore, there are no

parts of �div�
�0�
�n� which depend upon ghosts:

�a�

�div

�n��
 � 0�

C� � 0, �b�


�div
�n��
 � 0�

K��

, �c�

�div

�n��
 � 0�

L�

. �5. 2. 6�

Insertion of Eqs. (6.2.6) into the renormalization Eq. (5.2.3) yields


�

K��


�div
�n��
 � 0�

h�� � 0. �5. 2. 7�

Together with (6.2.6a), this implies that �div
�n��
 � 0� is gauge invariant. All the

divergences may therefore be eliminated by renormalizations of the parameters �, 	 and
� in I sym and by the addition of a cosmological counterterm. The field variables and the
BRS transformations do not need to be renormalized.The contrast between the
complicated renormalization procedure which one must use when the quantum theory is
defined with the gauge -fixing term (3.7) and the much simpler procedure for the
unweighted gauge condition is reminiscent of the situation in the axial gauge in
Yang-Mills theory. There, the ghosts decouple entirely from the Yang-Mills fields if one
uses the unweighted axial gauge condition. However, if one smears the axial gauge with
a weighting functional, the resulting propagator does connect to the ghosts, and then
there arise non-gauge-invariant divergences. These Yang-Mills divergences are similar



to those we would have obtained in the gravitational theory had we kept the
two-derivative gauge-fixing term derived from (3.5). In both cases, the part of the
propagator which depends upon the gauge-fixing parameter has a bad asymptotic
behavior for large momenta, leading to nongauge-invariant divergences of progressively
higher order as the calculation proceeds in perturbation theory.

Taking the limit 
 	 0 is necessary for the axial gauge quantization of Yang-Mills
theory to avoid these artifactual divergences. However, this limit is less useful in other
gauges: Although one obtains an improvement in the power counting just as we have
found for gravitation, the improvement is not sufficient to eliminate all the
nongauge-invariant divergences, and one must still renormalize the Yang-Mills gauge
transformation. Thus, although taking the limit 
 	 0 is perfectly acceptable in
Yang-Mills theory, it is generally of no particular advantage, and has not been much
used in the literature.

B. Third-derivative gauge
Since we are dealing with theories in which the classical field equations involve fourth

derivatives, the Cauchy data which must be initially specified to determine the classical
evolution of the field include the values of the field and up to its third derivatives on some
spacelike hyper surface. Accordingly, we should also be prepared to use

gauge conditions which involve up to third derivatives. A gauge condition of this type
which has the same structure as the harmonic gauge condition (5.2.1) is

�2
2��h�� � 0. �5. 2. 8�

If we weight the gauge condition (6.2.8) with the Gaussian functional (3.5), we get the
gauge-fixing term

1
2 �

4
�1�
2��h����
2��h�
� �. �5. 2. 9�

Another way to arrive at (5.2.9) is to start from the usual harmonic gauge condition
(5.2.1) and to weight it with the functional

�6�e�� � exp i 1
2 �

4
�1 ��
2e���
2e�� . �5. 2. 10�

When we obtain (5.2.9) this second way, it is clear that the ghost action which we
must use is exactly the same that we had before in the generating functional (3,2). This
also follows from the first method of arriving at (5.2.9), because we may always redefine
the antighost field: 
2C� 	 C�.

The gauge-fixing term (5.2.9) requires us to change the BRS transformation of the
antighost field C�. The new transformation is


�6�BRSC� � �5
�1
2
2F�
�. �5. 2. 11�

The Slavnov identities for the generating functionals of Green’s functions and of
proper vertices must be changed too, but the identity for the reduced generating
functional of proper vertices,

��6� � ��6� � 1
2 �

4
�1�
2F���h����
2F��
� h��� �5. 2. 12�

remains the same as (5.20). Consequently, the renormalization equation is the same as
(6.3).The Feynman rules which we obtain using (5.2.9) differ from those obtained using
(3.7) only in the replacement of the factors of 
��2k�4 in the graviton propagator by

��4k�6. This change brings about a reduction in the degree of divergence of those parts
of diagrams which depend on the parameter 
. The degree of divergence is reduced by



2 for each factor of 
, so that once again all three types of diagram involving ghosts
shown in Fig. 6.1.2 are convergent. The renormalization equation then implies that all
the divergences in ��6�div

�n� are gauge invariant.

5.3.Coupling to fields of standard matter and to fields of
physical ghost matter.

Now that we know how to carry out the renormalization procedure for a purely
gravitational model, it is straightforward to include coupling to other renormalizable
fields. As an example, we discuss a massive scalar field in interaction with the
gravitational field alone, adding to the action (5.1.1) the additional term

�� � � d4x � 1
2
�����g�� � 1

2
m2�2 �g . �5. 3. 1�

The BRS transformations must now include a transport term for the scalar field,


BRS� � ��2���C�
�. �5. 3. 2�

This transformation is nilpotent:


BRS����C�� � 0. �5. 3. 3�

In order to write the Slavnov identities, we make use of (5.3.3) by adding a term
coupling the scalar and ghost fields to a new anticommuting external field B�x�:

� � I sym� I� � �K�� � C�F��
�

D�
��C� � �2L��	C�C	 � �2B���C�. �5. 3. 4�

In the generating functional of Green’s functions, the scalar field is coupled to a
source J�x�; the Legendre transformation then trades this dependence on J�x� for a
dependence on ��х� � 
W/
J�x� in the generating functional of proper vertices. The
Slavnov identity for the reduced generating functional of proper vertices reads


��


B

��


�
�


��


K��


��


h�� �

��


L�


��


C� � 0. �5. 3. 5�

As before, this identity leads to the renormalization equation for ��div
�n� .Power counting,

using the unweighted gauge condition, gives the degree of divergence of an arbitrary 1PI
diagram,

D�
1PI�
 � 0� � 4 � 2nE � nL � 2nK � nB � 3EC � 3EC � 2ES, �5. 3. 6�

where nB is the number of B-scalar-ghost vertices and ES is the number of external
scalar lines. The external scalar lines are counted twice in (5.3.6) because of the linkage
of scalar fields and derivatives in the interaction between scalars and gravitons (the
mass term is super-renormalizable and is not included in the power counting). This
linkage is similar to the linkage of ghosts and derivatives which we have already
encountered.The power- counting rule (5.3.6), together with the conservation of ghost
number, shows that all 1PI diagrams with external ghost lines are convergent, so that


��


B

��div

�n�


�
�


��


K��


��div
�n�


h�� � 0 �5. 3. 7�

Consequently,��div
�n� is gauge invariant. The only gauge-invariant structures consistent

with (5.3.6) are



��div
�n� � ��n� �R��R�� �g � 	�n� �R2 �g � ��n���2 �R �g � ��n���4 � �g

� 1
2

f �n� � �����g�� �g � 1
2
�
m2� �n� � �2 �g .

�5. 3. 8�

These divergences may be eliminated by renormalizations of the appropriate
coefficients in I sym and I�, and by the addition of a cosmological counterterm. It should
be noted that the absense of a term like �R�2 �g in (6.3.8) is due to the linkage of

scalars and derivatives. If this linkage were broken by the inclusion in (6.3.1) of a scalar
self-interaction ��4 �g , then it would be nec-essary to include as well the nonminimal

gravitational-scalar interaction.
The scalar field example shows that once renormalizability has been established for a

purely gravitational model, the inclusion of couplings to other renormalizable fields poses
no further problems (except possibly the necessity for a nonminimal gravitational-scalar
interaction). In particular, the Faddeev-Popov ghost machinery remains unrenormalized
just as it did in the purely gravitational case.The allowed divergences may be
summarized by assigning a power-counting weight to each field, and then requiring that
divergent structures be gauge invariant and of power-counting weight four or less. It is
necessary to take into account any linkages of fields and derivatives in the interactions
by augmenting the weight of a field by the number of derivatives linked to it. The weight
of the gravitational field is zero, and before linkages with derivatives are taken into
account, the weights of other fields are simply given by their canonical dimensions.

5.4.The graviton propagator.
The inversion of the gravitational kinetic matrix which is necessary to calculate the

graviton propagator involves a substantial amount of Lorentz algebra on symmetric
rank-two tensors. To organize the calculation, it is convenient to use a set of orthogonal
projectors in momentum space. We choose a set of projectors which emphasises
transversality,16 since this is important in Sec. 5.3.These projectors are constructed
using the transverse and longitudinal projectors for vector quantities,

�a� ��� � ��� �
k�k�

k2 , �b� ��� �
k�k�

k2 . �5. 4. 1�

The four projectors for symmetric rank-two tensors then reads

�a� P����
�2� � 1

2
������� � ������� � 1

3
������,

�b� P����
�1� � 1

2
������� � ������ � ������ � �������,

�c� P����
0 �s

� 1
3
������, �d� P����

0 �w
� ������.

�5. 4. 2�

For a massive tensor field in the rest frame, the projectors (5.2.2.a)-(5.2.2.d) select
out the spin-two, spin-one, and two spin-zero parts of the field.However, the projectors
(5.2.2) do not span the operator space of the gravitational field equations. In order to
have a complete basis, we must also include the two spin-zero transfer operators,

�a� P����
0 �sw

� 1
3
������, �b� P����

0 �sw
� 1

3
������ �5. 4. 3�

The orthogonality relations of the projectors (5.2.2) and the transfer operators (5.2.3) are



�a� P�i�a�P�j�b� � 
 ij
abP�j�b�, �b� P�i�ab�P�j�cd� � 
 ij
bcP�j�a�,

�c� P�i�a�P�j�bc� � 
 ij
abP�j�ac�, �d� P�i�ab�P�j�c� � 
 ij
bcP�j�ac�.
�5. 4. 4�

where i and j run from 0 to 2, and a and b take on the values w and s.In order to calculate
the graviton propagator, we must first write out the part of the effective action (5.1.14)
which is purely quadratic in the gravitational field h��. Going over to momentum space
and using (5.2.2) and (5.2.3), we get

1
4 � d4kh����k� ����2k2 � ��k2P����

�2� �k� � 
�1�2k4P����
�1� �k� �

3k2 �3	 � ���2k2 � 1
2 � � 2
�1�2k4 P����

�0�w��k� �

k2 �3	 � ���2k2 � 1
2 � P����

�0�s��k� � 3 P����
�0�ws��k� � P����

�0�sw��k� h���k�.

�5. 4. 5�

The combination of parameters �3	 � �� which occurs throughout this expression is an
echo of the conformally invariant action
�d4x �g �R��R�� � 1/3R2� � 1/2 �d4x �g C���	C���	 where C���	 is the Weyl tensor. The

orthogonality relations (5.4.4) may now be used in inverting the kinetic matrix shown in
(5.4.5) to obtain the graviton propagator:

D�����k� � 1
�2��4i

2P����
�2� �k�

k2���2k2 � ��
� 2P����

�0�s��k�
k2 �3	 � ���2k2 � 1

2 �
� 2
P����

�1� �k�
�2k4


 3P����
�0�s��k� � 3 P����

�0�sw��k� � P����
�0�ws��k� � P����

�0�w��k�

�2k4

�5. 4. 6�

To determine the propagator (5.4.6) completely, we must specify how the k0

integration contour is to skirt the poles in calculating Feynman integrals. We do this in
the customary way by including ie terms in the denominators of the individual poles,
which must first be obtained by separating (5.4.6) into partial fractions. Ignoring for the
moment the terms proportional to 
, we find

D�����k� � 1
�2��4i

�

2 P����
�2� �k� � 2P����

�0�s��k�

�k2 � 2P����
�2� �k�

� k2 � ����2 ��1 �
4P����

�0�s��k�

� k2 � ��2�2�3	 � ����1 .
�5. 4. 7�

Normally, one requires that quantum states have positive-definite norm and energy.
Such states give rise to poles in the propagator with positive residues. Since both the
massless pole and the pole at k2 � ���2�2�3	 � ����1 in (5.4.7) do have positive
residues, we shift them in the standard fashion, replacing the denominators respectively
by

�k2 � i�� �5. 4. 8�

and by

k2 � ��2�3	 � ���2 ��1 � i� . �5. 4. 9�

On the other hand, the negative residue of the massive spin-two pole at k2 � �������1

faces us with a choice between two unfortunate alternatives: to give up either the
positive definiteness of the norm or of the energy of the corresponding quantum states.



Both choices give the required negative residue, but they differ in the way the pole must
be shifted.If the massive spin-two states are taken to have negative norm, the situation
is analogous to a Pauli-Villars regularized theory. We recall that in the usual derivation of
the propagator, one starts from �0|T�h���x�h���x���|0�, transforms to momentum space,
and sums over a complete set of momentum eigenstates inserted between the two field
operators. The only difference in the present case is that the negative-norm states must
be accompanied by a vector space metric factor of ��1� in the sum over states. This
gives rise to a negative residue for the massive spin-two pole, but does not affect the
location of the pole, whose denominator is consequently given by

k2 � ������1 � i� . �5. 4. 10�

As the Pauli-Villars analogy leads us to expect, the choice (5.4.10), together with
(5.4.8) and (5.4.9), gives a high-energy behavior of the total propagator which is like k�4.
To see this, one may, for example, perform a Wick rotation into Euclidean space and
then drop the ге terms. This is allowedbecause (5.4.10), (5.4.8), and (5.4.9) all shift the
poles in the same way. If the massive spin-two states are taken to have negative energy,
the pole in the propagator acquires a negative residue for a different reason.In this case,
there are no vector space metric factors in the sum over states, but the expansion of the
field operators into creation and annihilation operators involves normalization factors
�2|k0 |��1/2 � ��2k0��1/2. These contribute an overall minus sign to the massive spin-two
part of the propagator. In addition, the sign of the energy flow for a given time ordering is
opposite to that for a positive-energy field, so the denominator of the pole is now given
by

k2 � ������1 � i� . �5. 4. 11�

The difference between the poles given by (5.4.10) and (5.4.11) is a term proportional
to 
 k2 � ������1 . While the choice of (5.4.10) leads to the desired behavior, this

additional term effectively spoils the high-energy behavior of (5.4.11). Thus, our
power-counting requirements lead us to adopt an indefinite-metric state vector space,
following the analogy to Pauli-Villars regularization.The pure k4 terms in (5.4.6),
proportional to 
, may be handled by confluence, replacing them by
��1 �k2 � i���1 � �k2 � � � i���1 , and then letting � 	 0 at the end of the calculation.

6. Hausdorff-Colombeau measure and associated
negative Hausdorff-Colombeau dimensions.

6.1.Fractional Integration in negative dimensions.
Let �H

D�
be a Hausdorff measure [33-34] and X � �n,D� � n is measurable set. Let

s�x� be a function s : X 	 � such that is symmetric with respect to some centre
x0 � X, i.e. s�x� � constant for all x satisfying d�x,x0� � r for arbitrary values of r.Then the

integral in respect to Hausdorff measure over n-dimensional metric space X is then
given by [33]:

�
X

s�x�d�H
D�

� 2�D�/2

��D�/2�
�

0



s�r�rD��1dr. �6. 1. 1�

The integral in RHS of the Eq.(3.1.1) is known in the theory of the Weyl fractional
calculus where, the Weyl fractional integral WDf�x�, is given by



WD�
f�x� � 1

��D��
�

0



�t � x�D��1f�t�dt. �6. 1. 2�

Remark 6.1.1. In order to extend the Weyl fractional integral (6.1.1) in negative
dimensions we apply the Colombeau generalized functions [21-25] and Colombeau
generalized numbers [23].Recall that Colombeau algebras G��� of the Colombeau
generalized functions defined as follows [21-22].
Let � be an open subset of �n. Throughout this paper, for elements of the space
C
����0,1� of sequences of smooth functions indexed by � � �0, 1� we shall use the
canonical notation �u��� so u� � C
���, � � �0, 1�.
Definition 6.1.1.We set G��� � EM���/N���, where

EM��� � �u��� � C
����0,1� �K �� �,�� � �n�p � � with

supx�K|u��x�| � O���p� as � 	 0 ,

N��� � �u��� � C
����0,1� �K �� �,�� � �n�q � �

supx�K|u��x�| � O��q� as � 	 0 .

�6. 1. 3�

Notice that G��� is a differential algebra.Equivalence classes of sequences �u��� will
be denoted by cl��u��� �. is a differential algebra containing D���� as a linear subspace
and C
��� as subalgebra.

Definition 6.1.2. Weyl fractional integral �W�
D

_�
f�x��� in negative dimensions D� � 0,

D� � 0,�1, . . . ,�n, . . . ,n � � is given by

WD�
f�x� � 1

��D��
�
�



�t � x�D��1f�t�dt

�

or

W�
D�
�
f�x�

�
� 1

��D��
�

0


 1
� � �t � x� |D� |�1

f�t�dt
�

,

�6. 1. 4�

where � � �0, 1� and �
0



|f�t�dt| � 
.Note that �W�

D��
f�x��� � G���.Thus in order to obtain

apropriate extension of the Weyl fractional integral WD�
f�x� on the negative dimensions

D� � 0 the notion of the Colombeau generalized functions is essentially importent.
Remark 6.1.2.Thus in negative dimensions from Eq.(6.1.1) we formally obtain

�
X

s�x�d�HC,�
D

_ �

�
� 2�D

_�/2

��D�/2�
�

0


 s�r�
� � r |D

_
|�1

dr
�
� I �D�

_

�
, �6. 1. 5�

where � � �0, 1� and D� � 0,�2, . . . ,�2n, . . . ,n � � and where ��HC,�
D

_

�� is apropriate
generalized Colombeau outer measure.Namely Hausdorff-Colombeau outer measure.

Remark 6.1.3. Note that: if s�0� � 0 the quantity �I �D
�,D

_�
�� takes infinite large value in

sense of Colombeau generalized numbers ,i.e., �I �D
�,D

_�
�� �

�

 , see Definition 3.3.2 and

Definition 3.3.3.
Remark 6.1.4.We apply throught this paper more general definition then definition

(6.1.2):

�
X

s�x�d�HC,�
D�,D

_�

�
� 4�D�/2�D

_�/2

��D�/2���D�/2�
�

0


 rD��1s�r�
� � r |D

_� |�1
dr

�
� �I �D

�,D� ��, �6. 1. 6�

where � � �0, 1� and D� 	 1, D� � 0,�2, . . . ,�2n, . . . ,n � � and where �HC,�
D�,D

_��

�
is

apropriate generalized Colombeau outer measure.Namely Hausdorff-Colombeau outer



measure. In subsection 3.3 we pointed out that there exist Colombeau generalized
measure d�HC,�

D�,D
_��

�
and therefore Eq.(6.1.4) gives apropriate extension of the

Eq.(6.1.1) on the negative Hausdorff-Colombeau dimensions.
.

6.2.Hausdorff measure and associated positive Hausdorff
dimension.Colombeau-Feynman path integral in D� � 4
from dimensional regularization.

Recall that the classical Hausdorff measure [33],[22] originate in Caratheodory’s
construction, which is defined as follows: for each metric space X, each set F � �Ei� i��

of subsets Ei of X, and each positive function ���E�, such that 0 � ���Ei � � 
 whenever
Ei � F, a preliminary measure �


��E� can be constructed corresponding to 0 � 
 � �
 ,
and then a final measure ���E�, as follows: for every subset E � X, the preliminary
measure �


��E� is defined by

�

��E� �

�Ei � i��

inf � i�� �
��Ei �|E � � i�� Ei ,diam�Ei � � 
 . �6. 2. 1�

Since �
1
� �E� 	 �
2

� �E� for 0 � 
1 � 
2 � �
, the limit

���E� �

	0�

lim �

��E� �


�0

sup �

��E� �6. 2. 2�

exists for all E � X. In this context, ���E� can be called the result of Caratheodory’s
construction from ���E� on F. �


��E� can be referred to as the size 
 approximating
positive measure. Let ���Ei ,d�� be for example

���Ei ,d�� � ��d���diam�Ei ��d�
, 0 � ��d��, �6. 2. 3�

for non-empty subsets Ei , i � � of X. Where ��d�� is some geometrical factor,depends
on the geometry of the sets Ei , used for covering. When F is the set of all non-empty
subsets of X, the resulting measure �H

� �E,d�� is called the d�-dimensional Hausdorff
measure over X; in particular, when F is the set of all (closed or open) balls in X,

��d�� � ��d�� � �
d�

2 �2�d�
�� 1 � d�

2
. �6. 2. 4�

Consider a measurable metric space �X,�H�d��,X � �n,d � ��
,�
�.The elements of
X are denoted by x,y,z, . . . , and represented by n-tuples of real numbers
x � �x1,x2, . . . ,xn�

The metric d�x,y� is a function d : X � X 	 R� is defined in n dimensions by

d�x,y� � � ij �
 ij �yi � xi ��yj � xj ��
1/2 �6. 2. 5�

and the diameter of a subset E � X is defined by

diam�E� � sup�d�x,y�|x,y � E�. �6. 2. 6�

Definition 6.2.1. The Hausdorff measure �H
� �E,D�� of a subset E � X with the

associated Hausdorff positive dimension D� � �� is defined by canonical way

�H
� �E,D�� �


	0
lim

�Ei � i��

inf � i�� �
��Ei ,D��|E � � i Ei ,�i�diam�Ei � � 
� ,

D��E� � sup�d� � ��|d� � 0,�H
� �E,d�� � �
�.

�6. 2. 7�



Definition 6.2.2. Remind that a function f : X 	 � defined in a measurable space
�X,�,��, is called a simple function if there is a finite disjoint set of sets �E1, , . . . ,En� of
measurable sets and a finite set ��1, , . . . ,�n� of real numbers such that f�x� � � i if x � Ei

and f�x� � 0 if x � Ei .Thus f�x� � � i�1
n � i�Ei �x�,where �Ei �x� is the characteristic

function of Ei . A simple function f on a measurable space �X,�,�� is integrable if
��Ei � � 
 for every index i for which � i � 0. The Lebesgue-Stieltjes integral of f is
defined by

� fd� � � i�1
n � i��Ei �. �6. 2. 8�

A continuous function is a function for which limx	y f�x� � f�y� whenever limx	y d�x,y� � 0.
The Lebesgue-Stieltjes integral over continuous functions can be defined as the limit

of infinitesimal covering diameter: when �Ei� i�� is a disjoined covering and xi � Ei by
definition (6.2.2) one obtains

�
X

f�x�d�H
� �x,D�� �

diam�Ei �	0
lim ��Ei�X

f�xi �
�Eij � with � j Eij�Ei

inf � j
���Eij ,D��Eij �� .

�6. 2. 9�

From now on, X is assumed metrically unbounded, i.e. for every x � X and r � 0 there
exists a point y such that d�x,y� � r. The standard assumption that D� is uniquely
defined in all subsets E of X requires X to be regular (homogeneous, uniform) with
respect to the measure,i.e. �H

� �Br�x�,D�� � �H
� �Br�y�,D�� for all elements x,y � X and

(convex) balls Br�x� and Br�y� of the form Br�0�x� � �z|d�x,z� � r;x,z � X�. In the limit
diam�Ei � 	 0, the infimum is satisfied by the requirement that the variation over all
coverings �Eij � ij�� is replaced by one single covering Ei , such that

� j Eij 	 Ei � xi .Hence

�
X

f�x�d�H
� �x,D�� �

diam�Ei �	0
lim ��Ei�X

f�xi ����Ei ,D��. �6. 2. 10�

The range of integration X may be parametrised by polar coordinates with r � d�x, 0�
and angle �.�Er i ,� i � i�� can be thought of as spherically symmetric covering around a
centre at the origin. In the limit, the function ���Er,�,D�� defined by Eq.(3.2.7) is given by

d�H
� �x,D�� �

diam�Er,� �	0
lim ���Er,�,D�� � d�D��1rD��1dr. �6. 2. 11�

Let us assume now for simplification that f�x� � f��x�� � f�r� and.
r	

lim f�r� � 0. The

integral over a D�-dimensional metric space X is then given by

�
X

f�x�d�H
� �x,D�� � �

X
f�x�dD�

x � 2�
D�

2

� 1 � D�

2

�
0



f�r�rD��1dr. �6. 2. 12�

The integral defined in (6.2.12) satisfies the following conditions.
(i) Linearity:

�
X
�a1f1�x� � a2f2�x��d�H

� �x,D�� � a1 �
X

f1�x�d�H
� �x,D�� � a2 �

X
f2�x�d�H

� �x,D��. �6. 2. 13�

(ii) Translational invariance:

�
X

f�x � x0�d�H
� �x,D�� � �

X
f�x�d�H

� �x,D�� �6. 2. 14�



since d�H
� �x � x0,D�� � d�H

� �x,D��.
(iii) Scaling property:

�
X

f�ax�d�H
� �x,D�� � a�D� �

X
f�x�d�H

� �x,D�� �6. 2. 15�

since d�H
� �x/a,D�� � a�D�

d�H
� �x,D��.

(iv) The generalised 
D�
�x� function:

The generalised 
D�
�x� function for sets with non-integer Hausdorff dimension

exists and can be defined by formula

�
X

f�x�
D�
�x � x0�d�H

� �x,D�� � f�x0�. �6. 2. 16�

(v) The Fourier-Stieltjes transform is given by the following definition

g�x� � �2���D� �
X��k

n


g�k�exp�ikx�d�H
� �k,D��,


g�k� � �
X��x

n
g�x�exp��ikx�d�H

� �x,D��.
�6. 2. 17�

(vi) The following equality holds

�
X

exp�ikx�d�H
� �k,D�� � �2��D�


D�
�x�. �6. 2. 18�

6.2.1.Colombeau-Feynman path integral in D� � 4 from
dimensional regularization via fractal spacetime.What is
wrong with dimensional regularization via fractal
spacetime.

In oreder to obtain Colombeau-Feynman path integral related to dimensional
regularization let us consider a free scalar field with action in Hausdorff dimensions
D�

� � D � �, � � �0, 1�,D � � :

�S0,��� � � 1
2 �

X�

d�H
� �x,D�

�����x�P�
����x�
�
, �6. 2. 19�

where ����0,1� X� � �D, �����x��� � � G��
D� and P�	� is a polinomial.

Definition 6.2.3. Assume that (i) ����x��� � G��x
D� and

(ii) there exist Colombeau generalized function �� ��k� �
� G��k

D� such that

����x��� � �2���D�
� �

X�

d�H
� �k,D�

���� ��k�eik	x

�
�

��2���D�
�
�� ��k

D
�d�H

� �k,D�
���� �� ��k� �

eik	x,
�6. 2. 20�

and

�� ��k� �
� �

X�

d�H
� �x,D�

�����x�e�ik	x

�
� �

�x
D
�d�H

� �x,D�
�� ������x���e

�ik	x. �6. 2. 21�

Then we will say that: (1) �� ��k� �
is Colombeau Fourier–Stieltjes transform of the

field
����x��� and abraviate



�
���k� �

� ��S������x��� ��k�, �6. 2. 22�

(2) ����x��� is inverse Colombeau Fourier–Stieltjes transform of the field �� ��k� �
and

abraviate

����x��� � ��S��1 �� ��k� �
�x�. �6. 2. 23�

Definition 6.2.4. We will denote:
(i) the set of the Colombeau generalized functions �� ��k� �

� G��k
D� which is

Colombeau

Fourier–Stieltjes transform by ��S� G X� or by G��S� X�

(ii) the set of the Colombeau generalized functions ����x��� � G��x
n� which is inverse

Colombeau-Fourier–Stieltjes transform by ��S��1�Gx��D�� or G��S�
_1
��x

D�.
(iii) Note that we assume that in both cases (i) and (ii) the Eqs.(6.2.20)-(6.2.21) are
satisfies.
Remark 6.2.1.Note that G��S���k

D� � G��S�
_1
��x

D� is the linear topological subspace of
Colombeau algebra G��k

D� � G��x
D� � G��S���k

D� � G��S�
_1
��x

D�.
The free partition function �Z0,��J� ��� in the presence of a local source

�J��x��� � G��x
D� is

�Z0,��J� ��� �

�
��� ���G��x

D �
�D����� exp i�S0,� � �

X�

d�H
� �x,D�

��J��x����x��
�

�

�
��� ���G

��S�
_1
��x

D �
�D������ exp ��S0,��� � �

X�

��d�H
� �x,D�

�� ���J��x�������x���� �

�
��� ���G

��S�
_1
��x

D �
�D������e

i�SJ� �� .

�6. 2. 24�

From Eq.(6.2.16) we obtain

�
X�

f��x�
D�
�
�x � x0�d�H

� �x,D�
��

�
� �f��x0���. �6. 2. 25�

From Eq.(6.2.18) we obtain

�
X�

exp�ikx�d�H
� �k,D�

��
�
� �2��D�

�

D�

�
�x�

�
. �6. 2. 26�

From Eq.(6.2.24) and Eqs.(6.2.22)-(6.2.23) and Eqs.(6.2.25)-(6.2.26) we obtain



�SJ� �� �

1
2 �X�

�d�H
� �x,D�

���� �

�
X�

�d�H
� �k1,D�

����
�2��D�

� �
X�

�d�H
� �k1,D�

����
�2��D�

� ei�k1�k2�	x �

�
�
���k1� �

�f���k2
2���

�
���k2� �

�
�
J��k1� �

�
���k2� �

�
�
J��k2� �

�
���k1� �

�

� 1
2 �X�

�d�H
� ��k,D�

����
�2��D�

� �
�
����k�

�
��f���k2����

�
���k� �

�

�
J���k�

�

�
���k� �

�
�
J��k� �

�
����k�

� �

� 1
2 �X�

�d�H
� ��k,D�

����
�2��D�

� �

� �����k��
�

f��k2�
�

����k��� �

�
J���k�

�

�
J��k� �

�f���k2���
,

����� �
�
���k� �

�

�
J���k�

�

�f���k2���
, �f���k2

2��� � �P��k2
2� � i���.

�6. 2. 27�

Thus Eq.(6.2.24) becomes

�Z0,��J���� �

�
��� ���G

��S��
_1
��x

D �
�D������ �

exp � i
2 �X�

�d�H
� �k,D�

����
�2��D�

�

�
����k�

�
��f���k2����

�
���k� �

�

exp i
2 �X�

�d�H
� ��k,D�

����
�2��D�

�

�
J���k�

�

�
J��k� �

�f���k2���

� Z0�0� exp i
2 �X�

�d�H
� ��k,D�

����
�2��D�

�

�
J���k�

�

�
J��k� �

�f���k2���
.

�6. 2. 28�

Therefore the exponent in Eq.(6.2.28) can be written as

�
X�

�d�H
� ��k,D�

����
�2��D�

�

�
J���k�

�

�
J��k� �

�f���k2���
�

�
X�

�d�H
� ��k,D�

����
�2��D�

� �

�
X�

��d�H
� �x,D�

����� �
X�

�d�H
� �y,D�

����e
ik	�x�y�

�
J���k�

�

�
J��k� �

�f���k2���
,

�6. 2. 29�

so that, if �����k��� � �d���k���, the free partition function reads



�Z0,��J��� �

��Z0,��0��� � �

exp i
2 �X�

��d�H
� �x,D�

���� � �
X�

��d�H
� �x,D�

���� ��J��x���G�x � y;�����J��y���

�6. 2. 30�

where

�G�x � y;���� � 1
�2��D�

� �
X�

��d�H
� ��k,D�

���� �
exp�ik 	 �x � y��

�f���k2���
. �6. 2. 31�

Thus, we have recovered the usual definition of the propagator as the solution of the
Green equation in Hausdorff dimensions D�

� � D � �,� � �0, 1� in the sense of
Colombeau generalized functions

�P�
�G�x � y;���� � �
D�
�
�x � y� ��. �6. 2. 32�

Defining the perturbative quantum field theory in momentum space makes a derivation
of covariant Feynman rules in D�

�-dimensional momentum space straightforward
[20].The only difference to conventional Feynman rules is the substitution of the
measure in the momentum integral

�2���4d4k 	 �2���D�
�
d�H

� �k,D�
��. �6. 2. 33�

For symmetric kernels, a representation of d�H
� �k,D�� in terms of spherical coordinates

is

�2���D�
�
d�H

� �k,D�
��

�
� �2���D�

�
d�D�

��1kD�
��1dk

�
. �6. 2. 34�

In the following the electron self-energy �����, the vacuum polarisation ����� and the
vertex correction �� for each � � �0, 1� are enumerated as a function of the Hausdorff
dimension D�

� � D � �.The lowest-order contribution to the vacuum polarisation

����,��q��� � �e2 Tr � dD�
�
k

�2��D�
� ��

i
�k � m� i�

��
i

�k � �q � m� i�
�

�6. 2. 35�

can be written in the following form

���,��q� � �q�q� � q2g�������q���,

����q��� � ��24�D�
��1�D�

�/2��2 � D�
�/2�mD�

��4F�2 � D�
�/2, 2, 5/2;�q2/4m2���

F�a,b,c;z� � 1 � ab
c

z
1!

�. . .� zn�1

�n � 1�! � i�0

n�1 �a � i��b � i�
c � i

�. . . .

�6. 2. 36�

The lowest-order contribution to the electron self-energy

����p��� � �ie2 � dD�
�
k

�2��D�
�

�i
k2 � �2 � i�

�� i
�p � �k � m� i�

��

�

�6. 2. 37�

can be written in the following form

����p��� � �A��� � ��p � m��B��� � ��p � m�2����p���, �6. 2. 38�

where �A���, �B��� � � and ����p��� � G��p
4� are given by



�A��� � �3��22�D�
��1�D�

�/2mD�
��3��2 � D�

�/2���,

�B��� � ��A���m
�1,

����p��� � ���p
2 � m2�2�22�D�

��1�D�
�/2��2 � D�

�/2���.

�6. 2. 39�

The lowest-order contribution to the vertex term �����, with the photon momentum q and
two outgoing electron momenta p and p�, is given by

����q,p,p���� �

�e2 � dD�
�
k

�2��D�
�

�i
k2 � �2 � i�

��
i

�p � �k � m� i�
��

i
�p� � �k � m� i�

��

�

�6. 2. 40�

can for q � p� � p, be written in the following form

����q,p,p���� � ��B��� � �g��q��� ��� � �
i���q�

2m
�23�D�

��1�D�
�/2D�

��3��3 � D�
�/2���, �6. 2. 41�

where �g��q��� is a function proportional to ���3 � D�
�/2��� vanishing for q2 	 0, which will

not be enumerated here. The term proportional to ���q�yields contributions to the
anomalous magnetic moment and to the l � 0 Lamb shift.

Remark 6.2.2.Note that in this subsection the dimensional �-regularization � � �0, 1� of
quantum electrodynamics is considered as QFT with a fractal support of the quantum
fields. These quantum fields are well defined as Colombeau quantum fields [22] for
Hausdorff dimensions D�

� arbitrarily close but smaller than D� � 4.
Let us consider the dimensional renormalisation of the bare two-point Green function
�S�

Bare�� of the electron. The full propagator �S��� can be formally written as the analytic
continuation of a sum over self-energy diagrams
�S��p��� � ��p � �m�

Bare�� � ����p��� � i���1
, where �m�

Bare�� is the bare electron mass and
����p��� is the proper self-energy. Substituting for ����p��� its lowest-order contribution
Eq.(6.2.37), and recalling Eq.(6.2.38), yields

�S��p��� �
�Z2,���

��p � m� i��
�1 � �Z2,�����p � m�����p��� �

�1, �6. 2. 42�

where the physical mass m � �� and the renormalisation constant �Z2,��� � � are
defined by

m � �m�
Bare�� � �A��� �

�m�
Bare�� � 3��22�D�

��1�D�
�/2mD�

��3��2 � D�
�/2��� �

�m�
Bare�� � 3� 2�2����1��/2m1��� �

2 �
�

�m�
Bare�� �

3�m
4�

2
� �

� 0. 577

�6. 2. 43�

and

�Z2,��� � 1 � �A���m
�1. �6. 2. 44�

From Eq.(6.2.43) one obtains



�m�
Bare�� � m� 3�m

4�
2
� � 0. 577 �

m 1 � 3�
2�

1
� � 3�

4�
0. 577 � m 1 � 3�

2�
1
� �

.
�6. 2. 45�

Thus

�m�
Bare�� � m�Z��� � m 1 � 3�

2�
1
� �

, �6. 2. 46� where

�Z��� � 1 � 3�
2�

1
� �

. �6. 2. 47�

Remark 6.2.3. Note that standard sector of QED4 defined by the condition

�Z��������� � 0, �6. 2. 48�

see Sec. IV.3. In particular for a given � standard sector of QED4 defined by the
following

condition

3�
2��

� 1. �6. 2. 49�

The bare photon propagator is renormalised by the formal summation of vacuum
polarisation diagrams, whose lowest-order contribution given by Eq.(6.2.36).Again,
����q��� can be expanded around the mass shell q2 � 0, yielding

����q��� � �P��� � q2����q2���. �6. 2. 50�

The full photon propagator can be written as �q�q� � q2g����
��q2���, with

�
��q2��� � �1 � �P��� � q2����q2��� �
�1

�6. 2. 51�

The term in brackets contributes to the renormalisation of the bare charge �e�
Bare�� ,

which relates to the renormalised charge e by

�e�
Bare�� � e�1 � �P��� � q2����q2��� � � e�Z3,���

�Z3,��� � 1 � �P��� � q2����q2���
�6. 2. 52�

For zero momentum transfer q2 	 0 and for � 
 1 �Z3,��� � 1 � �P��� reduces to

�Z3,��� � 1 � ����q2 � 0��� �

1 � ��24�D�
��1�D�

�/2��2 � D�
�/2�mD�

��4��
�6. 2. 53�

yielding

���
Bare�� �

��e�
Bare�� �

2

4�
� �����Z3,�

�2 ��������. �6. 2. 54�

Remark 6.2.4.Note that standard sector of QED4 except the condition (6.2.48),defined
by

the condition �Z3,�
�2 �������� � 0,see Sec. IV.3. In particular for a given � standard sector

of
QED4 except the condition (6.2.49),defined by the following condition



Z3,�
�2 ��� � 0. �6. 2. 55�

All other contributions to the renormalisation of the electric charge cancel, as can be
explicitly seen by a summation of the lowest-order radiative corrections to the charge

�1 � �B��� � �L��� � �P�����e�
Bare��. �6. 2. 56�

As can be shown from (6.2.38) and (6.2.41), �L��� equals �B��� and only the �Z3,���,
factor remains for the renormalisation of the electric charge.

Let us consider corrections to the magnetic moment due to vertex corrections as
(6.2.40).In particular, the term proportional to ���q� remains finite for Hausdorff
dimensions smaller than six. It gives rise to low-order contributions to the anomalous
magnetic moment as well as the l � 0 splitting of energy levels in atoms (Lamb
shift).Utilising the expansion of the gamma function into a polynomial ��1 � z� � � i�0


 cizi

with coefficients c0 � 1,cn�1 � �n � 1��1� i�0
n ��1� i�1si�1sn�i and s1 � 0. 577,sn � ��n� for

n 	 2, Rez � 0, where ��n� is the Riemann zeta function (e.g. s2 � �2/6) ,one obtains for
small � � 4 � D� 
 1

�e�D� � 4� � �e�D�� � ��4��1 � 22�D��1�D�/2��3 � D�/2�� �
�

8�
�0. 577 � log���4 � D��.

�6. 2. 57�

Here, �e is the form factor of the electromagnetic current proportional to ���q�.Presently
the difference between experimental and theoretical values of �e suggests

D� 	 4 � �5. 3 � 2. 7� � 10�7, �6. 2. 58�

i.e., � � �5. 3 � 2. 7� � 10�7 at the scale of the Compton wavelength of the electron [37].
Remark 6.2.5. Note that for � � 1/137 from (6.2.58) one obtains

3�
2��

� 3
2� � 137 � 3 � 10�7 � 11617 � 1 �6. 2. 59�

Obviously this inequality in a contradiction with inequality (6.2.49) and therefore
dimensional renormalization breaks down for � � 1/137.
Similarly, corrections to the l � 0 levels for a hydrogen-like atom can be derived for

E � 
E�D� � 4� � 
E�D�� :


E 2p 1
2 � �3

2�n3 �0. 57722 � log���4 � D��Ry
 �

��l � 1/2�� j � l � 1/2

��l�l � 1/2���1 j � l � 1/2

�6. 2. 60�

This correction yields


El�0 �
�3Ry


24�
�0. 57722 � log���4 � D�� � 0. 03 � 0. 01MHz �6. 2. 61�

and the lower bound

D� 	 4 � �1 � 0. 3� � 10�3, �6. 2. 62�

i.e., � � �1 � 0. 3� � 10�3.
Remark 6.2.6.Note that for � � 1/137 from (6.2.62) one obtains

3�
2��

� 3
2� � 137 � 3 � 10�3 � 1. 161 7 � 1. �6. 2. 63�



Obviously this inequality in a contradiction with inequality (6.2.49) and therefore
dimensional renormalization breaks down for � � 1/137.

6.3.Hausdorff-Colombeau measure and associated
negative Hausdorff-Colombeau dimensions.

During last 20 years the notion of negative dimension in geometry was many
developed,

see for example [15],[35]-[41].
Remind that canonical difenitions of noninteger positive dimension alwais equipped

with
an finite measure. For instance Hausdorff–Besicovich dimension equipped with

Hausdorff
measure d�H

� �x,D�� [35]-[38].
Remark 6.3.1.Note that in the case where a finite measure � on a metric space �X,d�

is exact-dimensional, i.e. there exists � 	 0 such that

� X\ x
r	0
lim

ln��B�x, r��
ln r

� � �6. 3. 1�

many different definitions of dimensions of � collapse to the value �.
Given a metric space �X,d�, let B�X� denote the Borel �-algebra in X, and let BM�X� be

the class of non-null finite Borel measures defined on X.
Definition 6.3.1. A measure � � BM��D� is called:
(i) of lower exact dimension � if

� �D\ x
r	0

lim inf
ln��B�x, r��

ln r
� � , �6. 3. 2�

(ii) of apperer exact dimension � if

� �D\ x
r	0

lim sup
ln��B�x, r��

ln r
� � . �6. 3. 3�

Remark 6.3.2.It is well known that � is of lower exact dimension � if and only if
dimH��� � dimH

� ��� � �, and � is of apperer exact dimension � if and only if
dimP��� � dimP

���� � �.Here

dimH
� ��� � inf�dimH�A�|��A� � ���,A � B��D��,

dimP
���� � inf�dimP�A�|��A� � ���,A � B��D��,

�6. 3. 4�

where ��� is the total mass of �.
Let us consider now example of a space of noninteger positive dimension equipped

with the Haar measure.On the closed interval 0 � x � 1 there is a scale 0 � � � 1 of
Cantor dust with the Haar measure equal to x� for any interval �0,x� similar to the entire
given set of the Cantor dust. The direct product of this scale by the Euclidean cube of
dimension k � 1 gives the entire scale k � �, where k � 	 and � � �0, 1� [36].

Let μD be a Lebesgue measure on �D and let SD be an D-dimensional ball of radius R.
In the spherical coordinates, the volume μD�SD� of the ball is equal to

2D

� 1 � D
2

	 �
0

R
rD�1dr � 2D

� 1 � D
2

	 RD. �6. 3. 5�



Here rn�1 stands for the classical regular density [36].
Let 
�x � x0�dx be a Dirac measure with a support �x0� and total mass 1 on �, i.e. for

any mesurable set A � � 
x0�A� � �
A��


�x � x0�dx � 1 iff x0 � A and 
x0�A� �

�
A��


�x � x0�dx � 0 iff x0 � A.

Remark 6.3.3.Note that: (i) Dirac measure 
�x � x0�dx has a representation as
Colombeau generalized measure


�x � x0�dx �
�

1
�

�dx
�x � x0�2 � �2

�

, �6. 3. 6�

� � �0, 1�, i.e.

�
�

�x � x0�f�x�dx �

� �
�

�x � x0;��f�x�dx

�
� 1

� �
�

�f�x�dx

�x � x0�2 � �2
�

; �6. 3. 7�

(ii) here Colombeau generalized function �
�x � x0;����

�
�x � x0;���� �
1
�

�
�x � x0�2 � �2

�

�6. 3. 8�

stands for the nonclassical nonregular density.
Remark 6.3.4.Note that: (i) for any x � x0

�
�x � x0�2 � �2

�

�
�

0
�

, �6. 3. 9�

(ii) for x � x0

�
�x � x0;���� |x�x0
� 1

� �
. �6. 3. 10�

Given a metric space �X,d�, let B�X� denote the Borel �-algebra in X, and let CBM�X�
be the class of non-null hyperfinite Colombeau-Borel measures defined on X.

Definition 6.3.2.Let ����� � CBM��D� be Colombeau-Borel measure and let
�I ��d

_
,x, r���

be

�I ��d
_
,x, r��� � �

B�x,r �
�x � y� |d

_
|�d���y���. �6. 3. 11�

Colombeau-Borel measure ����� � CBM��D� is called exact-negative-dimensional iff
there exists D

_ such that �
 � D
_
� 0 and �x � �D :

|D
_
| � inf�|dx

_
||limr	0 lim�	0 I ��dx

_
,x, r� � 0�. �6. 3. 12�

For instance Colombeau-Borel measure ����� � CBM��� :

����� � dx
�x � x0�k � �2

�

�6. 3. 13�

is exact-negative-dimensional measure with D
_
� �k.

Definition 6.3.3. Colombeau-Borel measure ����� � CBM��D� is called:
(i) of lower negative dimension D

_
� 0 if

|D
_
| � infx��D inf�|dx

_
||limr	0 lim�	0 I ��dx

_
,x, r� � 0�. �6. 3. 14�

(ii) of apperer negative dimension D
_

� 0 if

|D
_

| � supx��D inf�|dx
_
||limr	0 lim�	0 I ��dx

_
,x, r� � 0�. �6. 3. 15�



For instance Colombeau-Borel measure ����� � CBM��� :

����� � dx
�x � x1�k1 � �2

�

� dx
�x � x2�k2 � �2

�

, �6. 3. 16�

where x1 � x2 and k1 � k2, is lower negative dimensional with D
_
� k2 and apperer

negative dimensional with D
_

� k1.
Remark 6.3.5.In this subsection we define generalized Hausdorff-Colombeau

measure.In subsection VI.4 we will prove that negative dimensions of fractals equipped
with the Hausdorff- Colombeau measure in natural way.

Let � be an open subset of �n, let X be metric space X � �n and let F be a set
F � �Ei� i�� of subsets Ei of X. Let ��E,x,x� � be a function � : F � � � � 	 �.Let CF


���
be a set of the all functions ��E,x,x� � such that ��E,x,x� � � C
�� � �� whenever
E � F.Throughout this paper, for elements of the space CF


�� � ���0,1� of sequences of
smooth functions indexed by � � �0, 1� we shall use the canonical notations ����E,x,x� ���
and ����� so �� � CF


�� � ��, � � �0, 1�.
Definition 6.3.4.We set GF��� � EM�F,��/N�F,��, where

EM�F,�� � ����E,x,x� ��� � CF

�� � ���0,1� �K �� �,�� � �n�p � � with

supE�F;x�K|���E,x,x� �| � O���p� as � 	 0 ,

N�F,�� � ����E,x,x� ��� � CF

�� � ���0,1� �K �� �,�� � �n�q � �

supE�F;x�K|���E,x,x� �| � O��q� as � 	 0 .

�6. 3. 17�

Notice that GF��� is a differential algebra.Equivalence classes of sequences ����� �
����E,x,x� ��� will be denoted by cl������ � or simply ������ �.

Definition 6.3.5.We denote by � the ring of real,Colombeau generalized numbers.

Recall that by definition � � EM���/N��� [21-23], where

EM��� � ��x��� � ��0,1� |��� � �����0 � �0, 1���� � �0�|x� | � �� ��,

N��� � ��x��� � ��0,1� |��� � �����0 � �0, 1���� � �0�|x� | � �� ��.
�6. 3. 18�

Notice that the ring � arises naturally as the ring of constants of the Colombeau

algebras G���.Recall that there exists natural embedding �r : � � � such that for all
r � �,�r � �r ��� where r � � r for all � � �0, 1�.We say that r is standard number and

abbreviate r � � for short. The ring � can be endowed with the structure of a partially

ordered ring: for r,s � � � � ��,� � 1 we abbreviate r �
�,� s or simply r �

�
s if and only if

there are representatives �r ��� and �s��� with r � � s� for all � � �0,��.Colombeau

generalized number r � � with representative �r ��� we abbreviate cl��r ��� �.

Definition 6.3.6. (i) Let 
 � �. We say that 
 is infinite small Colombeau generalized
number and abbreviate 
 �

�

�
0 if there exists representative �
��� and some q � � such

that |
� | � O��q� as � 	 0. (ii) Let 
 � �. We say that 
 is infinite large Colombeau
generalized number and abbreviate 
 �

�

 if 


�
�1 �

�

�
0. (iii) Let �
 be � � �
� We say

that � � �
 is infinite Colombeau generalized number and abbreviate � �
�



�
if there

exists representative ����� where �� � 
 for all � � �0, 1�.Here we set EM��
� �

EM��� � �������, N��
� � N��� and �
 � EM��
�/N��
�.



Definition 6.3.7.The singular Hausdorff-Colombeau measure originate in Colombeau
generalization of canonical Caratheodory’s construction, which is defined as follows: for
each metric space X, each set F � �Ei� i�� of subsets Ei of X, and each Colombeau
generalized function ����E,x,x� ���, such that: (i) 0 � ����E,x,x� ��� , (ii) ����E,x�,x� ��� ��


,

whenever E � F, a preliminary Colombeau measure ��
�E,x,x�,���� can be constructed
corresponding to 0 � 
 � �
 , and then a final Colombeau measure ����E,x,x� ���, as
follows: for every subset E � X, the preliminary Colombeau measure ��
�E,x,x�,���� is
defined by

�
�E,x,x�,�� �
�Ei � i��

sup � i�� ���Ei ,x,x� �|E � � i�� Ei ,diam�Ei � � 
 . �6. 3. 19�

Since for all � � �0, 1� : �
1
� �E,x,x�,�� 	 �
2

� �E,x,x�,�� for 0 � 
1 � 
2 � �
, the limit

���E,x,x�,���� �

	0�

lim �
�E,x,x�,��
�
�


�0

inf �
�E,x,x�,��
�

�6. 3. 20�

exists for all E � X. In this context, ���E,x,x�,���� can be called the result of
Caratheodory’s construction from ����E,x,x� ��� on F and ��
�E,x,x�,���� can be referred to
as the size 
 approximating Colombeau measure.

Definition 6.3.8. Let ����Ei ,D�,D�,x,x� ��� be

����Ei ,D�,D�,x,x� ��� �

�1�D���2�D���diam�Ei ��D�

�d�x,x��� |D
_

| � � �

if x � Ei

0 if x � Ei

�6. 3. 21�

where � � �0, 1�,�1�D��, |�2�D��| � 0. In particular, when F is the set of all (closed or
open) balls in X,

�1�D�� �
2�D�

� 1
2

D�

� 1 � D�

2

� 2�D��
D�

2

� 1 � D�

2

�6. 3. 22�

and

�2�D�� � 2�D
_

�
D

_

2

� 1 � D�

2

,

D� � �2,�4,�6, . . . ,�2�n � 1�, . . .

�6. 3. 23�

Definition 6.3.9. The Hausdorff-Colombeau singular measure ��HC�E,D�,D�,x,x�,����
of a subset E � X with the associated Hausdorff-Colombeau dimension
D� ��D�� � ��,D� � ��, is defined by

��HC�E,D� �,D�,x,x�,���
�
�


	0
lim

�Ei � i��

sup � i������Ei ,D� �,D�,x,x� ��
�
|E � � i Ei ,�i�diam�Ei � � 
�

�

,

D� � � sup D� � 0|��HC�E,D�,D�,x,x�,���� � 

�

,

�6. 3. 24�



The Colombeau-Lebesgue-Stieltjes integral over continuous functions f : X 	 � can be
evaluated similarly as in subsection III.3,(but using the limit in sense of Colombeau
generalized functions) of infinitesimal covering diameter when �Ei� i�� is a disjoined
covering and xi � Ei :

�
X

f�x�d�HC�E,D�,D�,x,x�,��
�
�

diam�Ei �	0
lim ��Ei�X

f�xi �
�Eij � with � j Eij�Ei

inf � j
���Ei ,D�,D�,xi ,x� �

�

.
�6. 3. 25�

We assume now that X is metrically unbounded, i.e. for every x � X and r � 0 there
exists a point y such that d�x,y� � r. The standard assumption that D� � and D� � is uniquely
defined in all subsets E of X requires X to be regular (homogeneous, uniform) with
respect to the measure,i.e. ��HC

� �Br�x� �,D� �,D� �,x,x�,���
�
� ��HC

� �Br�y� �,D� �,D� �,x�,y�,���
�
,

where d�x,x�� � d�x�,y�� for all elements x�,y�,x,x� � X and convex balls Br�x�� and Br�y�� of
the form Br�x�� � �z|d�x�,z� � r;x�,z � X� and Br�y�� � �z|d�y�,z� � r;y�,z � X�. In the limit
diam�Ei � 	 0, the infimum is satisfied by the requirement that the variation over all
coverings �Eij � ij�� is replaced by one single covering Ei , such that

� j Eij 	 Ei � xi .Therefore

�
X

f�x�d�HC�E,D� �,D� �,x,x�,��
�
�

diam�Ei �	0
lim ��Ei�X

f�xi ����Ei ,D� �,D� �,xi ,x� �
�

.
�6. 3. 26�

Assume that f�x� � f�r�, r � �r�.The range of integration X may be parametrised by
polar coordinates with r � d�x, 0� and angle �.�Er i ,� i � can be thought of as spherically
symmetric covering around a centre at the origin. Thus

�
X

f�r�d�HC�Ex,D� �,D� �,x,x�,��
�
�

diam�Ei �	0
lim ��Ei�X

f�r i ����Ei ,D� �,D� �,xi ,x� �
�

.
�6. 3. 27�

Notice that the metric set X � �n can be tesselated into regular polyhedra; in
particular it is always possible to divide �n into parallelepipeds of the form

� i 1,...,i n � �x � �x1, . . . ,xn� � X|xj � �i j � 1�
xj � � j , 0 � � j � 
xj , j � 1, . . . ,n�. �6. 3. 28�

For n � 2 the polyhedra � i 1,i 2 is shown in figure 6.3.1.Since X is uniform

�d�HC�E,D� �,D� �,x,x�,���
�
�

diam � i1,...,in

lim ���� i 1,...,i n,D� �,D� �,x,x� �
�

�

diam � i1,...,in

lim �
j�1

n 
xj

|xj � x� j |
D� � � �

D� �
n

�

�

� �
j�1

n d
D� �
n xj

|xj � x� j |
D� � � �

D� �
n

�

.

�6. 3. 29�



Fig.3.3.1. The polyhedra covering for n � 2.

Notice that the range of integration X may also be parametrised by polar coordinates
with

r � d�x, 0� and angle �. Er,� can be thought of as spherically symmetric covering
around a centre at the origin (see figure 3.3.2 for the two-dimensional case). In the

limit,
the Colombeau generaliza function ����Er,�,D� �,D� �, r, r���

�
is given by

�d�HC�Er,�,D� �,D� �, r, r�,�,���
�
�

diam � i1,...,in

lim ���Er,�,D� �,D� �, r, r�,��
�

� d�D� ��1rD� ��1dr
�r � r�� D� � � �

�

.
�6. 3. 30�

Fig.6.3.2.The spherical covering Er,�.

When f�x� is symmetric with respect to some centre x� � X, i.e. f�x� � constant for all x
satisfying d�x,x�� � r for arbitrary values of r, then chainge of the variable

x 	 z � x � x� �6. 3. 31�

can be performed to shift the centre of symmetry to the origin (since X is not a linear
space, (6.3.15) need not be a map of X onto itself and (6.3.15) is measure preseming).
The integral over metric space X is then given by formula

�
X

f�x�d�HC�Ex,D� �,D� �,x,x�,��
�
� 4�D�/2�D

_
/2

��D�/2���D�/2�
�

0


 rD��1f�r�
r |D

_
| � �

dr
�
. �6. 3. 32�

The Colombeau integral defined in (6.3.27) satisfies the following conditions.
(i) Linearity:



�
X
�a1f1�x� � a2f2�x��d�HC�Ex,D� �,D� �,x,x�,��

�
�

a1 �
X

f1�x�d�HC�Ex,D� �,D� �,x,x�,��
�
� a2 �

X
f2�x�d�HC�Ex,D� �,D� �,x,x�,��

�
.

�6. 3. 33�

(ii) Translational invariance:

�
X

f�x � x0�d�HC�Ex,D� �,D� �,x,x�,��
�
� �

X
f�x�d�HC�Ex,D� �,D� �,x,x�,��

�
�6. 3. 34�

since

�d�HC�Ex�x0 ,D� �,D� �,x � x0,x� � x0,���
�
� �d�HC�Ex,D� �,D� �,x,x�,���

�
�6. 3. 35� .

(iii) Scaling property:

�
X

f�a 	 x�d�HC�Ex,D� �,D� �,x,x�,��
�
� a�D��D

_

�
X

f�x�d�HC�Ex,D� �,D� �,x,x�,��
�

�6. 3. 36�

6.4.Main properties of the Hausdorff-Colombeau metric
measures with associated negative Hausdorff-Colombeau
dimensions.

Definition 6.4.1. An outer Colombeau metric measure on a set X � �n is a
Colombeau

generalized function �����E��� � � GF��� (see Definition 6.3.1) defined on all

subsets of X satisfies the following properties:.
(i) Null empty set:The empty set has zero Colombeau outer measure

�����
��� � � 0. �6. 4. 1�

(ii) Monotonicity: For any two subsets A and B of X

A � B � �����A��� � ��
�����B��� �. �6. 4. 2�

(iii) Countable subadditivity: For any sequence �Aj� of subsets of X pairwise disjoint or
not

����� j�1

 Aj ��� �

�
� j�1


 ���Aj �
�

. �6. 4. 3�

(iv) Whenever d�A,B� � inf�dn�x,y�|x � A,y � B� � 0

�����A � B��� � � �����A��� � � �����B��� �, �6. 4. 4�

where dn�x,y� is the usual Euclidean metric:dn�x,y� � ��xi � yi �2 .

Definition 6.4.2. We say that outer Colombeau metric measure �μ���,� � �0, 1� is a
Colombeau measure on σ-algebra of subests of X � �n if �μ��� satisfies the following
property:

����� j�1

 Aj ��� � � j�1


 ���Aj �
�

. �6. 4. 5�

Definition 6.4.3.If U is any non-empty subset of n-dimensional Euclidean space, �n,
the

diamater |U| of U is defined as

|U| � sup�d�x,y�|x,y � U� �6. 4. 6�

If F � �n, and a collection �U i� i�� satisfies the following conditions:



(i) |U i | � 
 for all i � �, (ii) F � � i�� U i , then we say the collection �U i� i��is a δ-cover of
F.

Definition 6.4.4.If F � �n and s,q,δ � 0, we define Hausdorff-Colombeau content:

�H

s,q�F,���� � inf � i�1


 |U i |s

�xi�q � � �
�6. 4. 7�

where the infimum is taken over all δ-covers of F and where xi � �xi,1, . . .xi,n� � U i for

all i � � and �x� is the usual Euclidean norm:�x� � � j�1
n xj

2 .

Note that for 0 � δ1 � δ2 � 1,� � �0, 1� we have

H
1

s,q�F,�� 	 H
2

s,q�F,�� �6. 4. 8�

since any δ1 cover of F is also a δ2 cover of F,i.e. H
1

s,q�F,�� is increasing as δ
decreases.

Definition 6.4.5.We define the �s,q�-dimensional Hausdorff-Colombeau (outer)
measure

as:

�Hs,q�F,���� �

	0
lim H


s,q�F,��
�
. �6. 4. 9�

Theorem 6.4.1.For any δ-cover,�U i� i��of F, and for any � � �0, 1�, t � s :

Ht,q�F,�� � 
t�sHs,q�F,��. �6. 4. 10�

Proof. Consider any δ-cover �U i� i��of F.Then each |U i |t�s � 
t�s since |U i | � 
, so:

|U i |t � |U i |t�s|U i |s � 
t�s|U i |s. �6. 4. 11�

From (6.4.11) follows that

|U i |t

�xi�q � �
� 
t�s|U i |s

�xi�q � �
�6. 4. 12�

and summing (6.4.11) over all i � � we obtain

� i�1

 |U i |t

�xi�q � �
� 
t�s� i�1


 |U i |s

�xi�q � �
. �6. 4. 13�

Thus (3.4.10) follows by taking the infimum.
Theorem 6.4.2. (1) If �Hs,q�F,���� �

�



�
, and if t � s, then �Ht,q�F,���� � 0

�
.

(2) If 0
�
�
�
�Hs,q�F,����, and if t � s, then �Ht,q�F,���� � 


�
.

Proof.(1) The result follows from (6.4.10) after taking limits, since �� � �0, 1� by
definitions follows that Hs,q�F,�� � 
.
(2) From (6.4.10) �� � �0, 1�,�
 � 0 follows that

1

s�t Hs,q�F,�� � Ht,q�F,��. �6. 4. 14�

After taking limit 
 	 0, we obtain Ht,q�F,�� � 
,since lim
	0�
s�t��1 � 
 and
lim
	0 H


s,q�F,�� � Hs,q�F,�� � 0.
Definition 6.4.6.We define now the Hausdorff-Colombeau dimension dimHC�F,q� of a

set F (relative to q � 0) as

dimHC�F,q� �

sup s � s�q�|�Hs,q�F,���� � 

�

� inf s � s�q�|�Hs,q�F,���� � 0
�

.
�6. 4. 15�



Remark 6.4.1.From theorem 3.4.2 follows that for any fixed q � q� :
�Hs,q��F,���� � 0

�
or �Hs,q��F,���� � 


�
everywhere except at a unique value s, where

this
value may be finite. As a function of s,Hs,q��F,�� is decreasing function. Therefore, the
graph of Hs,q��F,�� will have a unique value where it jumps from 
 to 0.
Remark 6.4.2.Note that the graph of �Hs,q��F,���� for a fixed q � q� is

�Hs,q��F,���� �



�

if s � dimHC�F,q� �

0
�

if s � dimHC�F,q� �

undetermined if s � dimHC�F,q� �

�6. 4. 16�

Definition 6.4.7.We say that fractal � � �n has a negative dimension relative to q� � 0
iff dimHC�F,q� � q� � 0.

7.Scalar quantum field theory in spacetime with Hausdorff-
Colombeau negative dimensions.

7.1.Equation of motion and Hamiltonian.
Scalar quantum field theory and quantum gravity in spacetime with noninteger positive

Hausdorff dimensions developed in papers [42]-[45].Quantum mechanics in negative
dimensions developed in papers [40],[41] Scalar quantum field theory and quantum
gravity in spacetime with Hausdorff-Colombeau negative dimensions originally
developed in paper [15].In this section only free scalar quantum field in spacetime with
negative dimensions briefly is considered.

A negative-dimensional spacetime structures is a desirable feature of
superrenormalizable spacetime models of quantum gravity, and the most simply way to
obtain it is to let the effective dimensionality of the multifractal universe to change at
different scales. A simple realization of this feature is via suitable extended fractional
calculus and the definition of a fractional action. Note that below we use canonical
isotropic scaling such that:

�x� � � �1,� � 0, 1, . . . ,Dt � 1 �7. 1. 1�

while replacing the standard measure with a nontrivial Colombeau-Stieltjes measure in
negative Hausdorff-Colombeau dimension D

_
,

dDtx 	 dD
_

x � �d��x,D
_
,����,

��� � Dt 	 �,� � �1,�
�.
�7. 1. 2�

Here Dt is the topological (positive integer) dimension of embedding spacetime and � is
a parameter. Any Colombeau integrals on net multifractals can be approximated by the
left-sided Colombeau-Riemann–Liouville complex milti-fractional integral of a function
��t� :



�
0

t�
d��x,����t�

�
 I t�,�

�zi�t���

�
� �

i�1

m �
�

t� ��t� � t� � i��zi�t���1

��zi�t���
��t�dt

�

,

���t,���� �
t� zi�t�� � ��t� � t� � i��zi�t��

��zi�t�� � 1�
�

,

�7. 1. 3�

where � � �0, 1�, t� is fixed and the order z�t�� is (related to) the complex
Hausdorff-Colombeau dimensions of the set. In particular if zi � �, i � 1, 2, . . . ,m is a
complex parameters an integrals on net multifractals can be approximated by finite sum
of the left-sided Colombeau-Riemann–Liouville complex fractional integral of a function
��t�

�
0

t�
d��x,����t�

�
 I t�,�

�zi � i�1
m

�
�

� i�1
m �I t�,�

zi �
�
� � i�1

m 1
��zi �

�
�

t�
d��t� � t� � i��zi�1��t�

�
,

���t,���� � � i�1
m t� zi � ��t� � t� � i��zi

��zi � 1�
�

.
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Note that a change of variables t 	 t� � t trasforms Eq. (7.1.4) into the form

�
0

t�
d��x,����t�

�
� � i�1

m �
0

t�
dt

�t � i��zi�1

��z�t���
��t� � t�

�

. �4. 1. 5�

The Colombeau-Riemann–Liouville multifractional integral (7.1.5) can be mapped onto
a Colombeau-Weyl multifractional integral in the formal limit t� 	 �
.We assume
otherwise,so that there exists lim t�	�
 z�t�� and lim t�	�
��t� � t� � ��q�t�,q
 �t��. In particular if

z � � is a complex parameter a change of variables t 	 t� � t trasforms eq. (7.1.5) into
the form

� i�1
m �I t�,�

zi �
�
� � i�1

m �
�

t�
dt

�t � i��zi�1

��zi �
��q�t�,q
 �t��

�

. �7. 1. 6�

This form will be the most convenient for defining a Colombeau-Stieltjes field theory
action.In Dt dimensions, we consider now the action

�S��� � �
M

d��x,�������x�,�����x��
�
, �7. 1. 7�

where ���,���� is the Lagrangian density of the scalar field ����x��� and where

�d��x,���� � � i�1
m ���0

Dt�1 f�,i�x,��
�
dx�, f�,i�x,��

�
: M 	 �, �7. 1. 8�

is some Colombeau–Stieltjes measure. We denote with pair �M, �d��x,����� the metric
spacetime M equipped with Colombeau-Stieltjes measure �d��x,����. The former can be
taken to be the canonical scalar field Lagrangian,

������x�,�����x���� � � 1
2
����������� � �V�������, �7. 1. 9�

where V����� is a potential and contraction of Lorentz indices is given via the Minkowski
metric ��� � ��,�, . . .����.As for the Colombeau-Stieltjes measure, we make the

multifractal spacetime isotropic choice



f��,i �,�
�
� �f i,���,� � 0, 1, . . . ,Dt � 1; i � 1, . . . ,m. �7. 1. 10�

Hence the scalar field action (4.1.7) reads

�S��� � �
M

d��x,�������x�,�����x��
�
�

�
j�1

m � dDtxv�,j�x� 1
2
�������� � V����

�
�

�
j�1

m � dDtxv�,j�x,D,j
_
� 1

2
�������� � V����

�
,
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where �v�,j�x��� � �v�,j�x,D,j
_
��

�
is a coordinate-dependent Lorentz scalar

�v�,j�x,D j
���

�
� 1

�sj�x��
Dt�|� j�1|� � � �

. �7. 1. 12�

We define now the Dirac distribution in negative dimensions D j
�, j � 1, . . . ,m as

Colombeau generalized function by equation

�
j�1

m � dvj�x,D,j
_
,��
�vj �

D ,j
_

�x,��
�
� m. �7. 1. 13�

In particular for the case m � 1

� dv�x,D,j
_
,��
�v�

�D
_
��x,��

�
� 1. �7. 1. 14�

Invariance of the action under the infinitesimal shift ��x� 	 ��x� � 
��x� gives the
equation of motion for a generic weight �vi,���, i � 1, . . . ,m :

��
��� �

��
i�1

m ��vi,�
vi,�

� d
dx�

��
������� �

� 0. �7. 1. 15�

In particular for for the case m � 1 we obtain

��
��� �

�
��v�
v�

� d
dx�

��
������� �

� 0. �7. 1. 16�

From Eq.(7.1.11) and Eq.(7.1.15) we obtain

�
���� �� i�1

m ��vi,�
vi,�

����
�
� d

d��
V����

�
� 0. �7. 1. 17�

where 
 � ����. In particular for for the case m � 1 we obtain

�
���� �
��v�
v�

����
�
� d

d��
V����

�
� 0. �7. 1. 18�

Note that the Hamiltonian is no longer an integral of motion. Let us define now the
momentum

���,��� �

S�


�� �
� ��
 ���, �7. 1. 19�

where dots indicate (total) derivatives with respect to time and we have taken
Eq. (7.1.13) into account. Defining the Lagrangian in negative dimensions

D i
�, i � 1, . . . ,m

�L��� ��
i�1

m � dDt�1xvi,��x,D i
���

�
, �7. 1. 20�



where x ��x1, . . . ,xDt�1�,dDt�1x �dx1 �. . .�dxDt�1 the Hamiltonian is

�H��� ��
i�1

m � dD i
_

xvi,��x,D i
�����,��
 ��

�
� �L��� �

�
i�1

m � dD i
_

xvi,��x,D i
�� 1

2
��,�

2 � 1
2
� i�� i� � V�

�
�

�
i�1

m � dD i
_

xvi,��x,D i
��H�

�
,

H�
�
� 1

2
��,�

2 � 1
2
� i�� i� � V�

�
.
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The definition of the equal-time Poisson brackets is

�A��x�,B��x ����vi,�� �
�

�
i�1

m � dDt�1yvi,��y�

A��x i �

���y i �


B��x i
��


����y i �
� 
A��x i �


����y i �

B��x i

��

���y i � �

,
�7. 1. 22�

gives the Hamilton equations

��
 ��� � ����, H����,

��
 �� �� � ����� , H���� �� i�1

m v
 i,�
vi,�

���
�

�7. 1. 22�

equivalent to eqs. (7.1.19) and (7.1.14), respectively. Therefore, time evolution of an
observable �O��� � �O���,��� ,x,���� is

dO�

dt �
� ��tO��� � �O�, H���vi,�� �

� v
 i,�
vi,�

���
�O�

���� �
. �7. 1. 23�

7.2.Propagator in configuration space with Hausdorff-
Colombeau negative dimensions.

In this subsection we define the generalized vacuum-to-vacuum amplitude in
Hausdorff-Colombeau negative dimensions by

�Z�J� ��� � �
��� ���G �k

D
D��� �exp i� j�1

m �
�x

D
d� j,�������� � ��J��

�

�

�
��� ���G �k

D
D������ �exp i� j�1

m �
�x

D
d� j,�������� � ��J��

�
�

�
��� ���G �k

D
D������ �exp i� j�1

m �
�x

D
�d� j,������������� � ������J����

�7. 2. 1�

where ����� � G��k
D� and �J��� � G��k

D� is a source. Integration by parts in the exponent
leads to the Lagrangian density for a free field as

����� � 1
2

�� 
 �� j�1
m ��vj,�

vj,�
�� � m2 ��

�
� 1

2
���K�����, �7. 2. 2�

where

K� � 
 �� j�1
m ��vj,�

vj,�
�� � m2; j � 1, . . . ,m. �7. 2. 3�

In particular for for the case m � 1 we obtain



K� � 
 �
��v�
v�

�� � m2. �7. 2. 4�

The propagator is the Green function �G��x��� solving the equation

�K�G��x��� � �
v
D

_

�x,����, �7. 2. 5�

where D� � Dt�� � 1� � 0.By virtue of Lorentz covariance, the Green function �G��x���
must depend only on the Lorentz interval s2 � x�x� � xixi � t2,where x0 � t and
i � 1, . . . ,Dt � 1. In particular, �v��x��� � �v��s�x���� with the correct scaling property is

�v��s�x���� � |s�x�||D
_

| � �
�1

�
,s�x� � x�x� . �7. 2. 6�

Note that

�� �
x�

�s�x� � ���
�s,
 � �s

2 � Dt � 1
�s�x� � ���

�s. �7. 2. 7�

Hence the inhomogeneous equation (7.2.5) reads

�s
2 � Dt� � 1

�s�x� � ���
�s � m2 �G��x��� � �
v

D
_

�x,����. �7. 2. 8�

We first consider the Euclidean propagator and denote with r � xixi � t2 the
Wick-rotated Lorentz invariant. In the massless case, the solution of the homogeneous
equations for any � � 0 is

�G��r��� � Cr 2	,	 � 2 � D|�|
2

, �7. 2. 9�

where D � Dt and where C is a normalization constant. The right-hand side of Eq.(7.2.8)
is not the usual 
-function defined in radial coordinates. To find the latter note that

1 � �
�x

D
�dDxv��x���
�v� ��

�D
_
� �x� � �

�x
D

dDxv��x�
v�
�D

_
��x�

�

� �D�D
_ �

�x
D

drv��r� rD�1
�v� ��
�D

_
� �x� � �

�x
D

dr
�r� ,
�7. 2. 10�

where 
�v� ��
�D

_
� �x� � 
v�

�D
_
��x�

�
, �D � 2�D/2/��D/2� and �D

_ � 2�D
_
/2/��D�/2�, (see

Definition 6.3.8.) Therefore,

�
�x

D
�d���x���
�v� ��

�D
_
� �x� � �

�x
D

d���x�
v�
�D

_
��x�

�

�
�x

D
�d���x���

r 1�D

�D�D
_ �v��r���


�r�
�7. 2. 11�

In order to find the propagator also for r � 0 we can take some test function � and
compute

�D�D
_ �C�G,�� � lim�	0 �D�D

_ �
�

�

drC�G�r���r�

�
, �7. 2. 12�

where

�C��� � �v��r�rD�1K��� � �r�r��D|� |�1��r � � r��D|� |�1�m2

� �r�r��D|� |�1��r � � r��D|� |�1�m2 � �r�rD
_

�r � � rD
_

m2.
�7. 2. 13�

where D� � ��D|�| � 1�.Thus



�D�D
_ �K0G,�� � lim�	0 �D�D

_ �
�

�

drG�r��r�r��D��1��r��r��

� C��D�D
_ �2 � D|�|���0� ,

�7. 2. 14�

where C�is an constant and where we have used Eq.(7.2.9) and integrated by parts once
(since the boundary terms vanish). The last line must be equal to �
,��, thus fixing C�.
Then, the Green function for m � 0 finally reads

G�r� � 1
�D�D

_ �2 � D|�|�
�r 2�

2�D|� |
2 . �7. 2. 15�

Let us consider now the massive case.The solution of the homogeneous equation
�K�G��r��� � 0 for any � � 0 is

�G��r��� � r
m

2�D	|� |
2

C1K� 2�D	|� |
2

�mr� � C2I� 2�D	|� |
2

�mr� , �7. 2. 16�

where D � Dt, C1,C2 are constants and Kv and I v are the modified Bessel functions. The
function I ��z� is

I ��z� ��
k�0


 �z/2���2k

k!��� � k � 1�
. �7. 2. 17�

Formula (7.2.17) is valid providing � � �1,�2,�3, . . . .

I�|� |�z� ��
k�0


 �z/2��|� |�2k

k!���|�| � k � 1�
�7. 2. 18�

Formula (7.2.18) is obtained by replacing � in (7.2.17) with a ��.Note that

K��z� � �
2 sin��

�I���z� � I ��z��. �7. 2. 19�

It follows

K�|� |�z� � � �
2 sin|�|�

�I |� |�z� � I�|� |�z��. �7. 2. 20�

The modified Bessel functions I |� |�z� and I�|� |�z� have the following asymptotic forms for
z 	 0 :

I |� |�z� � 1
��|�| � 1�

z
2

|� |
, I�|� |�z� � 1

���|�| � 1�
z
2

�|� |
,

� � �1,�2,�3, . . . .
�7. 2. 21�

From (7.2.16) we obtain

�G��r��� � r
m

2�D	|� |
2

C1K� 2�D	|� |
2

�mr� � C2I� 2�D	|� |
2

�mr� �

r
m

2�D	|� |
2

� C1�
2 sin 2�D	|� |

2 �
I 2�D	|� |

2
�z� � I� 2�D	|� |

2
�mr� � C2I� 2�D	|� |

2
�mr� �

r
m

2�D	|� |
2

� C1�
2 sin 2�D	|� |

2 �
I 2�D	|� |

2
�mr� � I� 2�D	|� |

2
�mr� C1�

2 sin 2�D	|� |
2 �

� C2 .
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Since for small m � 0 the solution must agree with the massless case (4.2.15), we set



C1�
2 sin 2�D	|� |

2 �
� C2 � 0. �4. 2. 23� Therefore

�G��r��� � �C1
r
m

2�D	|� |
2 �

2 sin 2�D	|� |
2 �

I 2�D	|� |
2

�mr�. �4. 2. 24�

To find the solution of the inhomogeneous equation, one exploits the fact that the
mass term does not contribute near the origin. Expanding Eq. (7.2.24) at mr � 0, we find

�G��r��� � �C1
r
m

2�D	|� |
2 mr

2

2�D	|� |
2 �

2� 2�D	|� |
2 � 1 sin 2�D	|� |

2 � �7. 2. 25�

which must coincide with Eq.(7.2.15). This gives the coefficient C1 and the propagator
reads

G�r� � 1
2�

D
2 �

D
_

2

� D
2 � D	|� |

2

�D
_

r
m

2�D 	|� |

2 I 2�D|� |
2

�mr� �

� ��D,D
_
� r

m

2�D 	|� |

2 I 2�D|� |
2

�mr�,
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where we let

��D,D
_
� � 1

2�
D
2 �

D
_

2

� D
2 � D	|� |

2

�D
_

. �7. 2. 27�

We can analytically continue the Helmholtz propagator (7.2.26) to the Klein–Gordon
propagator according to the prescriptions: (i) multiply G times the imaginary unit i, due to
Wick rotation of the time direction; (ii) replace r 2 with s2 � i�, where the positive sign of
the extra infinitesimal term corresponds to the causal Feynman propagator. Thus
Feynman propagator reads

G�s� � �i��D,D
_
� m2

s2 � i�

� D|� |
4
� 1

2
I D|� |

2
�1 m s2 � i� , s � 0 , �7. 2. 28�

The massless propagator is

G�s� � i
�D�D

_ �2 � D��
�s2 � i��1� D	|� |

2 , �7. 2. 29�

In order to calculate the propagator in momentum space, we can start from the
Euclidean one and then analytically continue the result as usual. In the Lorentzian
propagators the substitution k2 	 |k|2 � �k0�2 � i� is understood.Massless propagator in
momentum space is given by Fourier transform (in the sense of generalized functions,
see [32]) of the Eq.(7.2.15)

G�k� � 1
�D�D

_ �D|�| � 2�
��r 2�D|� |� �

�2��
D
2 2

2�D�|� |�1�
2

�D�D
_� � 2�D|� |

2 �D|�| � 2�
1

k2�D�|� |�1�
,

�7. 2. 30�

where D
_
� �D�|�| � 1�. The Fourier transform of the massive propagator in radial

coordinates is



G�k,m2� � �D � dr rD�1 G�r,m2�e�ik	x . �7. 2. 31�

The integrand in Eq.(7.3.21) is not radial but we can choose a frame where
k�x� � �krcos�, k � |k�|, and the angular integral is

� d�D e�ik	x � �D�1 �
0

�
d��sin��D�2eikr cos� �

�D�1 � � D � 1
2

2
kr

D
2
�1

J D
2
�1�kr� ,

�7. 2. 32�

where J��	� � �
0

�
ei	cosu�sinu�2�du.Thus we obtain

G�k,m2� � �D� D
2

2
k

D
2
�1 �

0

�

dr rD�1�G�r,m2��J D

2
�1�kr� . �7. 2. 33�

Now we take the massive propagator G�r,m2� (7.2.26)

G�k,m2� � ��D,D
_
�� D

2
2
k

D
2
�1 m

2

� D|� |
2
�1

�

�
0

�

dr r

2�D�|� |�1�
2

�1I D|� |
2

�1�mr�J D
2
�1�kr�.
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7.3.Green’s functions in spacetime with Hausdorff-
Colombeau negative dimensions.

We consider now a self-interecting scalar field ����� � G��k
D� describing by the action

�S��� � �
�x

D
dv� 1

2
����������� �

1
2

m2���
2�� � �V������� , �7. 3. 1�

where

�V��x��� � G��
D�. �7. 3. 2�

Corresponding generalized vacuum-to-vacuum amplitude in Hausdorff-Colombeau
negative dimensions reads

�ZM�J� ��� �

�
��� ���

�
G��x

D �
D������ � �

exp i �
�x

D
dv� 1

2
����������� �

1
2

m2���
2�� � �V������� � ��J�

�
�

�
��� ���

�
G��x

D �
D������ � �

exp i �
�x

D
�dv���

1
2
����������� �

1
2

m2���
2�� � �V������ � ������J���

�7. 3. 3�

where G��x
D� � G��x

D� is an topological linear subspace of Colombeau algebra G��k
D�,

����� � G��x
D� and �J��� � G��x

D� is a source.
Remark 7.3.1.Note that in (7.3.3) we integrate over an topological linear subspace
G��x

D� � G��x
D� of Colombeau algebra G��x

D� but not over full Colombeau algebra
G��x

D�.
We will be write for short the expression �Z�J� ��� in the following form



�ZM�J� ��� � NM ��
G��x

D �
D������ � �

exp i 1
2
����������� �

1
2

m2���
2�� � �V������� � ������J�� ,

�7. 3. 4�

where NM is a normalizing constant, the �. . . �v now means integration with nontrivial

measure �dDv��x��� over spacetime, and �J��� � G��x
D� is a source. The integrand in

(7.3.4) is oscillatory and even path integrals are not well defined. There are two
canonical ways to resolve this problem:

(i) put in a convergence factor exp � 1
2 ����

2�� � with � � 0, or
(ii) define �Z�J� ��� in Euclidean space by setting x0 � ix� 0,dDx � �idDx�,
����������� � �������

�����,where the bar denotes Euclidean space variables,

�� � �/�x� � .
Then Eq.(7.3.4) becomes

�ZE�J� ��� � NE ��
G��x

D �
D������ � �

exp � 1
2
������

����� �
1
2

m2���
2�� � �V������� � ������J���

, �7. 3. 5�

where for instance

�V������� � �k�3
m ck���

k��. �7. 3. 6�

The exponent of the integrand is now negative definite for positive m and V.
In either case, the generating functional is used to manufacture the Green’s functions

which are the coefficients of the functional expansion

�Z�J� ��� ��
N�0


 iN

N!
�J1,�J2,�. . .JN,�G�N��1, 2, . . . ,N;���� �1,�2,...,�N

.�

�
N�0


 iN

N!
�J1,����J2,���. . . �JN,����G

�N��1, 2, . . . ,N;���� �1,�2,...,�N
.

�7. 3. 7�

Thus

�G�N��1, 2, . . . ,N;���� �

1
iN




�J1,��1,��




�J2,��2,��

. . . 


�JN,��N,��

Z�J� �
� �J� ���0

�

1
iN




�J1,��1,���




�J2,��2,���

. . . 


�JN,��N,���

�Z�J� ���
�J� ���0

�

1
iN




�J1,�

� ��




�J2,�

� ��
. . . 



�JN,�
� ��

�Z�J� ���
J�
�

�
�0

�7. 3. 8�

where �Ji,��� � �Ji,��xi ���, �� i,��� � �� i,��xi ���, �Ji,�
� �� � �Ji,��xi �� i,��xi ���, i � 1, 2, . . . ,N,

�J��� � ��J1,���, �J2,���, . . . , �JN,���� , �J�
��� � �J1,�

� ��, �J2,�
� ��, . . . , �JN,�

� �� and �. . . ��1,�2,...,�N
.

means integration with nontrivial Colombeau–Stieltjes measure dD���x1� � dD���x2� �. . .
�dD���xN�. We evaluate now �ZM�J� ��� when �V������� � 0. We choose to do it in
Minkowski. Let �Z0,�

M �J� ��� be



�Z0,�
M �J� ��� �

NM ��
G��x

D �
D������ �exp i 1

2
����������� �

1
2
�m2 � i�����

2�� � ������J��
�

.
�7. 3. 9�

We assume now that ����x���, �J��x��� � G��
D�, ����x��� � G��

D� and introduce the
D-dimensional Colombeau Fourier–Stieltjes transform ����k��� � ��S�������x��� ��k�, of

the field ����x��� with weight ��
�1��x�

�
, ��

�2��k�
�

using the following formal

definitions: where the Colombeau-Fourier– Stieltjes transform Fv of a function
�G��x��� � G��

D� and its inverse are defined as

G��k�
�
� � d���x�G��x�e�ik	x

�
� ��d���x� ���G��x��� e�ik	x � �Fv��G��x��� � �7. 3. 10�

and

�G��x��� � 1
�2��D � d���k�G��k�eik	x

�
� 1

�2��D ��d���k� �� G��k�
�
eik	x. �7. 3. 11�

correspondingly,where k 	 x � k0x0 � k 	 x. Using now the definition of the D-dimensional
Colombeau–Dirac distribution with nontrivial Colombeau–Stieltjes measure �d���k� ��

�
���k��� � �
�k

D
d���x�e�ik	x

�

� �
�k

D
�d���x� ��e

�ik	x �7. 3. 12�

the exponent of the integrand in Eq.(7.3.9) is easily expressed in terms of the
Colombeau- -Fourier–Stieltjes transforms of ����x��� and �J��x���. Finally it reads

i
2 � d����k� ��

� �k��k2 � m2 � i��� ���k� �
�
J��k��k2 � m2 � i���1�J���k�

�
, �7. 3. 13�

where

��
� �k�

�
� ����k��� � �k2 � m2 � i��

�
J��k� �

. �7. 3. 14�

Definition 7.3.1. Let G��x
D� � G��x

D� be a maximal topological linear subspace of the
Colombeau algebra G��k

D� such that for any ����� � G��x
D� bouth Eqs.(7.3.10)-(7.3.11)

are satisfied.
Remark 7.3.2. Note that we willin to choose a source

�
J��k� �

� G��k
D� such that

��
� �k�

�
� G��k

D�, ���
� �x��� � G��x

D� and therefore

��
G �k

D
D ����� exp�. . . � � ��

G �k
D

D ��
�

�
exp�. . . �. �7. 3. 15�

Putting it all together, we obtain

�Z0,�
M �J� ��� � NM exp � i

2 � d����k�
�
J��k�

�
J���k�

k2 � m2 � i� �

�

�
���

� ���
�
G��x

D �
D����

� �� �exp i 1
2
�����

� ����
� �� �

1
2
�m2 � i�����

�2�� �
,

�7. 3. 16�

where we observed that the ���
� ��-dependent term was just the same as the �����

-dependent term in (4.3.9) with �J��x��� � 0. Thus

�Z0,�
M �J� ��� � �Z0,�

M �0��� exp � i
2 � d����k�

�
J��k�

�
J���k�

k2 � m2 � i� �

. �7. 3. 17�



By adjusting NM,we can take �Z0,�
M �0��� � 1.The important thing is that we have

succeeded in finding the explicit dependence of �Z0,�
M �J� ��� on �J��x���. The use of the

�J��x��� inverse Colombeau-Fourier–Stieltjes transform (7.3.11) yields

�
�k

D
d����k�

�
J��k�

�
J���k�

k2 � m2 � i� �

�

�
�k

D

�d����k���
�2��D �

�x
D
��d���x���� �

�y
D
��d��y����e

ik	�x�y�

�
J���k�

�

�
J��k� �

k2 � m2 � i�

�7. 3. 18�

and so that, if �����k��� � ����k���, the free partition function reads

�Z0,��J���� � ��Z0,��0��� � �

exp i
2 ��x

D
��d���x���� �

�y
D
��d���y��� ��J��x���
F�x � y;�����J��y��� �

exp i
2

�J��x���
F�x � y;�����J��y��� ��x�,��y�

�7. 3. 19�

where

�
F�x � y;���� � 1
�2��D ��k

D
��d���k��� �

eik	�x�y�

k2 � m2 � i�
. �7. 3. 20�

Thus, we have recovered the usual definition of the propagator as the solution of the
Green equation in negative dimensions D� � D�� � 1�,� � 0 :

�
 � m2�
F�x � y;���� � ��
���x � y� ��. �7. 3. 21�

It is the Feynman propagator. We now interpret the Green’s functions obtained
from �Z0,��J���. From (7.3.8) we find

G0
�2��x1,x2;��

�
� �
F�x1 � x2;����

G0
�4��x1,x2,x3,x4;��

�
�

���
F�x1 � x2;��
F�x3 � x4;���� � �
F�x1 � x3;��
F�x2 � x4;���� �

��
F�x1 � x4;��
F�x2 � x3;���� �

etc. ...

�7. 3. 22�

together with the vanishing of the Green’s functions with odd number of variables. This
fact is easy to understand since �Z0,��J���� depends only on �J���. In passing, note that
all Green’s functions are functions of only the difference of coordinates, reflecting the
translation invariance of the theory. Another imprtent notes is that the higher Green’s
functions can all be represented only in terms of G0

�2��x1,x2;��
�
. Hence it would apper

more convenient to set

�Z0,��J���� � �exp�iZ� 0,��J����� �7. 3. 24�

and define new Green’s functions in terms of �Z� 0,��J���� :

�iZ� �J� ��� ��
N�0


 iN

N!
J1,�J2,�. . .JN,�Gc

�N��1, 2, . . . ,N;��
� �1,�2,...,�N

.�

�
N�0


 iN

N!
�J1,����J2,���. . . �JN,��� Gc

�N��1, 2, . . . ,N;��
� �1,�2,...,�N

.
�7. 3. 25�



Indeed since �G�N��x1,x2, . . . ,xN;���� depends only on differences of coordinates the

Colombeau-Fourier transform

� dDx1. . .dDxN exp �i� j�1
N kjxj �G�N��x1,x2, . . . ,xN;���� �7. 3. 26�

necessarily contains the usual 
-function of � j�1
N kjxj . So we can set

G
�N�

�p1,p2, . . . ,pN;��
�
�

�2��D
 � j�1
N kj � dDx1. . .dDxN exp �i� j�1

N kjxj �G�N��x1,x2, . . . ,xN;���
�

�7. 3. 27�

with G
�N�

�p1,p2, . . . ,pN;��
�

defined only when p1 � p2 �. . .�pN � 0.For instance

G0
�2��p,�p;��

�
�

����k���
k2 � m2 � i�

�7. 3. 28�

gives the amplitude that a free particle of momentum k and mass m2 propagates in
fractal spacetime. .

7.3.1.The Effective Action
Out of the generating functional we can construct local quantities which lend

themselves to familiar interpretations. For instance,


�Z0,��J����

�J�

��x���
� �i


��J1,�
c�x1 � x2;��J2,��� ��1,�2


�J�
��x���

�Z0,��J���� �7. 3. 29�

so that

�cl
�0��x;��

�
� �i


�lnZ0,��J����

�J�

��x���
�


�Z� 0,��J����

�J�

��x���
�7. 3. 30�

(by using Eq.(7.3.21)) satisfies the classical equation of motion

�
 � m2� �cl
�0��x;��

�
� �J��x���. �7. 3. 31�

In fact, we can use Eq.(7.3.30) in order to replace �J��x��� in terms of �cl
�0��x;��

�
.

Formally it comes down to performing a functional Legendre transformation. Introducing

�0,���cl
�0��x;���

�
� �Z� 0,��J���� � J��x��cl

�0��x;��
� �

�7. 3. 32�

we see by using Eq.(7.3.30) that is independent of �J��x���. In this case it is easy to find

the explicit form of �0,���cl
�0��x;���

�
by replacing �J��x��� in terms of �cl

�0��x;��
�
. One

finds using Eq.(7.3.21),Eq.(7.3.31) and integrating by parts we obtain

�0,���cl
�0��x;���

�
�

� 1
2 �
 � m2� �cl

�0��x1;��
�

�
F�x1 � x2;���� �
 � m2� �cl
�0��x2;��

� �1,�2

� �cl
�0��x;��

�
�
 � m2� �cl

�0��x;��
� �

�

� 1
2 �cl

�0��x;��
�
�
 � m2� �cl

�0��x;��
� �

�7. 3. 33�

Integration by parts gives the final form



�0,���cl
�0��x;���

�
�

1
2 ��d���x��� ���cl

�0��x;�����cl
�0��x;�� � m2 �cl

�0��x;��
2

�
.

�4. 3. 34�

A very similar procedure can be carried out in the general case V � 0. We form now

��cl�x;���� � �i

�lnZ��J����

�J�

��x���
�


�Z� ��J����

�J�

��x���
�7. 3. 34�

and try to compute the effective action in general case

�����cl�x;����� � �Z� ��J���� � ��J��x��cl�x;���� �� �7. 3. 35�

with now

�J��x��� �

�����cl�x;�����

��cl�x;����

�7. 3. 36�

as seen by differentiating Eq.(7.3.35) with respect to ��cl�x;����.By the way, we observe
that since �����cl�x;����� is an effective action, (7.3.36) is proportional to its equation of
motion comes, from extremizing �����cl�x;�����. In the V � 0 case this is obvious from
Eq.(7.3.31).In order to derive an equation of motion for ��cl�x;����, we have to write
�Z�

M�J� ��� in a manageable form. We write

�Z�
M�J� ��� � NM ��

G��x
D �

D������ � �

exp i 1
2
����������� �

1
2
�m2 � i�����

2�� � V������� � ������J��� �

� NM ��
G��x

D �
D������ �exp �i�V��������� �

exp i 1
2
����������� �

1
2
�m2 � i�����

2�� � ������J��� �
.

�7. 3. 37�

Now immediately comes the canonical trick: observe that
1
i




�J�

��x���
exp i�������J��� �� � ����x��� exp i�������J��� �� �7. 3. 38�

and since �J��� and ����� are independent variables, the same will be true for any
function �V������ of �����. In particular

exp �i�������J��� �� exp i�������J��� �� �

exp �i V 1
i




�J�

��x��� �

exp i�������J��� �� .
�7. 3. 39�

This allows us to take the V dependent term out of the path integral



�Z�
M�J� ��� � exp �i V 1

i




�J�
��x��� �

�

NM ��
G��x

D �
D������ �exp i 1

2
����������� �

1
2
�m2 � i�����

2�� � ������J��� �

� exp �i V 1
i




�J�

��x��� �

�Z0,��J����

�7. 3. 40�

or

exp i�Z� 0,��J���� � �Z�
M�J� ��� � exp �i V 1

i




�J�
��x��� �

�exp i
2

�J��x1���
F�x1 � x2;�����J��x2��� �1,�2

�7. 3. 41�

The equation Eq.(7.3.41) will be the starting point of the perturbative evaluation of
�Z�

M�J� ���. For the moment, we use it to derive an equation for ��cl�x;���� . From
Eq.(7.3.41)


�Z�
M�J� ���


�J�
��x���

� �i exp i V �i 


�J�

��� �

��
F�x � x1;��J1,��� ��1
�

�Z0,�
M �J� ��� � �i exp �i V �i 



�J�
��� �

��
F�x � x1;��J1,��� ��1
�

exp i V �i 


�J�

��� �

�Z�
M�J� ���.

�7. 3. 42�

From Eq.(4.3.42) follows that

�
x � m2�

�Z�

M�J� ���

�J�

��x���
� iOx�Z�

M�J� ��� �7. 3. 43�

where

Ox � exp �i V �i 


�J�

��� �

�J��x��� exp i V �i 


�J�

��� �

. �7. 3. 44�

We can evaluate Ox by means of yet another trick. We set now

Ox��� �

exp �i� V �i 


�J�

��� �

�J��x��� exp �i� V �i 


�J�

��� �

,
�7. 3. 45�

where � � � is a real parameter. Clearly



dOx���
d�

�

exp �i� V �i 


�J�

��� �

�iV �i 


�J�

��� �

, �J��x��� �

i� V �i 


�J�

��� �

.

�7. 3. 46� But

�iV �i 


�J�

��� �

, �J��x��� � �iV � �i 


�J�

��y��� �

�
��
D �x � y���, �7. 3. 47�

where V� is the derivative of V with respect to its argument. Integrating Eq.(4.3.46) over
y, we find

dOx���
d�

� �V� �i 


�J�

��x���
. �7. 3. 48�

The equation Eq.(7.3.48) is now integrated over � to yield

Ox � Ox�1� � �J��x��� � V� �i 


�J�

��x���
. �7. 3. 49�

Hence

�
x � m2�

�Z�

M�J� ���

�J�

��x���
� i �J��x��� � V� �i 



�J�
��x���

�Z�
M�J� ��� �7. 3. 50�

or

�
x � m2���cl�x;���� � �J��x��� �

1
�Z�

M�J� ���
V� �i 



�J�
��x���

�Z�
M�J� ���.

�7. 3. 51�

The last term clearly resembles a force. For instance, take

V � �
4!

�4, �7. 3. 52� where � is dimensionless. Then

1
�Z�

M�J� ���
V� �i 



�J�
��x���

�Z�
M�J� ��� �

� �
3!

i 3 1
�Z�

M�J� ���


3�Z�
M�J� ���


 �J�
��x���

3 �

�
3!

��cl
3 �x;���� �


2��cl�x;����

 �J�

��x���
2 � 3i��cl�x;����


��cl�x;����

�J�

��x���
,

�7. 3. 53�

and finally we get



�
x � m2���cl�x;���� �

�J��x��� �
�
3!

��cl
3 �x;���� �

�
3!


2��cl�x;����

 �J�

��x���
2 � i�

4

��cl

2 �x;����

�J�

��x���
.

�7. 3. 54�

The first two terms on the right hand side of the Eq.(7.3.54) as in classical case, give
the classical equation of motion modified by the last two terms, which must amount to
corrections from the quantum theory.

In the case V � 0, the explicit form of the effective action is, of course, not known but
we can expand it functionally in terms of ��cl�x;���� as

�����cl�x;����� � ��d���x������V�
e��cl�x;����� �

1
2
�F���cl�x;������cl�x;�����cl�x;���� � higher order derivatives ,

�7. 3. 55�

where we take into account now local effects by including arbitrarily high higher order
derivatives of ��cl�x;����.We have arbitrary Colombeau generalized functions
�V�

e��cl�x;�����,F���cl�x;��� etc., to be determined. �V�
e�	��� is clearly an effective

potential. By expressing �J��x��� in terms of ��cl�x;���� using (4.3.54) and integrating
(4.3.36), we obtain that

�V�
e��cl�x;����� � �

4!
��cl

4 �x;���� �
m2

2
��cl

2 �x;���� � O��� �7. 3. 56�

and

�F���cl�x;����� � 1 � corrections. �7. 3. 57�

Alternatively, we can expand the effective action in terms of ��cl�x;���� by nonlocal way:

�����cl�x;����� � ��
�N��1, 2, . . . ,N��cl�1;���cl�2;��. . .�cl�N;��

� �1,�2,...,�N

�7. 3. 58�

where the coefficients ��
�N��x1,x2, . . . ,xN� are called the proper vertices. They depend only

on the differences x .i � xj because of translation invariance so that their
Colombeau-Fourier transforms are introduced by

��

�N�
�p1,p2, . . . ,pN�

�
�2��D
�p1 � p2 �. . .�pN� �

� dDx1dDx2. . .dDxN exp�i�p1x1 � p2x2 �. . .�pNxN����

�N�
�p1,p2, . . . ,pN�

�
,

�7. 3. 59�

where ��

�N�
�p1,p2, . . . ,pN�

�
being defined only when the sum of its arguments

vanishes.

7.4.Saddle-Point Evaluation of the Path Integral in
negative dimensions.

We start from the Euclidean space definition of the generating functional in negative
dimensions



�ZE�J� ��� � NE �
G��x

D �
D������ �exp��SE������, �J��� �� � NE �

G��x
D �

D������ � �

exp � 1
2
����������� �

1
2

m2���
2�� � �V������� � ������J��� �

, �7. 4. 1�

where

�SE������, �J��� ��� � 1
2
����������� �

1
2

m2���
2�� � �V������� � ������J��� �

�7. 4. 2�

Remark 7.4.1. Note that in Eq.(7.4.1) in contrast with Eq.(7.3.4) and Eq.(7.3.5), we
integrate over full Colombeau algebra G��x

D�.
We then expand the action around a field configuration ��0,��x���

�SE������, �J��� ��� �

�SE���0,���, �J��� ��� �

SE


����x1���
����x1� � �0,��x1���

�

�

1
2


2SE


����x1���
����x2���
����x1� � �0,��x1�������x2� � �0,��x2���

�1,�2

�7. 4. 3�

with the functional derivative evaluated at ��0,��x���. We take �SE������, �J��� ��� to be
stationary at ��0,��x���, which means that ��0,��x��� obeys the classical equations of
motion with the source term


SE


����x��� ��� �����0,� ��

� ���������x��� �

�����x�
���x�

�����x�
�

� m2���
2�x��� � �V�

� ����x���� � �J��x��� � 0

�7. 4. 4�

It follows that after integration by parts

�SE���0,���, �J��� ��� � 1
2 � dDx����x��� 2 � �0,�

d
d�0,�

�J��0,� � V���0,���
�

�7. 4. 5�

while


2SE


��1,���
��2,���
� ����� �

����
��

�

�� � m2 � �V�
����1,���� 
D�x1 � x2� �7. 4. 6�

is an operator. By using formal approuch of the saddle point evaluation, the generatin
functional now becomes

�ZE�J� ��� � NE exp��SE���0,���, �J��� �� �
G��x

D �
D������ � �

exp � 1
2

��1,���

2SE


��1,���
��2,���
��2,���

�1,�2

�

NE
� exp��SE���0,���, �J��� �� �

det ����� �
����
��

�� � m2 � V�
����0,�� 
1,2���

� 1
2

�

�7. 4. 7�

Where the Gaussian integral in Eq.(7.4.7) with the formal result is



�
G��x

D �
D������ �exp � 1

2
��1,���


2SE


��1,���
��2,���
��2,���

�1,�2

�

�
G��x

D �
D������ �exp ����� �

����
��

�

�� � m2 � V�
����1,�� �

det ����� �
����
��

�� � m2 � V�
����1,�� 
1,2���

� 1
2

�

.

�7. 4. 8�

Clearly this expression needs some getting used to. We can rewrite it in a slightly more
suggestive form by using the identity

�detM��� � �exp�Tr lnM� ���. �7. 4. 9�

Therefore

�ZE�J� ��� � NE
� exp��SE���0,���, �J��� � �

1
2

Tr ln ����� �
����
��

�� � m2 � V�
����0,�� 
1,2���

�

,
�7. 4. 10�

which clearly Indicates we are computing corrections to �Z� E�J� ���.The first term

SE���0,���, �J��� � gives the classical conribution to the Green’s functions (remember
Dirac’s identification). The next term, of O���, gives the first quantum correction to the
Green’s functions.The determinant of an operator is understood to mean the product of
its igenvalues. We start by computing the classical contributions to �ZE�J� ���.First recoll
that ��0,���, being the solution of (7.4.4), is a functional of �J���. The procedure is
therefore very simple: (i) calculate the functional dependence of ��0,��� on �J���, (ii)
insert it in (7.4.5) and, (iii) by comparing the resulting expression with the expansion
(7.3.25), extract the Green’s functions G�N��1, . . ,N�. The best case do this using
perturbation theory. Specifically, take the potential and expand around � � 0.We set

��0,��x��� � ��
�0��x�

�
� � ��

�1��x�
�
� �2 ��

�2��x�
�
�. . . �7. 4. 11�

thus

�SE��J��� ��� �

� 1
2 ��d

D���x��� �J��� ��
�0��x�

�
� � ��

�1��x�
�
� �2 ��

�2��x�
�
�. . .

�
12

��
�0��x�

�
� � ��

�1��x�
�
� �2 ��

�2��x�
�
�. . .

4
�

� 1
2 ��d

D���x����J��� ��
�0��x�

�
�

�
2 ��d

D���x��� �J��� ��
�1��x�

�
� 1

12
��

�0��x�
�

4
� O��2�.

�7. 4. 12�

We define now the Euclidean Greent’s function in obvious notation:

���� �
����
��

� m2 �G�,xy�� � ��
��,xy
D �� �7. 4. 13�

it follows that



��
�0��x�

�
� ��G�,xyJ�,a�� ��a

� ��G�,xy���J�,a�� ��a

��
�1��x�

�
� � 1

6
��G�,xy���G�,ya���G�,yb���G�,yc���J�,a���J�,b���J�,c�� ��a�b�c�y

,

etc...

�7. 4. 14�

Thus

�SE��J��� ��� � � 1
2
��J�,a���G�,ab���J�,b�� ��a�b

�

�
4!

��G�,xa���G�,xb���G�,xc���G�,xd���J�,a���J�,b���J�,c���J�,d�� ��a�b�c�d�x
�

�2

3 	 4!
��G�,xa���G�,xb���G�,xc���G�,xy���G�,yd���G�,ye���G�,yf�� �

�J�,a���J�,b���J�,c���J�,d���J�,e���J�,f�� ��a�b�c�d�e�f�x�y
.

�7. 4. 15�

Correspondingly, the (connected) Euclidean Green’s functions are given by

GE
�N��x1, . . . ,xn;��

�
�


NZ� �E�J� �

J�

�1�x1�. . .
J�
�N�xN� �

, �7. 4. 16�

where

�ZE�J� ��� � NE exp ��Z� �E�J� ��� . �7. 4. 17�

In this classical approximation we find the connected Green’s functions to be

GE
�2��x1,x2;��

�
� �G�x1,x2;���� � ��D,D

_
� r

m

2�D 	 � i

2 I 2�D|� |
2

�mr�, �7. 4. 18�

see Eq.(7.2.26),

GE
�4��x1,x2,x3,x4;��

�
�

�� � dDy�G�x1,y;�����G�x2,y;�����G�x3,y;�����G�x4,y;����,

GE
�6��x1,x2,x3,x4,x5,x6;��

�
�

�2 � dDxdDy�G�x1,x2;�����P�x,y,x1,x2,x3,x4,x5,x6;����

�7. 4. 19�

where

�P�x,y,�xi�;���� �

�
�ijk�

�G�x,xi ;�����G�x,xj ;�����G�x,xk;�����G�y,xl ;�����G�y,xm;���� �

�G�y,xn;����,

�7. 4. 20�

where the sum runs over all the following values of the triples, �ijk� � �123�, �124�, �125�,
�126�, �134�, �135�, �136�, �145�, �146�, �156�, with �lmn� assuming the complementary
value, e.g., �lmn� � �456� when �ijk� � �123�. Note that ijk runs only over half of the
possible values. This is because the expression for P�	� is symmetric under the
interchange x 	 y. In this classical approximation and to order �2 these are the only
nonzero Green’s functions.

The momentum space Green’s functions, defined by



GE

�N�
�p1, . . . ,pN;��

�
� �2��D
�p1, . . . ,pN� �

� dDx1. . .� dDxN exp�i�p1x1 �. . .�pNxN��GE
�N��x1, . . . ,xN;��

�
�

� dDx1. . .� dDxN exp�i�p1x1 �. . .�pNxN�� GE
�N��x1, . . . ,xN;��

�
.

�7. 4. 21�

7.5.Power-counting renormalizability of P���D� scalar field
theory in negative dimensions D�.

Consider a free scalar field with action in negative dimensions D� � D�� � 1�,� � 0 :

�S0,��� � � 1
2 �

�x
D

d���x����x�P�
����x�
�
, �7. 5. 1�

where � � �����x��� � � G��
D�, �����x��� � � G��

D� and P�	� is a polinomial.
Definition 7.5.1. Assume that (i) ����x��� � G��

D�,� � G��D� and (ii) there exist
Colombeau generalized function �� ��k� �

� G��k
D� such that

����x��� � �
�k

D
d���k��� ��k�eik	x

�

� �2���D �
�k

D
�d���k� �� �� ��k� �

eik	x, �7. 5. 2�

and

�� ��k� �
� �

�x
n

d���x����x�e�ik	x

�
� �

�x
D
�d���x� ������x���e

�ik	x. �7. 5. 3�

Then we will say that: (1) �� ��k� �
is Colombeau Fourier–Stieltjes transform of the

field ����x��� with weight � and abraviate
�
���k� �

� ��S�������x��� ��k�, �7. 5. 4�

(2) ����x��� is inverse Colombeau Fourier–Stieltjes transform of the field �� ��k� �
with

weight ����� and abraviate

����x��� � ��S��
�1 �� ��k� �

�x�. �7. 5. 5�

Definition 7.5.2. We will denote:
(i) the set of the Colombeau generalized functions �� ��k� �

� G��k
D� which is

Colombeau
Fourier–Stieltjes transform with weight � by ��S���G��k

D�� or by G��S����k
D�

(ii) the set of the Colombeau generalized functions ����x��� � G��x
n� which is inverse

Colombeau-Fourier–Stieltjes transform with weight � by ��S��1�Gx��D�� or

G��S��
_1

��x
D�.

(iii) Note that we assume that in both cases (i) and (ii) the Eqs.(7.5.2)-(7.5.3) are
satisfies.

Remark 7.5.1.Note that G��S����k
D� � G��S��

_1

��x
D� is the linear topological subspace

Definition 7.5.3.The free partition function �Z0,��J� ��� in the presence of a local source
�J��x��� � G��x

D� is



�Z0,��J� ��� � �
��� ���G

��S��
_1
��x

D �
�D����� exp i�S0,� � �

�x
D
���x�J��x����x��

�

�

�
��� ���G

��S��
_1
��x

D �
�D������ exp ��S0,��� � ��x

D����x� ���J��x�������x���� �

�
��� ���G

��S��
_1
��x

D �
�D������e

i�SJ� �� .

�7. 5. 6�

Using now the definition of the D-dimensional Colombeau–Dirac distribution with
nontrivial Colombeau–Stieltjes measure �d���k� ��

�
���k��� � �
�k

D
d���k�eik	x

�

� �
�k

D
�d���k� ��e

ik	x �7. 5. 7�

and Eqs.(7.5.2)-(7.5.3) we obtain

�SJ� �� �

1
2 ��x

D
�d���x��� �

�
�k1

D

�d���k1���
�2��D �

�k2

D

�d���k2���
�2��D ei�k1�k2�	x �

�
�
���k1� �

�f���k2
2���

�
���k2� �

�
�
J��k1� �

�
���k2� �

�
�
J��k2� �

�
���k1� �

�

� 1
2 ��k

n

�d����k���
�2��D �

�
����k�

�
��f���k2����

�
���k� �

�

�
J���k�

�

�
���k� �

�
�
J��k� �

�
����k�

� �

� 1
2 ��k

D

�d����k���
�2��D �

� �����k��
�

f��k2�
�

����k��� �

�
J���k�

�

�
J��k� �

�f���k2���
,

����� �
�
���k� �

�

�
J���k�

�

�f���k2���
, �f���k2

2��� � �P��k2
2� � i���.

�7. 5. 8�

Thus Eq.(7.5.6) becomes



�Z0,��J���� �

�
��� ���G

��S��
_1
��x

D �
�D������ �

exp � i
2 ��k

D

�d���k���
�2��D

�
����k�

�
��f���k2����

�
���k� �

�

exp i
2 ��k

D

�d����k���
�2��D

�
J���k�

�

�
J��k� �

�f���k2���

� Z0�0� exp i
2 ��k

D

�d����k���
�2��D

�
J���k�

�

�
J��k� �

�f���k2���
.

�7. 5. 9�

Therefore the exponent in Eq.(7.5.9) can be written as

�
�k

D

�d����k���
�2��D

�
J���k�

�

�
J��k� �

�f���k2���
�

�
�k

D

�d����k���
�2��D �

�x
D
��d���x���� �

�y
D
��d��y����e

ik	�x�y�

�
J���k�

�

�
J��k� �

�f���k2���
,

�7. 5. 10�

so that, if �����k��� � �d���k���, the free partition function reads

�Z0,��J��� �

��Z0,��0��� �exp i
2 ��x

D
��d���x���� �

�y
D
��d���y��� ��J��x���GM�x � y;�����J��y���

�7. 5. 11�

where

�GM�x � y;���� � 1
�2��D ��k

D
�d����k��� �

eik	�x�y�

�f���k2���
. �7. 5. 12�

Thus, we have recovered the usual definition of the propagator as the solution of the
Green equation in negative dimensions D� � D�� � 1�,� � 0 :

�P�
�GM�x � y;���� � �
���x � y� ��. �7. 5. 13�

In the following, we proceed with the conventional (perturbative) evaluation of the
Euclidean Green’s functions. We start from

�W�
E�J� ��� � exp���Z�

E�J� ���� � N �
��� ���G

��S��
_1
��x

D �
�D������ �

exp ��
�x

D
��d���x���� �

1
2
������������

������ �
1
2

m2���
2�� � �V������ � J��� ,

�7. 5. 14�

where N is an infinite normalization constant. The connected Euclidean Green’s
functions are given by

GE
�N��x1, . . . ,xn;��

�
�


NZ�
E�J� �


J��x1�. . .
J��xn� �
. �7. 5. 15�

They will be calculated by perturbing in the potential V. Using now the standard trick, we
obtain



�W��J� ��� �

Nexp � V 


J� �

exp �Z0,�
E �J����

�7. 5. 16�

where

�Z0,�
E �J���� �

� 1
2
�J��x�
F�x � y;��J��y��xy � � 1

2 ��x
D

dDx�
�y

D
dDy�J��x�
F�x � y;��J��y���

�7. 5. 17�

and

�
xy;��� �

�
F�x � y;���� � 1
�2��D ��k

D
�d����p��� �

eik	�x�y�

p2 � m2 ,
�7. 5. 18�

where p2 � ���1
D p�

2 . An simple algebraic rearrangement gives

�Z�
E�J� ��� � � ln N � �Z0,�

E �J���� �

ln 1 � exp �Z0,�
E �J���� exp � V 



J� �
� 1 exp ��Z0,�

E �J����
�7. 5. 19�

which is ready for a perturbative expansion in the potential V. If we let

�
��� � exp � V 


J� �

� 1 exp ��Z0,�
E �J���� �4. 5. 20�

we obtain the expansion

�Z�
E�J� ��� � � ln N � �Z0,�

E �J���� � �
��J� ��� �
1
2
�
�

2�J� ��� �
1
3
�
�

3�J� ��� �. . . �7. 5. 21�

In particular for V � �
D!

�4, we can expand �Z�
E�J� ��� in powers of the dimensionless

coupling constant �. Setting

�
��� � ��
1,��� � �2�
2,��� � �3�
3,���. . . �7. 5. 22�

we obtain

�Z�
E�J� ��� � � ln N � �Z0,�

E �J���� �

��
1,��J� ��� � �
2 �
2,��J� ��� �

1
2
�
1,�

2 �J� ��� �

�3 �
3,��J� ��� � ��
1,��J� ������
2,��J� ���� �
1
3
�
1,�

3 �J� ��� �. . .
�

�7. 5. 23�

By expanding the exponential in (7.5.20) we obtain

�
1,��J� ��� � � 1
4!

exp �Z0,�
E �J����


4


�J�
4��

exp ��Z0,�
E �J���� �7. 5. 24�

and

�
2,��J� ��� �

� 1
2�4!�2 exp �Z0,�

E �J����

4


�J1,�
4 ��


4


�J2,�
4 ��

exp ��Z0,�
E �J���� ,

etc. ...

�7. 5. 25�



Using the explicit form (7.5.17) for �Z0,�
E �J���� , we obtain

�
1,��J� ��� � � 1
4!

���
xa;�
xb;�
xc;�
xd;�Ja,�Jb,�Jc,�Jd,� ��� �

6��
xx;�
xa;�
xb;�Ja,�Jb,� ��� � 3��
xx;�
2 ��� �

�7. 5. 26�

where all variables x,a,b,c,d, are integrated over in the relevant �. . . �.Similarly, we
evaluate �
2,��� in a slightly trickier fashion: we note that:

�
2,��J� ��� � � 1
2�4!�2 exp �Z0,�

E �J����

4


�J1,�
4 �� 1

exp ��Z0,�
E �J���� . �7. 5. 27�

By inserting exp �Z0,�
E �J���� exp ��Z0,�

E �J���� in the middle of (7.5.25). Next the
expansion


4


�J�
4��

exp ��Z0,�
E �J���� �


4 exp ��Z0,�
E �J����


�J�
4��

� 4

3 exp ��Z0,�

E �J����

�J�

3��




�J���

� 6

2 exp ��Z0,�

E �J����

�J�

2��

�4

exp ��Z0,�

E �J����

�J���


3


�J�
3��

� exp ��Z0,�
E �J����


4


�J�
4��

�7. 5. 28�

allows us to write

�
2,��J���� � 1
2
�
1,�

2 �� �

1
2�4!�

exp �Z0,�
E �J���� 4


3 exp ��Z0,�
E �J����


�J1,�
3 ��




�J1,���

�

6

2 exp ��Z0,�

E �J����

�J1,�

2 ��


2


�J1,�
2 ��

� 4

exp ��Z0,�

E �J����

�J1,���


3


�J1,�
3 ��

�

exp ��Z0,�
E �J����


4


�J1,�
4 �� 1

�
1,��J� ���

�7. 5. 29�

Comparison with the expansion (7.5.23) for �Z�
E�J� ��� shows that the "disconnected"

part 1
2 �
1,�

2 �� drops out. By disconnected we mean a contribution which can be written as
the product of two or more functionals of �J���. This concept will become obvious in the
diagrammatic representation. The fact that �Z�

E�J� ��� generates only connected pieces is
true to all orders. For example, the order �3 contribution in (7.5.23) is connected: write

�
3,��� � � 1
3!

exp �Z0,�
E �J���� VxVyVzexp ��Z0,�

E �J���� xyz
�

� 1
3!

exp �Z0,�
E �J���� Vx exp ��Z0,�

E �J���� �

exp �Z0,�
E �J���� Vy exp ��Z0,�

E �J���� �

exp �Z0,�
E �J���� Vzexp ��Z0,�

E �J���� xyz
�

1
2

exp �Z0,�
E �J���� Vx exp ��Z0,�

E �J���� �

exp �Z0,�
E �J���� VyVzexp ��Z0,�

E �J���� xyz
� �
3,�

c ��.

�7. 5. 30�

In the above �
2,�
c ��and �
3,�

c �� stans for the connected pieces. To arrive at this form,



we have used the fact that there are only two types of "disconnectedness": all three x,y,z
disconnected, and only one disconnected from the other two; and there are three ways
to obtain the latter possibility. The parentheses in (4.5.29) serve to shield other terms
from the action of the derivative operators within them.It follows that the term appearing
in the expansion of �Z�

E�J� ��� can be rewritten using (4.5.30) in the following form

�
3,��� � �
1,����
2,��� �
1
3
�
1,�

3 �� � �
3,�
c �� �

1
3!

�
1,�
3 �� � �
1,����
2,�

c �� �

�
1,��� �
2,�
c �� �

1
2
�
1,�

2 �� � 1
3
�
1,�

3 �� � �
3,�
c ��.

�7. 5. 31�

Now, the explicit evaluation of the connected part of �
2,��� yields, save for the �J���-
independent part,

�
2,�
c �J� ��� � 1

2
Ja;�
ax;�

1
6

xy;�

3 � 1
4

xx;�
yy;�
xy;� 
yb;�Jb;�

xyab �
�

1
8

�Ja;�
ax;�
yy;�
xy;�
2 
xb;�Jb;� �xyab �

�

2
4!

�Ja;�
ax;�
xx;�
yy;�
xy;�
yb;�
yc;�
yd;�Jb;�Jc;�Jd;� �xyabcd �
�

3
2�4!�

�Ja;�Jb;�
ax;�
bx;�
xy;�
2 
yc;�
yd;�Jc;�Jd;� �xyabcd �

�

1
2�3!�2 �Ja;�Jb;�Jc;�
ax;�
bx;�
cx;�
xy;�
yd;�
ye;�
yf;�Jd;�Je;�Jf;� �xyabcdef �

.
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The resulting connected Green’s functions follow from Eq.(7.5.15)

GE
�2��x1,x2;��

�
� 
�x1 � x2;�� �

� �
2 � dDy�
�x1 � y;��
�y � y;��
�y � x2;���� �

�2

6 � dDxdDy�
�x1 � x;��
3�x � y;��
�y � x2;���� �

�2

4 � dDxdDy�
�x1 � x;��
2�x � y;��
�y � y;��
�x � x2;���� �

�2

4 � dDxdDy �

�
�x1 � x;��
�x � x;��
�x � y;��
�y � y;��
�y � x2;���� � �O���3���,
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GE
�4��x1,x2,x3,x4;��

�
�

�� � dDxdDy�
�x1 � x;��
2�x2 � x;��
�x3 � x;��
�x4 � x;���� �

�2

2 � dDxdDy�
2�x � y;���� �

��
�x1 � x;��
2�x2 � x;��
�x3 � y;��
�x4 � y;���� �

�
�x1 � x;��
�x3 � x;��
�x2 � y;��
�x4 � y;���� �

�
�x1 � x;��
�x4 � x;��
�x2 � y;��
�x4 � y;���� � �

�2

2 � dDxdDy�
�y � y;��
�x � y;���� �

�
�x1 � x;��
�x2 � x;��
�x3 � x;��
�x4 � y;���� � cyclic permutations �

��O���3���,

�7. 5. 34�



and finally

GE
�6��x1,x2,x3,x4,x5,x6;��

�
� �2 � dDxdDy�
�x � y;���� �

�
�ijk�

�
�xi � x;��
2�xj � x;��
�xk � x;��
�xl � y;��
�xm � y;��
�xn � y;���� �

��O���3���,

�7. 5. 35�

where the sum in the last expression runs over the triples
�ijk� � �123�, �124�, �125�, �126�, �134�, �135�, �136�, �145�, �146�, �156�, with (ton) assuming
the complementary value, i.e., �lmn� � �456� when �ijk� � �123�,etc..The remaining
Green’s functions get no contribution to this order in �.It is straightforward to derive the
p-space Green’s functions, using the canonical expression

GE

�N�
�p1, . . . ,pN;��

�
� �2��D
�p1, . . . ,pN� �

� dDx1. . .� dDxN exp�i�p1x1 �. . .�pNxN��GE
�N��x1, . . . ,xN;��

�
�

� dDx1. . .� dDxN exp�i�p1x1 �. . .�pNxN�� GE
�N��x1, . . . ,xN;��

�
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Finally we obtain

GE

�2�
�p,�p;��

�
�

1
|p|D|� | � �

�
�p2 � m2�

�

� �
2

1
|p|2D|� | � �

�
�p2 � m2�2 �

dDq

�2��D
1

|q|D|� | � �
�
�q2 � m2�

�

� �2

6
1

|p|2D|� |�p2 � m2�2 �

� dDq1

�2��D

dDq2

�2��D

dDq3

�2��D �


�p � q1 � q2 � q3��2��D

|q1 |D|� | � �
�

|q2 |D|� | � �
�

|q3 |D|� | � �
�
�q1

2 � m2��q2
2 � m2��q3

2 � m2�
�

� �2

4
1

|p|2D|� | � �
�
�p2 � m2�2 �

dDq

�2��D
1

|q|D|� | � �
�
�q2 � m2�

�

� dDl 1

�2��D � dDl 2

�2��D �

�2��D
�l 1 � l 2�
�|l 1 |D|� | � ��

�
�|l 2 |D|� | � ��

�
�l 1

2 � m2��l 2
2 � m2�

�

� �2

4
� 1

|p|2D|� | � � �p2 � m2�2 �
dDq

�2��D
1

|q|D|� |�q2 � m2�
1

|p|2D|� |�p2 � m2�2 �

� dDl
�2��D

1
�|l |D|� | � ��

�
�l 2 � m2�

� �O���3���,
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and



GE

�4�
�p1,p2,p3p4;��

�
�

�
i�1

4 1
|pi |D|� | � �

�
�pi

2 � m2�
�� � �2

2 �
dDq

�2��D
1

|q|D|� | � �
�
�q2 � m2�

�

� 1
|pi |D|� | � �

�
�pi

2 � m2�
� �2

2 �
dDq1

�2��D

dDq2

�2��D �

�2��D��ij �

�q1 � q2 � pi � pj �

|q1 |D|� | � �
�
�q1

2 � m2� |q2 |D|� | � �
�
�q2

2 � m2�
� �O���3���.
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In the last expression, the sum ij runs over �ij � � �12�, �13�, �14� only.
Remark 7.5.3.Note that Fourier transform in Eq.(7.5.36) meant integration in sense of

generalized function, i.e. an regularization is needed.
Remark 7.5.4. We aply Gel’fand regularization [40]. Note that the wollowing equality

holds

�
0



r���r�dr � �

0

r 1

r����r� � ��0��dr � �
r 1



r���r�dr �

��0�
� � 1

�7. 5. 39�

where �2 � Re� � �1.Similarly as Eq.(4.7.39) one obtains

�
0


 ��r�
�r� � ���

dr � �
0

r 1 ���r� � ��0��
�r� � ���

dr � �
r 1


 ��r�dr
�r� � ���

�
��0�
� � 1

. �7. 5. 40�

7.6.Power-counting renormalizability of Einstein gravity in
negative dimensions.

In the context of quantum field theory, the main obstacle against perturbative
renormalizability of Einstein’s theory of gravity in D� � 3 � 1 dimensions is well known
[37].

The main problem is that the gravitational coupling constant GN is dimensionful, with a
negative dimension �GN� � �2 in mass units. The Feynman rules also involve the
graviton propagator, which scales with the four-momentum k� � ��, k�,� � 0, 1, 2, 3

schematically as 1/k2,where k � �2 � k2 . At increasing loop orders, the Feynman
diagrams of this theory require counterterms of ever-increasing degree in curvature. The
resulting theory can still be treated as an effective field theory, but it requires a UV
completion. An improved UV behavior can be obtained if relativistic higher-derivative
corrections are added to the Lagrangian (see [38] for a review of higher-derivative
gravity). Terms quadratic in curvature not only yield new interactions (with a
dimensionless coupling), they also modify the propagator. Schematically, one gets

1
k2 � 1

k2 GNk4 1
k2 � 1

k2 GNk4 1
k2 GNk4 1

k2 ��� 1
k2 � GNk4 . �7. 6. 1�

At high energies, the propagator is dominated by the 1/k4 term. This cures the problem
of UV divergences, and in fact the calculations in Euclidean signature suggest that the
theory exhibits asymptotic freedom. However, this cure simultaneously produces a new
pathology, which prevents this modified theory from being a solution to the problem of
quantum gravity: The resummed propagator (4.4.1) has a two poles,



1
k2 � GNk4 � 1

k2 �
1

k2 � 1/GN
. �7. 6. 2�

7.7.Power-counting renormalizability of Ho� rava gravity in
negative dimensions.

Let P���d�1
z be scalar quantum field theory in �d� � 1� dimensions, where d� � 0,

containing up to 2z spatial derivatives of the d� � 0 dimensional spatial metric. We
remind that for the P���d

_
�1

z scalar quantum field theories each loop integral has
dimension ���d

_��z, while each propagator has dimension ����2z. To analyze the
superficial degree of divergence one need only consider the one-particle-irreducible
(1PI) sub-diagrams of the Feynman diagram. For each such 1PI sub-diagram the total
contribution to dimensionality coming from loop integrals and internal propagators is
����d

_��z�L�2Iz, which is summarized by saying that the “superficial degree of divergence” is


 � �d� � z�L � 2Iz � �d� � z�L � 2�I � L�z. �7. 7. 1�

Note that the quantity I only counts the propagators internal to the 1PI sub-diagram.
But to get L loops one needs, at the very least, I internal propagators. So for any 1PI
Feynman diagram we certainly have


 � �d� � z�L. �7. 7. 2�

Consequently, if one picks d� � 0 then


 � 0, �7. 7. 3�

and the worst divergence one can possibly encounter is logarithmic. This observation is
enough to guarantee that the non-normal-ordered P���d

_��1
z is power-counting

renormalizable, and to render the normal-ordered : P���d
_��1

z : power-counting finite.
Furthermore if one takes d� � 0 this discussion is sufficient to render P���d

_��1
z (with or

without normal ordering) power-counting finite.
Turning our attention now to a d� � 0 variant of Hořava gravity in �d� � 1� dimensions,

(containing up to 2z spatial derivatives of the d� dimensional spatial metric), one obtains
the same power-counting for the loop integrals and the propagators — the difference
now lies in the graviton self-interaction vertices. While the vertices for the scalar field
theory carried no factors of momentum, for Hořava gravity and its variants the graviton
self-interaction vertices arise from a perturbative action of the form

S � ��h
 2 � P�!2z,h�� dtdd
_

x, �7. 7. 4�

where P�!2z,h� is now an infinite-order polynomial in the graviton field h, which contains
up to 2z spatial derivatives.

In contrast to the scalar self-interaction vertices, the graviton self-interaction vertices
thus contain up to 2z factors of momentum. If these are external momenta they do not
contribute to the superficial degree of divergence. However internal momenta, and for
any 1PI Feynman diagram with V vertices there can be up to 2zV factors of internal
momenta, do contribute to the superficial degree of divergence. Consequently we now
have the inequality


 � �d� � z�L � 2z�V � I� � �d� � z�L � 2z�V � L � I�. �7. 7. 5�

But as always, Euler’s theorem for graphs implies



V � L � I � 1 �7. 7. 6�

so that


 � �d� � z�L � 2z. �7. 7. 7�

For |d� | 	 z one simply has


 � 0. �7. 7. 8�

8.The solution cosmological constant problem

8.1.Einstein-Gliner-Zel’dovich vacuum with tiny Lorentz
invariance violation.

We assume now that:
(i) Poincaré group of momentum space is deformed at some fundamental high-energy
cutoff �� [9],[10].
(ii) The canonical quadratic invariant �p�2 � �abpapb collapses at high-energy cutoff ��

and being replaced by the non-quadratic invariant:

�p�2 �
�abpapb

�1 � l��p0�
. �8. 1. 1�

(iii) The canonical concept of Minkowski space-time collapses at a small distances
l�� � ��

�1 to fractal space-time with Hausdorff-Colombeau negative dimension and
therefore the canonical Lebesgue measure d4x being replaced by the

Colombeau-Stieltjes
measure with negative Hausdorff-Colombeau dimension D

_
:

�d��x,���� � �v��s�x��d4x��, �8. 1. 2�

where

�v��s�x���� � |s�x�||D
_

| � �
�1

�
,

s�x� � x�x� ,
�8. 1. 3�

see subsection VI.3.
(iv) The canonical concept of momentum space collapses at fundamental high-energy

cutoff �� to fractal momentum space with Hausdorff-Colombeau negative dimension
and therefore the canonical Lebesgue measure d3k,where k ��kx,ky,kz� being replaced
by the Hausdorff-Colombeau measure

dD�,D
_

k � 
�D��dD�k
|k||D

_
| � �

�

�

�D��
�D��pD��1dp

�p|D
_

| � ���
, �8. 1. 4�

where 
�D�� � 2�D�/2

��D�/2�
and p � |k| � kx � ky � kz .

Remark 8.1.1.Note that the integral over measure dD�,D
_

k is given by formula(6.3.32).
Thus vacuum energy density ��D�,D�,�eff,p�� for free quantum fields is

��D�,D�,�eff,p�� � ���eff� � ���eff,p�� � ���D�,D�,�eff,p��. �8. 1. 5�

Here the quantity ���eff� is given by formula



���eff� � 1
2�2���3 �0

�eff

d�f��� �
�k�� �

k2 � �2 d3k �

K �
0

�eff

d�f��� �
p � �

p2 � �2 p2dp � K �
0

�eff

d�f��� �
0

�

p2 � �2 p2dp

�8. 1. 6�

where K � 2�
�2���3 ,c � 1. The quantity ���eff,p�� is given by formula

���eff,p�� � 1
2�2���3 �0

�eff

d�f��� �
���k��p�

k2 � �2 d3k �

K �
0

�eff

d�f��� �
���k��p�

p2 � �2 p2dp.
�8. 1. 7�

The quantity ���D�,D�,�eff,p�� (since Eq.(1.1.18) holds) is given by formula

���D�,D�,�eff,p�� �

K� �
0

�eff

d�f��� �

�
�k�	p�

�2l��
1 � �2l��

2 � 1
1 � �2l��

2

�4l��
2

1 � �2l��
2 � �|k|2 � �2� dD�,D

_

k,

�8. 1. 8�

where K� � 1
2�2���3 ,c � 1.

Remark 8.1.2. We assume now that �2l��
2 
 1,�4l��

2 
 1 and therefore from
Eq.(8.1.8)

we obtain

��D�,D�,�eff,p�� �

K�l� �
0

�eff

f����2d� �
�k�	p�

d3,D�k � K� �
0

�eff

d�f��� �
�k�	p�

k2 � �2 dD�,D
_

k. �8. 1. 9�

From Eq.(8.1.9) and Eq.(8.1.4) we obtain

��D�,D�,�eff,p�� �

K�l� �
0

�eff

f����2d� �
�k�	p�

dD�,D
_

k � K� �
0

�eff

d�f��� �
�k�	p�

k2 � �2 dD�,D
_

k �

K�l�
�D��
�D�� �
0

�eff

fd�����2 �
p�


 pD��1dp
�p|D

_
| � ���

�

�K�
�D��
�D�� �
0

�eff

d�f��� �
p�


 p2 � �2 pD��1dp

�p|D
_

| � ���
�

K�l�
�D��
�D�� �
0

�eff

f����2d� �
p�



pD

_
�D��1dp�

�K�
�D��
�D�� �
0

�eff

d�f��� �
p�



p2 � �2 pD

_
�D��1dp.

�8. 1. 10�

Remark 8.1.2.We assume now that:



D� � D� � 2 � �6. �8. 1. 11�

Note that

�
0

�eff

d�f��� �
p�



p2 � �2 pD

_
�D��1dp � �

0

�eff

d�f��� �
p�



1 �

�2

p2 pD
_
�D�

dp �

�
0

�eff

f���d� �
p�



pD

_
�D�

dp� 1
2 �0

�eff

f����2d� �
p�



pD

_
�D��1dp�

� 1
8 �0

�eff

f����4d� �
p�



pD

_
�D��3dp� O�p�D

_
�D��4� �

p�D
_
�D��1

D� � D� � 1 �0

�eff

f���d� �
p�D

_
�D�

2�D� � D��
�

0

�eff

f����2d� �

� p�D
_
�D��1

8�D� � D� � 1�
�

0

�eff

f����4d� � O�p�D
_
�D��4�.

�8. 1. 12�

Thus finally we obtain

��D�,D�,�eff,p�� �

K�p�D
��D��1

D� � D� � 1 �0

�eff

f���d� � �K�l�
�D��
�D�� � 0. 5� �
0

�eff

f����2d�
p�D

��D�

D� � D� �

� K�p�D
��D��2

8�D� � D� � 1�
�

0

�eff

f����4d� � O�p�D
��D��4�.

�5. 1. 13�

Remark 8.1.3.Note that (see Eqs.(1.2.12)):

����eff,p�� � ���eff� � ���eff,p�� �

1
4

p�4 �
0

�eff

f���d� � 1
4

p�2 �
0

�eff

f����2d� � C1 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p�2

1
32 �

0

�eff

f����6d� � O �
0

�eff

f����8 p��5.

�8. 1. 14�

From Eq.(8.1.5),Eq.(8.1.13) and Eq.(8.1.14) finally we obtain

��D�,D�,�eff,p�� � ���eff� � ���eff,p�� � ���D�,D�,�eff,p�� �

1
4

p�4 �
0

�eff

f���d� � 1
4

p�2 �
0

�eff

f����2d� � C1 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 1
p�2

1
32 �

0

�eff

f����6d� � O �
0

�eff

f����8 p��5 �

�O�p�D
��D��2�.

�8. 1. 15�

The pressure p�D�,D�,�eff,p�� for free scalar quantum field is

p�D�,D�,�eff,p�� � p��eff� � p��eff,p�� � p��D�,D�,�eff,p��. �8. 1. 16�

Here the quantity p��eff� is given by formula



p��eff� � K
3 �0

�eff

d�f��� �
�p���

p4

p2 � �2
dp. �8. 1. 17�

The quantity p��eff,p�� is given by formula

p��eff,p�� � K
3 �0

�eff

d�f��� �
���p��p�

p4

p2 � �2
dp. �8. 1. 18�

The quantity p��D�,D�,�eff,p�� is given by formula

p��D�,D�,�eff,p�� � K�

3 �0

�eff

d� �
�p��p�

f���
p4

p2 � �2
dp, �8. 1. 19�

where K� � 1
2�2���3 ,c � 1.

Remark 8.1.4.Note that (see Eqs.(1.2.12)):

�p��eff,p�� � p��eff� � p��eff,p�� �

1
12

p�4 �
0

�eff

f���d� � 1
12

p�2 �
0

�eff

f����2d� � C2 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 5
p�2

1
32 �

0

�eff

f����6d� � O �
0

�eff

f����8 p��5.

�8. 1. 20�

From Eq.(8.1.15),Eq.(8.1.19) and Eq.(8.1.20) similarly as above finally we get

p�D�,D�,�eff,p�� �

1
12

p�4 �
0

�eff

f���d� � 1
12

p�2 �
0

�eff

f����2d� � C2 � 1
8

lnp� �
0

�eff

f����4d� �

� 1
8 �

0

�eff

f����4�ln��d� � 5
p�2

1
32 �

0

�eff

f����6d� � O �
0

�eff

f����8 p��5 �

�O�p�D
��D��2�.

�8. 1. 21�

Remark 8.1.5.We assume now that:

�
0

�eff

f���d� � �
0

�eff

f����2d� � �
0

�eff

f����4d� � 0. �8. 1. 22�

From Eq.(8.1.15),Eq.(8.1.21) and Eq.(8.1.22) finally we get

� � ��D�,D�,�eff,p�� � 1
8 �

0

�eff

f����4�ln��d� � O�p��2�,

p � �D�,D�,�eff,p�� � � 1
8 �

0

�eff

f����4�ln��d� � O�p��2�.

�8. 1. 23�

Remark 8.1.5. The fine tuning assumed by (5.1.22) is a problematic in order to obtain
the



mass distribution f��� wich gives an observed value of �.
Remark 8.1.6. Note that the Eq.(5.1.23) can be obtained without fine-tuning

(8.1.22) which was ussumed in Zel’dovich paper [1].
In order to obtain Eq.(8.1.23) ander strictly weaker conditions we assume now that:
(i)

|f��,p��| � |fs.m.��,p�� � fg.m.��,p��| � �eff
� �n

, �8. 1. 24�

where �eff
� � �eff�p��, n � n�p�� � 0 is an parametr, fs.m.��,p�� corresponds to standard

matter and where fg.m.��,p�� corresponds to physical ghost matter,see Eq.(1.2.2).
(ii)

I 1 � p�4 �
0

�eff
�

f��,p��d� � 0, I 2 � p�2 �
0

�eff
�

f��,p���2d� � 0,

I 3 � lnp� �
0

�eff
�

f��,p���4d� � 0.

�8. 1. 25�

(iii)

I 1 � I 2 � I 3 
 �
0

�eff
�

f��,p���4�ln��d� . �8. 1. 26�

Finally we get

� � ��D�,D�,�eff,p�� � 1
8 �

0

�eff
�

f��,p���4�ln��d� � O�p��2�,

p � �D�,D�,�eff,p�� � � 1
8 �

0

�eff
�

f��,p���4�ln��d� � O�p��2�.

�8. 1. 26�

8.2. Zeropoint energy density corresponding to a
non-singular Gliner cosmology.

We assume now that

�
0

�eff
�

f��,p��d� � 0, �
0

�eff
�

f��,p���4d� � 0, �
0

�eff
�

f��,p���2d� � 0,

p� � �eff
� .

�8. 2. 1�

From Eq.(8.1.15),Eq.(8.1.21) and (8.2.1) we obtain



� � � D�,D�,�eff
� ,p� �

1
4

p�2 �
0

�eff

f��,p���2d� � C1 � 1
8

lnp� �
0

�eff
�

f��,p���4d� �

� 1
8 �

0

�eff
�

f��,p���4�ln��d� � 1
p�2

1
32 �

0

�eff
�

f��,p���6d�

�O �
0

�eff
�

f��,p���8 p��5 �

�O�p�D
_
�D��2�,

�8. 2. 2�

and

p � p D�,D�,�eff
� ,p� �

� 1
12

p�2 �
0

�eff
�

f��,p���2d� � C2 � 1
8

lnp� �
0

�eff
�

f��,p���4d� �

� 1
8 �

0

�eff
�

f��,p���4�ln��d� � 5
p�2

1
32 �

0

�eff
�

f��,p���6d� �

O �
0

�eff
�

f��,p���8 p��5 �

�O�p�D
_
�D��2�

�8. 2. 3�

correspondingly.From Eq.(8.2.2) and Eq.(8.2.3) we obtain



3p � � �

� 1
4

p�2 �
0

�eff
�

f��,p���2d� � 3C2 � 3
8

lnp� �
0

�eff
�

f��,p���4d� �

� 3
8 �

0

�eff
�

f��,p���4�ln��d� � 5
p�2

3
32 �

0

�eff
�

f��,p���6d� �

1
4

p�2 �
0

�eff
�

f��,p���2d� � C1 � 1
8

lnp� �
0

�eff
�

f��,p���4d� �

� 1
8 �

0

�eff
�

f��,p���4�ln��d� � 1
p�2

1
32 �

0

�eff
�

f��,p���6d� �

� 1
4

lnp� �
0

�eff
�

f��,p���4d� � �3C2 � C1� �
0

�eff
�

f��,p���4d� �

1
4 �

0

�eff
�

f��,p���4�ln��d� �

� 5
p�2

1
16 �

0

�eff
�

f��,p���6d� � 0.

�8. 2. 4�

Therefore under conditions (5.2.1) the inequality

� 2� � 3p � � � 0 �8. 2. 5�

corresponding to Gliner non-singular cosmology [2],[4] is satisfied.

8.3. Zeropoint energy density in models with supermassive
physical ghost fields.

We assume now that:
(i) ghost fields corresponding to massive spin-2 particle with mass m2 and to massive
scalar particle with mass m0 appears (see section 5.1) as real physical fields in action
(5.1.1)
Remark 8.3.1.Note that their unphysical behavior may be restricted to arbitrarily
high-energy cutoff �� by an appropriate limitation on the renormalized masses m2 and

m0.
Actually, it is only the massive spin-two excitations of the field which give the problem

with
unitarity and thus require a very large mass (see subsection II.2).
(ii) Poincaré group is deformed at some fundamental high-energy cutoff ��

�� � ���m0,m2� 
 m0c2 � m2c2. �8. 3. 1�

The canonical quadratic invariant �p�2 � �abpapb collapses at high-energy cutoff ��

and
being replaced by the non-quadratic invariant:



�p�2 �
�abpapb

�1 � l��p0�
. �8. 3. 2�

(iii) The canonical concept of Minkowski space-time collapses at a small distances to
fractal space-time with Hausdorff-Colombeau negative dimension and
therefore the canonical Lebesgue measure d4x being replaced by the

Colombeau-Stieltjes
measure

�d��x,���� � �v��s�x��d4x��, �8. 3. 3�

where

�v��s�x���� � |s�x�||D
� | � �

�1

�
,s�x� � x�x� , �8. 3. 4�

(iv) we assume now that

f��� � fs.m.��� � fg.m.���, �8. 3. 5�

where fs.m.��� corresponds to standard matter and where fg.m.��� corresponds to
physical

ghost matter.
Remark 8.3.2.We assume now that

|f���| �
O���n�,n � 1 m0c 
 �eff

�1� � � � �eff
�2� 
 m2c

0 � � �eff
�2�

�8. 3. 6�

Thus vacuum energy density � D�,D�,�eff
�1�,�eff

�2� for free quantum fields is

� D�,D�,�eff
�1�,�eff

�2� � � �eff
�1�,�eff

�2�, � �� D�,D�,�eff
�1�,�eff

�2� . �8. 3. 7�

Here the quantity � �eff
1 ,�eff

2 , is given by formula

� �eff
�1�,�eff

�2� � 1
2�2���3 ��eff

�1�

�eff
�2�

d�f��� �
�k�� �

k2 � �2 d3k �

� K �
�eff
�1�

�eff
�2�

d�f��� �
p � �

p2 � �2 p2dp,

�8. 3. 8�

where K � 2�
�2���3 ,c � 1. The quantity �� D�,D�,�eff

�1�,�eff
�2� is given by formula

�� D�,D�,�eff
�1�,�eff

�2� �

K� �
�eff
�1�

�eff
�2�

d�f��� �

�
�k�� �

�2l�
1 � �2l�

2 � 1
1 � �2l��

2

�4l��
2

1 � �2l��
2 � �|k|2 � �2� dD�,D

_

k,

�8. 3. 9�

where K� � 1
2�2���3 ,c � 1.

Remark 8.3.2. We assume now that �2l��
2 � 1,and therefore from Eq.(8.3.9) we

obtain



� D�,D�,�eff
�1�,�eff

�2� �

K�l� �
�eff
�1�

�eff
�2�

d�f����2 �
�k�� �

d3,D
_

k � K� �
�eff
�1�

�eff
�2�

d�f��� �
�k�� �

k2 � �2 dD�,D
_

k.
�8. 3. 10�

From Eq.(8.3.10) and Eq.(8.1.4) we obtain

� D�,D�,�eff
�1�,�eff

�2� �

K�l� �
�eff
�1�

�eff
�2�

d�f����2 �
�k�� �

dD�,D
_

k � K� �
�eff
�1�

�eff
�2�

d�f��� �
�k�� �

k2 � �2 dD�,D
_

k �

K�
�D��
�D��l� �
�eff
�1�

�eff
�2�

d�f����2 �
�


 pD��1dp
�p|D

_
| � ���

�

�K�
�D��
�D�� �
�eff
�1�

�eff
�2�

d�f��� �
�


 p2 � �2 pD��1dp

�p|D
_

| � ���
�

K�
�D��
�D��l� �
�eff

1

�eff
2

d�f����2 �
�



pD��D��1dp �

�K�
�D��
�D�� �
�eff

1

�eff
2

d�f��� �
�



p2 � �2 pD��D��1dp .

�8. 3. 11�

Note that

p2 � �2 � � 1 �
p2

�2 � � 1 � 1
2

p2

�2 �
1
8

p4

�4 � 1
16

p6

�6 �. . . . �

� � � 1
2

p2

� � 1
8

p4

�3 � 1
16

p6

�5 �. . . .

�8. 3. 12�

By inserting the Eq.(8.3.12) into the Eq.(8.3.8) we get

� �eff
�1�,�eff

�2� �

K �
�eff
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�eff
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�8. 3. 13�



The pressure p D�,D�,�eff
�1�,�eff

�2� for free quantum fields is

p D�,D�,�eff
�1�,�eff

�2� � p �eff
�1�,�eff

�2�, � p� D�,D�,�eff
�1�,�eff

�2� . �8. 3. 14�

Here the quantity p �eff
�1�,�eff

�2�, is given by formula

p �eff
�1�,�eff

�2� � 1
2�2���3 ��eff

�1�

�eff
�2�

d�f��� �
�k�� �

�k�2

k2 � �2
d3k �

� K
3 ��eff

�1�

�eff
�2�

d�f��� �
p � �

p4

p2 � �2
dp.

�8. 3. 15�

The quantity p� D�,D�,�eff
�1�,�eff

�2� is given by formula

p� D�,D�,�eff
�1�,�eff

�2� � K�

3 ��eff
�1�

�eff
�2�

d�f��� �
�p�� �

�k�2

k2 � �2
dD�,D

_

k, �8. 3. 16�

where K� � 1
2�2���3 ,c � 1.Note that

1
p2 � �2

� ��1 1 �
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16
p6

�7 �. . . .

�8. 3. 17�

By inserting Eq.(8.3.17) into Eq.(8.3.15) we get
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9.Discussion and conclusions
We will now briefly review the canonical assumptions that are made in the usual



formulation of the cosmological constant problem.

9.1.The canonical assumptions:
1.The physical dark matter.
Dark matter is a hypothetical form of matter that is thought to account for

approximately
85% of the matter in the universe, and about a quarter of its total energy density. The
majority of dark matter is thought to be non-baryonic in nature, possibly being

composed
of some as-yet undiscovered subatomic particles.Its presence is implied in a variety of
astrophysical observations, including gravitational effects that cannot be explained

unless
more matter is present than can be seen. For this reason, most experts think dark

matter
to be ubiquitous in the universe and to have had a strong influence on its structure and
evolution. The name dark matter refers to the fact that it does not appear to interact

with
observable electromagnetic radiation, such as light, and is thus invisible (or ’dark’) to

the
entire electromagnetic spectrum, making it extremely difficult to detect using usual
astronomical equipment.Because dark matter has not yet been observed directly, it

must
barely interact with ordinary baryonic matter and radiation. The primary candidate for

dark
matter is some new kind of elementary particle that has not yet been discovered, in
particular, weakly-interacting massive particles (WIMPs), or gravitationally-interacting
massive particles (GIMPs).Many experiments to directly detect and study dark matter
particles are being actively undertaken, but none has yet succeeded.
2.The total effective cosmological constant �eff is on at least the order of magnitude of

the
vacuum energy density generated by zero-point fluctuations of the standard particle

fields.
3.Canonical QFT is an effective field theory description of a more fundamental
theory, which becomes significant at some high-energy scale ��.
4.The vacuum energy-momentum tensor is Lorentz invariant.
5.The Moller-Rosenfeld approach [35],[36] to semiclassical gravity by using an

expectation
value for the energy-momentum tensor is sound.
6.The Einstein equations for the homogeneous Friedmann-Robertson-Walker metric
accurately describes the large-scale evolution of the Universe.
Remark 9.1.1.Note that obviously there is a strong inconsistency between

Assumptions
2 and 3: the vacuum state cannot be Lorentz invariant if modes are ignored above

some
high-energy cutoff ��, because a mode that is high energy in one reference frame will

be



low energy in another appropriately boosted frame. In this paper Assumption 3 is not
used

and this contradiction is avoided.
Remark 9.1.2.Note that also, Assumptions 1,3,4 and 5 is modifed, which we denote

as
Assumptions 4 and 5 respectively.

9.2.Modified assumptions
1�.The physical dark matter.
2�.The total effective cosmological constant �eff is on at least the order |�eff |

�n�5 ln|�eff |
of

magnitude of therenormalized vacuum energy density generated by zero-point
fluctuations of standard particle fields and ghost particle fields,see subsection I.2.
4�.The vacuum energy-momentum tensor is not Lorentz invariant.

9.3.The physical ghost matter and dark matter nature
In the contemporary quantum field theory, a ghost field, or gauge ghost is an

unphysical state in a gauge theory. Ghosts are necessary to keep gauge invariance in
theories where the local fields exceed a number of physical degrees of freedom.For
example in quantum electrodynamics, in order to maintain manifest Lorentz invariance,
one uses a four component vector potential Aμ�x�, whereas the photon has only two
polarizations. Thus, one needs a suitable mechanism in order to get rid of the unphysical
degrees of freedom. Introducing fictitious fields, the ghosts, is one way of achieving this
goal. Faddeev-Popov ghosts are extraneous fields which are introduced to maintain the
consistency of the path integral formulation. Faddeev-Popov ghosts are sometimes
referred to as "good ghosts".

"Bad ghosts" represent another, more general meaning of the word "ghost" in
theoretical physics: states of negative norm,or fields with the wrong sign of the kinetic
term, such as Pauli-Villars ghosts, whose existence allows the probabilities to be
negative thus violating unitarity.

(IX.1) In contrary with standard Assumption1 in the case of the new approach
introduced

in this paper we assume that:
(IX.1.1.a) The ghosts fields and ghosts particles with masses at a scale less then an

fixed
scale meff really exist in the universe and formed dark matter sector of the universe,in
particular:
(IX.1.1.b) these ghosts fields gives additive contribution to a full zero-point fluctuation

(i.e.
also to effective cosmological constant �eff [5],see subsection I.2).
(IX.1.1.c) Pauli-Villars renormalization of zero-point fluctuations (see subsection I.2) is

no
longer considered as an intermediate mathematical construct but obviously has

rigorous
physical meaning supported by assumption (I.a-b).



(IX.1.2) The physical dark matter formed by ghosts particles;
(IX.1.3) The standard model fields do not to couple directly to the ghost sector in the
ultraviolet region of energy at a scale less then an fixed large energy scale ��,in
particular:
(IX.1.3.a) The "bad" ghosts fields with masses at a scale less then an fixed scale meff,
where meffc2 
 ��,cannot appear in any effective physycal lagrangian which contain

also
the standard particles fields.
In additional though not necessary we assume that:
(IX.1.4) The "bad" ghosts fields with masses at a scale m�,where m�c2 � ��can

appear
in any effective physycal lagrangian which contain also the standard particles fields,in
particular:
(IX.1.4.a) Pauli-Villars finite renormalization with masses of ghosts fields at a scale m�

of
the S-matrix in QFT (see subsection II.I-2) is no longer considered as an intermediate
mathematical construct but obviously has rigorous physical meaning supported by
assumption (IX).
(IX.1.4.b) If the "bad" ghosts fields coupled to matter directly, it gives rise to small and
controlable violetion of the unitarity condition.
Remark 9.3.1.We emphazize that in universe standard matter coupled with a physical
ghost matter has the equation of state [3]:

�vac��eff� � �p��eff� � 1
8 �

0

�eff

f����4�ln��d� � c4�vac

8�G
, �9. 3. 1�

where

|f���| �
O���n�,n � 1 � � �eff

0 � � �eff

�9. 3. 2�

and where �eff � meffc (see subsection I.2,Eq.(1.2.16)) and therefore gives rise to a de
Sitter phase of the universe even if bare cosmological constant � � 0.

9.4.Different contributions to �eff
The total effective cosmological constant �eff is on at least the order of magnitude of

the vacuum energy density generated by zero-point fluctuations of standard particle
fields.

Assumption 2 is well justified in the case of the traditional approach, because the
contribution from zero-point fluctuations is on the order of 1 in Planck units and no other
known contributions are as large thus, assuming no significant cancellation of terms
(e.g. fine tuning of the bare cosmological constant �), the total �eff should be at least on
the order of the largest contribution [14].

(9.4) In contrary with standard Assumption1 in the case of the new approach
introduced

in this paper we assume that:
(9.4.1) For simplisity though not necessary bare cosmological constant � � 0.



(9.4.2) The total effective cosmological constant �eff depend only on mass distribution
f��� and constant �eff where �effc2 � �� but cannot depend on large energy scale ��

Remark 9.4.1.Note that in subsection 9.1 we pointed out that under Assumption 1 if
bare cosmological constant � � 0 the total cosmological constant �vac is on at least the
order � |�eff |

�n�5 of magnitude of the renormalized vacuum energy density generated
by

zero-point fluctuations of standard particle fields and ghost particle fields

�vac �eff
� � 1

8 �
0

�eff
�

f��,����4�ln��d� � O���
�2�,

pvac �eff
� � � 1

8 �
0

�eff
�

f��,����4�ln��d� � O���
�2�,

�9. 4. 1�

where �eff
� � �eff ����

9.5. Effective field theory and Lorentz invariance violetion
To prevent the vacuum energy density from diverging,the traditional approach also

assumes that performing a high-energy cutoff is acceptable. This type of regularization
is a common step in renormalization procedures, which aim to eventually arrive at a
physical, cutoff-independent result. However,in the case of the vacuum energy density,
the result is inherently cutoff dependent, scaling quartically with the cutoff ��.

Remark 9.5.1. By restricting to modes with particle energy a certain cutoff energy
�k � ��a finite, regularized result for the energy density can be obtained. The result is
proportional to ��

4 .Any other fields will contribute similarly, so that if there are nb

bosonic
fields and nf fermionic fields, the density scales with �nb � 4nf� ��

4 . Typically, the cutoff
is

taken to be near � 1 in Planck units (i.e.the Planck energy), so the vacuum energy
gives a

contribution to the cosmological constant on the order of at least unity according to
Eq. (9.6.5). Thus we see the extreme fine-tuning problem: the original cosmological
constant � must cancel this large vacuum energy density �vac � 1 to a precision of 1 in
10120 -but not completely- to result in the observed value �eff � 10�120[5].
Remark 9.5.2. As it pointed out in this paper that a high energy theory, i.e. QFT in

fractal space-time with Hausdorff-Colombeau negative dimension would not display the
zero-point fluctuations that are characteristic of QFT, and hence that the divergence
caused by oscillations above the corresponding cutoff frequency is unphysical. In this
case, the cutoff �� is no longer an intermediate mathematical construct, but instead a
physical scale at which the smooth,continuous behavior of QFT breaks down.

Poincaré group of the momentum space is deformed at some fundamental
high-energy cutoff ��The canonical quadratic invariant �p�2 � �abpapb collapses at
high-energy cutoff �� and being replaced by the non-quadratic invariant:

�p�2 �
�abpapb

�1 � l��p0�
. �9. 5. 1�

Remark 9.5.3. In contrary with canonical approuch the total effective cosmological



constant �eff depend only on mass distribution f��� and constant �eff � meffc but cannot
depend on large energy scale � ��.

9.6. Semiclassical Moller-Rosenfeld gravity
Assumption 5 means that it is valid to replace the right-hand side of the Einstein

equation T�� with its expectation �T�� �. It requires that either gravity is not in fact
quantum, and the Moller-Rosenfeld approach is a complete description of reality, or at
least a valid approximation in the weak field limit.The usual argument states that the
vacuum state |0� should be locally Lorentz invariant so that observers agree on the
vacuum state. This means that the expectation value of the energy-momentum tensor
on the vacuum, �0|



T��|0�,must be a scalar multiple of the metric tensor g�� which is the

only Lorentz invariant rank �0, 2� tensor. By using Moller-Rosenfeld approach the
Einstein field equations of general relativity, a term representing the curvature of
spacetime R�� is related to a term describing the energy-momentum of matter �0|



T��|0�,

as well as the cosmological constant � and metric tensor g�� reads:

R�� � 1
2

R�
�g�� � �g�� � 8��0|



T��|0�. �9. 6. 1�

The


T00 component is an energy density, we label �0|



T��|0� � �vac,so that the vacuum

contribution to the right-hand side of Eq.(9.4.1) can be written as

8��0|


T��|0� � 8��vacg��. �9. 6. 2�

Subtracting this from the right-hand side of Eq.(9.4.1) and grouping it with the
cosmological constant term replaces with an "effective" cosmological constant [5]:

�eff � � � 8��vac. �9. 6. 3�

Note that in flat spacetime, where g�� � diag��1,�1,�1,�1�, Eq.(9.4.2) implies
�vac � �pvac, where pvac � �0|



Tii |0� for any i � 1, 2, 3 is the pressure. Obviously this implies

that if the energy density is positive as is usually assumed, then the pressure must be
negative, a conclusion which extends to any metric g�� with a ��1,�1,�1,�1� signature.

Remark 9.6.1.In this paper we assume that the vacuum state |0� should be locally
invariant under modified Lorentz boost (1.1.18) but not locally Lorentz invariant.
Obviously this assumption violate the Eq.(9.6.2). However modified Lorentz boosts
(1.1.18) becomes Lorentz boosts for a sufficiently small energies and therefore in IR
region one obtain in a good aproximation

8��0|


T��|0� � 8��vacg�� �9. 6. 4�

and

�eff � � � 8��vac. �9. 6. 5�

Thus Moller-Rosenfeld approach holds in a good approximation.

9.7. Quantum gravity at energy scale � � ��Controlable
violetion of the unitarity condition.

Gravitational actions which include terms quadratic in the curvature tensor are
renormalizable. The necessary Slavnov identities are derived from Becchi-Rouet-Stora
(BRS) transformations of the gravitational and Faddeev-Popov ghost fields. In general,



non-gauge-invariant divergences do arise, but they may be absorbed by nonlinear
renormalizations of the gravitational and ghost fields and of the BRS transformations
[13].The geneic expression of the action reads

I sym � �� d4x �g ��R��R�� � 	R2 � 2��2R�, �9. 7. 1�

where the curvature tensor and the Ricci is defined by R���
� � �����

� and R�� � R���
�

correspondingly, �2 � 32�G.The convenient definition of the gravitational field variable in
terms of the contravariant metric density reads

�h�� � g�� �g � ���. �9. 7. 2�

Analysis of the linearized radiation shows that there are eight dynamical degrees of
freedom in the field. Two of these excitations correspond to the familiar massless spin-2
graviton. Five more correspond to a massive spin-2 particle with mass m2. The eighth
corresponds to a massive scalar particle with mass m0. Although the linearized field
energy of the massless spin-2 and massive scalar excitations is positive definite, the
linearized energy of the massive spin-2 excitations is negative definite. This feature is
characteristic of higher-derivative models, and poses the major obstacle to their physical
interpretation.

In the quantum theory, there is an alternative problem which may be substituted for
the negative energy. It is possible to recast the theory so that the massive spin-2
eigenstates of the free-fieid Hamiltonian have positive-definite energy, but also negative
norm in the state vector space.These negative-norm states cannot be excluded from the
physical sector of the vector space without destroying the unitarity of the S matrix. The
requirement that the graviton propagator behave like p�4 for large momenta makes it
necessary to choose the indefinite-metric vector space over the negative-energy
states.The presence of massive quantum states of negative norm which cancel some of
the divergences due to the massless states is analogous to the Pauli-Villars
regularization of other field theories. For quantum gravity, however, the resulting
improvement in the ultraviolet behavior of the theory is sufficient only to make it
renormalizable,but not finite.

Remark 9.7.1.(I)The renormalizable models which we have considered in this paper
many years mistakenly regarded only as constructs for a study of the ultraviolet problem
of quantum gravity. The difficulties with unitarity appear to preclude their direct
acceptability as canonical physical theories in locally Minkowski space-time. In canonical
case they do have only some promise as phenomenological models.

(II) However, for their unphysical behavior may be restricted to arbitrarily large energy
scales �� mentioned above by an appropriate limitation on the renormalized masses m2

and m0. Actually, it is only the massive spin-two excitations of the field which give the
trouble with unitarity and thus require a very large mass. The limit on the mass m0 is
determined only by the observational constraints on the static field.

10.Conclusion
We argue that a solution to the cosmological constant problem is to assume that there

exists hidden physical mechanism which cancel divergences in canonical QED4,QCD4,
Higher-Derivative-Quantum-Gravity, etc. In fact we argue that corresponding
supermassive Pauli-Villars ghost fields,etc.really exists. New theory of elementary



particles which contains hidden ghost sector is proposed. Zel’dovich hypotesis [1] we
suggest that physics of elementary particles is separated into low/high energy ones the
standard notion of smooth spacetime is assumed to be altered at a high energy cutoff
scale �� and a new treatment based on QFT in a fractal spacetime with negative
dimension is used above that scale.This would fit in the observed value of the dark
energy needed to explain the accelerated expansion of the universe if we choose highly
symmetric masses distribution below that scale ��, i.e.,
fs.m��� � fg.m���,� � �eff,�effc2 � ��
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