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Abstract: In previous papers, we tried to show that the lack of an agreed-upon model of the electron 
may have contributed to an extraordinary convoluted explanation of the anomalous magnetic moment 
of an electron. We also suggested a classical electron model (the Zitterbewegung or the Dirac-Kerr-
Newman model) may explain what is going on. The next logical step, of course, was to re-explore the 
classical idea of a photon to check if it can do what John Stewart Bell said cannot be done, and that is to 
explain interference at the level of a single photon. We think we have a classical explanation in this 
paper. If Mr. Bell was right, we must be wrong – we should be – but we don’t see why.   
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A classical explanation for the one-photon 
Mach-Zehnder experiment 

Introduction 
The working title for this paper was a question: can a classical explanation explain quantum-mechanical 
interference? Bell’s No-Go Theorem answers this question with a resounding: “No! Don’t go there!” Pun 
intended. Now, we have not studied Bell’s Theorem in detail but – after our discovery that one of 
Richard Feynman’s famous thought experiments might be based on a flawed assumption1 – we feel we 
are entitled to pursue the intuition and logic that we followed in previous papers – and that is to at least 
try to go there. We must admit we are very much encouraged by recent publications on the paradoxes 
that come out of weak measurement experiments – real as well as though experiments.2 While these 
experiments are usually interpreted as a confirmation of orthodox quantum-mechanical theory, they 
make us think of Professor Ralston’s evaluation of the current state of quantum mechanics: 

“Quantum mechanics is the only subject in physics where teachers traditionally present haywire 
axioms they don’t really believe, and regularly violate in research.”3   

Let us recall the basics in regard to Feynman’s thought experiment. Quantum physicists think of the 
elementary wavefunction as representing some theoretical spin-zero particle. Why? Spin-zero particles 
do not exist. All real particles have spin – electrons, photons, anything – and spin (a shorthand for 
angular momentum) is always in one direction or the other: it is just the magnitude of the spin that 
differs. Hence, we can use the plus/minus sign of the imaginary unit in the a·e±i function to include spin 
in the mathematical description. Indeed, most introductory courses in quantum mechanics will show 
that both a·ei· = a·ei·(tkx) and a·e+i· = a·e+i·(tkx) are acceptable waveforms for a particle that is 
propagating in a given direction.4 We would think physicists would then proceed to provide some 
argument why one would be better than the other, or some discussion on why they might be different, 
but that is not the case. The professors usually conclude that “the choice is a matter of convention” and, 
that “happily, most physicists use the same convention.”5  

Historical experience tells us theoretical or mathematical possibilities in quantum mechanics often turn 
out to represent real things – think, for example, of the experimental verification of the existence of the 
positron (or of anti-matter in general) after Dirac had predicted its existence based on the mathematical 
possibility only. So why would that not be the case here? Occam’s Razor principle tells us that we should 
not have any redundancy in the description. Hence, if there is a physical interpretation of the 
wavefunction, then we should not have to choose between the two mathematical possibilities: they 
would represent two different physical situations, and the one obvious characteristic that would 
distinguish the two physical situations is the spin direction. Hence, we do not agree with the mainstream 
view that the choice is a matter of convention. Instead, we dare to suggest that the two mathematical 
possibilities represent identical particles with opposite spin. Combining this with the two possible 
                                                           
1 Jean Louis Van Belle, Euler’s Wavefunction : The Double Life of 1, 30 October 2018, http://vixra.org/pdf/1810.0339v2.pdf.   
2 See, for example: Aharonov, Cohen, and Elitzur, Broadening the scope of weak quantum measurements II: Past and future 
measurement effects within a double Mach-Zehnder-interferometer setting, 
https://arxiv.org/ftp/arxiv/papers/1207/1207.0667.pdf.  
3 John P. Ralston, How to understand quantum mechanics (2017), p. 1-10. 
4 These arguments usually show other waveforms – such as, for example, a real-valued sinusoid – are not acceptable. 
5 See, for example, the MIT’s edX Course 8.04.1x, Lecture Notes, Chapter 4, Section 3.  
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directions of propagation (which are given by the + or ++ signs in front of ω and k), we get the 
following table: 

Table 1: Occam’s Razor: mathematical possibilities versus physical realities 

Spin and direction of travel Spin up (e.g. J = +ħ/2) Spin down (e.g. J = ħ/2) 

Positive x-direction ψ = a·ei·(tkx) ψ* = a·e+i·(tkx) 

Negative x-direction χ = a·ei·(t+kx) χ* = a·ei·(t+kx) 

 

An added benefit of this interpretation is that we can now also associate some physical meaning with 
the complex conjugate of a wavefunction and – by extension – to various properties of quantum-
mechanical operators, including hermiticity.6 More generally speaking, we may say that we can finally 
offer a meaningful physical interpretation of the quantum-mechanical wavefunction.  

What’s wrong with Feynman’s argument? 
The above-mentioned redundancy in the quantum-mechanical mathematical framework – quantum 
physicists settling on a convention rather than exploiting the full power of Euler’s function – is directly 
related to the logic leading to the rather uncomfortable conclusion that the wavefunction of spin-1/2 
particles (read: electrons, practically speaking) has some weird 720-degree symmetry in space. This 
conclusion is uncomfortable because we cannot imagine such objects in space without invoking the idea 
of some kind of relation between the subject and the object (the reader should think of the Dirac belt 
trick here). It has, therefore, virtually halted all creative thinking on a physical interpretation of the 
wavefunction. 

We have detailed Feynman’s mistake in the above-mentioned paper and, hence, we do not want to 
repeat ourselves here. Let us just lift out the crucial logical error in the argument. It concludes a rather 
long-winded argument involving a thought experiment with three beam splitters (S, T and U) – placed at 
varying angles – in succession. We should probably note that the thought experiment involves spin-1/2 
particles (the beam splitters are Stern-Gerlach apparatus). However, the analysis extends to the analysis 
of photons too because, while photons are spin-one particles, they do not have a zero-spin state. Hence, 
the Stern-Gerlach apparatuses in Feynman’s thought experiment can be replaced by photon beam 
splitters.7 Again, we refer the reader to our paper or, better, Feynman’s original argument for what 
precedes this conclusion: 

“This result (C’up = Cup and C’down = Cdown) is just the original state all over again. Both 
amplitudes are just multiplied by −1 which gives back the original physical system. (It is again a 
case of a common phase change.) This means that if the angle between T and S in (b) is 
increased to 180°, the system (with respect to T) would be indistinguishable from the zero-
degree situation, and the particles would again go through the (+) state of the U apparatus. At 
180°, though, the (+) state of the U apparatus is the (−x) state of the original S apparatus. So a 

                                                           
6 See the above reference: : Jean Louis Van Belle, 30 October 2018, Euler’s wavefunction: the double life of 1, 
http://vixra.org/pdf/1810.0339v2.pdf. 
7 We find the fact that photons are spin-one particles without a zero-spin state (see, for example, Feynman’s Lectures, III-11, 
footnote 1 as well as the context of this footnote) rather striking. It is weird that quantum theorists do not exploit it to try to be 
somewhat more creative in their thinking.   
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(+x) state would become a (−x) state. But we have done nothing to change the original state; the 
answer is wrong. We cannot have m = 1.”8 

This is where our physical interpretation (which, rather than making an arbitrary choice, maps all 
mathematical possibilities to all possible physical situations) makes the difference. The C’up = Cup and 
C’down = Cdown do represent two different realities – two different physical states, that is. We do not a 
common phase change here. We write, somewhat enigmatically: e+iπ  eiπ. The former (e+iπ) is a 
counterclockwise rotation. The latter is (eiπ) is clockwise. In short, there are two different ways to get 
from +1 to 1 (and vice versa, of course), as illustrated below.9  

 

Figure 1: e+iπ  eiπ 

Hence, a·e+i and a·ei represent opposite spin states, as illustrated below. 

Figure 2: a·e+i and a·ei 

Exploiting the full power of Euler’s function opens up a whole new realm of interpretations. In the 
above-mentioned paper we argue, for example, that we can now interpret the Hermiticity condition as a 
physical reversibility condition – and we are not talking mere time symmetry here: reversing a physical 
process is like playing a movie backwards and, hence, we’re talking CPT symmetry here. However, we do 
not have the time and space here to expand on that. We went off on a tangent and, hence, let us 
gradually move back to the topic of this paper. However, we need to make one more detour before we 
get there. 

Physical interpretations of the wavefunction 
The following series of diagrams and illustrations summarizes some of what we covered in our previous 
papers on a physical interpretation of the wavefunction. We refer to our previous papers for a detailed 
discussion of each of these.10 Here we will just sum up the basics. We had a Zitterbewegung model, in 
which the elementary wavefunction represents a pointlike charge with zero rest mass and which, 

                                                           
8 Feynman’s Lectures, Vol. III, Chapter 6, Section 3. 
9 Mathematicians will cry wolf, of course, but our logic has no flaws as far as we can see: the +x state in Feynman’s thought 
experiment effectively becomes a −x state when rotating the set-up over 180 degrees. 
10 See our series of viXra papers (http://vixra.org/author/jean_louis_van_belle). If we would have to choose one which sort of 
sums most, we would select our Layered Motions: The Meaning of the Fine-Structure Constant 
(http://vixra.org/pdf/1812.0273v3.pdf).   
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therefore, moves at the speed of light. This model explains Einstein’s energy-mass equivalence relation 
in terms of a two-dimensional oscillation. The radius of the oscillation is the Compton radius of the 
electron. The Zitterbewegung electron – which combines the idea of a pointlike charge and Wheeler’s 
idea of mass without mass11 – can then be inserted into Bohr’s quantum-mechanical model of an atom, 
which can also be represented using the elementary wavefunction. We have a different force 
configuration (because of the positively charged nucleus, we have a centripetal force now – as opposed 
to the tangential zbw force) but Euler’s a·e±i function still represents an actual position vector of an 
electron which – because it acquired a rest mass from its Zitterbewegung – now moves at velocity v = 
(α/n)·c.12 This should suffice to explain diagram 1, 2 and 3 below.     

  

  Figure 3: Physical interpretations of the wavefunction 

Diagram 4 represents the idea of a photon that we get out of the Bohr model. We referred to it as the 
one-cycle photon model. The idea is the following. The Bohr orbitals are separated by a amount of 
(physical) action that is equal to h. Hence, when an electron jumps from one level to the next – say from 
the second to the first – then the atom will lose one unit of h. Our photon will have to pack that, 
somehow. It will also have to pack the related energy, which is given by the difference of the energies of 
the two orbitals. This gives us not only the Rydberg formula – this we know since 1913 – but also a 
delightfully simple model of a photon and an intuitive interpretation of the Planck-Einstein relation (f = 
1/T = E/h) for a photon. Indeed, we can do what we did for the electron, which is to express h in two 
alternative ways: (1) the product of some momentum over a distance and (2) the product of energy over 
some time. We find, of course, that the distance and time correspond to the wavelength and the cycle 
time: 

                                                           
11 The mass of the electron is the equivalent mass of the energy in the oscillation. 
12 The n is the number of the Bohr orbital (n = 1, 2, 3…). The α and c are the fine-structure constant and the speed of light. This 
formula comes out naturally of the Bohr model. See the referenced papers. 
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ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

ℎ = E ∙ T ⟺ T =
ℎ

E
=

1

𝑓
 

Needless to say, the E = mc2 mass-energy equivalence relation can be written as p = mc = E/c for the 
photon. The two equations are, therefore, wonderfully consistent: 

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

We calculated the related force and field strength in our paper13 so we won’t repeat ourselves here. We 
would just like to point out something interesting – using diagram 5 above. Diagram 5 was copied from 
one of the many papers of Celani, Vassallo and Di Tommaso on the Zitterbewegung model, but we can 
use it to illustrate how and why we can associate a radius with the wavelength of a photon. Indeed, the 
diagram shows that, as an electron starts moving along some trajectory at a relativistic velocity – a 
velocity that becomes a more substantial fraction of c, that is – then the radius of the Zitterbewegung 
oscillation becomes smaller and smaller. In the limit (v  c), it becomes zero (r  0), and the 
circumference of the oscillation becomes a simple (linear) wavelength in the process (this is illustrated in 
diagram 7, which provides a geometric interpretation of the de Broglie wavelength). Now, if we write 
this wavelength as λC (this is, of course, the Compton wavelength), then we get the usual relationship 
between a radius and a wavelength: rC = λC/2π. This, then, provides an intuitive interpretation of the Eλ 
= hc equation for the photon and – more importantly – an intuitive explanation of the 2π factor in the 
formula for the fine-structure constant as a coupling constant. We write: 

α =
2π · qୣ

ଶ

ℎ ∙ 𝑐
=

𝑘 · qୣ
ଶ

ℏ ∙ 𝑐
=

F୆ · 𝑟୆
ଶ

Fஓ ∙ 𝑟ஓ ∙ 𝑟ஓ
=

F୆ · 𝑟୆
ଶ

Fஓ ∙ 𝑟ஓ
ଶ

=
E୆ · 𝑟୆

Eஓ ∙ 𝑟ஓ
 

Needless to say, EB, FB, rB and Eγ, Fγ, rγ are the energies, forces and radii that are associated with the Bohr 
orbitals and our one-cycle photon.14 

Finally – but this is a much finer and more philosophical point – diagram 5 gives us an intuitive geometric 
interpretation of one of the many ways in which Planck’s quantum of action may express itself: the 
quantization of space. Indeed, at v = 0 (diagram 2), we have perfectly circular motion of a pointlike 
charge moving at the velocity of light, and we may associate Planck’s quantum of action with the surface 
area of the circle. However, at v = c, the motion is purely linear – but we still think of the rotating field 
vector at the core (diagram 4). Planck’s quantum of action now expresses itself space as a linear 
distance: the wavelength of the photon. We like to express this dual view as follows: 

𝑧𝑏𝑤 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛: S = ℎ = p஼௢௠௣௧௢௡ ∙ λ஼௢௠௣௧௢௡ = mୣ𝑐λେ = mୣ𝑐 ∙ 2π𝑟େ = mୣ𝑐
ℎ

mୣ𝑐
= ℎ 

𝑝ℎ𝑜𝑡𝑜𝑛: S = ℎ = p௣௛௢௧௢௡ ∙ λ௣௛௢௧௢௡ =
Eஓ

𝑐
λஓ = mஓ𝑐λஓ = mஓ𝑐 ∙ 2π𝑟ஓ = mஓ𝑐

ℎ𝑐

Eஓ
= ℎ 

To be fully complete, we can add the same equation for the Bohr orbitals: 

                                                           
13 See the above-mentioned paper: Jean Louis Van Belle, Layered Motions: The Meaning of the Fine-Structure Constant, 23 
December 2018, http://vixra.org/pdf/1812.0273v3.pdf. 
14 These formulas may appear as mind-boggling to the reader. If so, we advise the reader to first look at our other papers, 
whose pace is much more gradual. 
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𝑛௧௛ 𝐵𝑜ℎ𝑟 𝑜𝑟𝑏𝑖𝑡𝑎𝑙: S = 𝑛 · ℎ = p௡ ∙ λ௡ = m௘𝑣௡λ௡ = m௘

α𝑐

𝑛
2π

𝑛ଶℏ

αm௘𝑐
= 𝑛 · ℎ 

We like these expressions because – in our humble view – there is no better way to express the idea 
that we should associate Planck’s quantum of action (or any multiple of it) with the idea of a cycle in 
Nature.  

We can imagine the reader is, by now, quite tired of these gymnastics and may question the relevance 
of this in light of the subject-matter of this paper. The answer is: we wanted to provide an introduction 
and, at the same time, refer to some history here. Prof. Dr. Alexander Burinskii – the author of the Dirac-
Kerr-Newman electron model – told us he had started from the very same Zitterbewegung model in the 
year the author of this paper was born (1969). He published an article on this in the Journal of 
Experimental and Theoretical Physics (JETP)15. However, he told us he had always been puzzled about 
this one question: what keeps the pointlike charge in the zbw electron in its circular orbit? He, therefore, 
moved to exploring Kerr-Newman geometries – which has resulted in his Dirac-Kerr-Newman model of 
an electron.16  

While the Dirac-Kerr-Newman model is a much more advanced model – it accommodates the theory of 
the supersymmetric Higgs field and string theory – we understand it does reduce to its classical limit, 
which is the Zitterbewegung model, if one limits the assumptions to general relativity and classical 
electromagnetism only. In our modest view, this validates our model. There is no mystery on the zbw 
force, we think: it is just the classical Lorentz force F = qE + qvB. We, therefore, think that the zbw force 
results from the very same electric and magnetic field oscillation that makes up the photon. It is just the 
way that Planck’s quantum of action expresses itself in space that is different here: we just get a 
different form factor, so to speak, when we look at the pointlike zbw charge. This, then, should solve Mr. 
Burinskii’s puzzle – in our humble view, that is. 

Finally, the attentive reader will have noticed that we did not discuss diagram 6. We inserted this 
diagram because when we considered the various degrees of freedom in interpreting Euler’s 
wavefunction, we thought we should, perhaps, not necessarily assume that the plane of the circulatory 
motion – the zbw motion of the pointlike charge in the diagram – is perpendicular to the direction of 
propagation. In fact, the Stern-Gerlach experiment tells us the magnetic moment is literally up or down, 
which assumes the plane of the electric current should be parallel to the direction of motion. We like 
this alternative picture of the zbw electron because – intuitively – we feel it might provide us with some 
kind of physical explanation of relativistic length contraction: as velocities increase, the radius of the 
circular motion becomes smaller which, in this model, may be interpreted as a contraction of the size of 
the zbw electron.17 

OK. This has been the longest introduction ever. It is time to have a closer look at the photon model 
now. 

                                                           
15 Burinskii, A.Y., Microgeons with spin, Sov. Phys. JETP 39 (1974) 193. One should note that Prof. dr. Burinskii refers to the zbw 
charge as an ‘electron photon’ or the ‘electron EM wave’. However, its function in the model is basically the same. Prof. dr. 
Burinskii also told us that he was told not to refer to the Zitterbewegung model at the time, because it was seen as a classical 
model and, therefore, not in tune with the modern ideas of quantum mechanics. 
16 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008, https://arxiv.org/abs/hep-th/0507109. A more 
recent article of Mr. Burinskii (New Path to Unification of Gravity with Particle Physics, 2016, https://arxiv.org/abs/1701.01025, 
relates the model to more recent theories – most notably the “supersymmetric Higgs field” and the “Nielsen-Olesen model of 
dual string based on the Landau-Ginzburg (LG) field model.” We admit we do not understand much of this – if anything at all. 
17 This is just a random thought at the moment. It needs further exploration. 



7 
 

The classical idea of a photon 
Our analysis of Feynman’s argument on the 720-degree of spin-1/2 particles should not be construed as 
a criticism of Feynman: it’s not his argument – it’s just orthodox QM. In general, we think Feynman’s 
Lectures are still the best lectures on physics one can possibly get – if only because they make one think 
about what one is taught. We, therefore, borrow with very much pleasure two diagrams of his Lectures 
to complete the classical picture of a photon. 

The first diagram (Feynman, I-34-9) brings in the oft-neglected magnetic field.18 Feynman uses it to 
explain what he refers to as the ‘pushing momentum’ of light – which is more commonly referred to as 
radiation or light pressure. It is a bit of a strange term, because we are talking a force, really.   

 

Figure 4: Feynman’s explanation of the momentum of light 

The basic idea is illustrated in another diagram, which is – unfortunately – separated from the diagram 
above by a full volume of lectures.19 An electromagnetic wave – we take it to be a photon – will drive an 
electron, as shown below (Feynman, III-17-4). Hence, the magnetic force comes into play – as there is a 
charge and a velocity to play with now. 😊 The magnetic force – which is just denoted as F in the 
diagram above – will be equal to F = qvB.    

 

Figure 5: How the electric field of a photon might drive an orbital electron 

Feynman then goes off on a bit of a tangent – analyzing the average force over time, which makes sense 
when one continues to take a classical view of an atom (or a Bohr (electron) orbital, practically 
speaking), and which gives some kind of meaning to the momentum of light.20 The point is: his analysis 
fails to bridge classical mechanics with quantum mechanics because he fails to interpret Planck’s 
quantum of action as a quantum: we’re not only transferring energy here. We’re also transferring 
angular momentum. In short: photon absorption and emission should respect the integrity of a cycle. 
                                                           
18 Oft-neglected in the context of a photon model, that is.  
19 The first illustration comes from Feynman’s volume on classical mechanics (Volume I), while the second comes from his 
lectures on quantum mechanics (Volume III). The volume in-between (Volume II) is on (classical) electromagnetism. 
20 Mr. Feynman gets some kind of explanation for the p = E/c relation out of his analysis. 
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What is this rule? Some new random interpretation of quantum mechanics? Yes. That is the one we 
offer here.  

What happens when an electron jumps several Bohr orbitals? The angular momentum between the 
orbitals will then differ by several units of ħ. What happens to the photon picture in that case? It will 
pack the energy difference, but it will also pack several units of ħ (angular momentum) or – what 
amounts to the same – several units of h (physical action). In our humble opinion, we should still think of 
the photon a one-cycle oscillation. Hence, we do not think its energy will be spread over several cycles.21 
The two equations below need to make sense for all transitions22: 

𝑝ℎ𝑜𝑡𝑜𝑛: S = ℎ = pஓ ∙ λஓ =
Eஓ

𝑐
λஓ =

Eஓ

𝑓ஓ
= Eஓ ∙ Tஓ 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛: S = 𝑛 · ℎ = p௡ ∙ λ௡ = m௘𝑣௡λ௡ = E௡ ∙ T௡ 

The formulas above express the two most common expressions of what we referred to as the Certainty 
Principle. Pun intended.23 We will leave it as an exercise for the reader to re-write these formulas in 
terms of a product of force, distance, and time.  

So, what about Uncertainty, then? Nothing – absolutely nothing – of what we wrote above involves any 
uncertainty. It must be there somewhere, right? We would like to offer the following reflection. We 
have a few footnotes in previous papers, in which we suggest that Planck’s quantum of action should be 
interpreted as a vector. The uncertainty – or the probabilistic nature of Nature, so to speak24 – might, 
therefore, not be in its magnitude. We feel the uncertainty is in its direction. This may seem to be 
restrictive. However, because h is the product of a force (some vector in three-dimensional space), a 
distance (another three-dimensional concept) and time, we think we have the mathematical framework 
comes with sufficient degrees of freedom to describe any situation. Quantum-mechanical equations – 
such as Schrödinger’s equation – should probably be written as vector equations.25 

Linear and circularly polarized light 
The photons above make for a circularly polarized beam. The spin direction may be left-handed or right-
handed, as shown below. 

                                                           
21 When discussing the Mach-Zehnder experiment in the next version of our paper, we will bring a subtle but essential nuance 
to this point of view.  
22 The use of the same integer n for the difference in energy between Bohr orbitals might be confusing but we did not want to 
use another symbol – such as m, for example – because m would make one think of the fine-structure transitions (which we 
haven’t discussed at all – not in this paper, not in previous one) and – more importantly – because we want to encourage the 
reader to think these things through for him- or herself. Symbols acquire meaning from the context in which they are used. We 
are tempted to go off on a tangent on Wittgenstein but we should restrain ourselves here. There is too much philosophy in this 
paper already. We advise the reader to critically cross-check the formula for electron transitions with what we wrote in 
previous papers. We warmly welcome comments. 
23 As we argued in previous papers, Planck’s quantum of action should probably be interpreted as a vector. The uncertainty 
might not be in its magnitude. We feel the uncertainty is in its direction. Because h is the product of a force, a distance and 
time, we have a lot of dimensions to consider. 
24 A fair amount of so-called thought experiments in quantum mechanics – and I am not (only) talking the more popular 
accounts on what quantum mechanics is supposed to be all about – do not model the uncertainty in Nature, but on our 
uncertainty on what might actually be going on. Einstein was not worried about the conclusion that Nature was probabilistic 
(he fully agreed we cannot know everything): a quick analysis of the full transcriptions of his oft-quoted remarks reveal that he 
just wanted to see a theory that explains the probabilities. A theory that just describes them didn’t satisfy him. 
25 We made a start with this in a previous paper: Jean Louis Van Belle, A geometric interpretation of Schrödinger’s equation, 
http://vixra.org/pdf/1812.0202v1.pdf.  
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Figure 6: Left- and right-handed polarization26 

 

We can think of these photons as the sum of two linearly polarized waves. We write:  

cos + i·sin = ei· (RHC) 

cos() + i·sin() = cos  i·sin = ei· (LHC) 

Huh? What is the geometry here? It is quite simple. Let us spell it out so we have no issues of 
interpretation in the next section(s) of this paper. If x is the direction of propagation of the wave, then 
the z-direction will be pointing upwards, and we get the y-direction from the righthand rule for a 
Cartesian reference frame.27 We may now think of the oscillation along the y-axis as the cosine, and the 
oscillation along the z-axis as the sine. If we then think of the imaginary unit i as a 90-degree 
counterclockwise rotation in the yz-plane (and remembering the convention that angles (including the 
phase angle ) are measured counterclockwise), then the right- and left-handed waves can effectively 
be represented by the wavefunctions above. 

The point here is that easy visualizations like this strongly encourage us to think of a geometric 
representation of the wavefunctionif only because, conversely, one may also adopt the convention 
that the imaginary unit should be interpreted as a unit vector pointing in a direction that is 
perpendicular to the direction of propagation of the wave and one may then write the magnetic field 
vector as B = i·E/c.28 The minus sign in the B = i·E/c. It is there because of consistency: we must 
combine a classical physical right-hand rule  for E and B here as well as the mathematical convention 
that multiplication with the imaginary unit amounts to a counterclockwise rotation by 90 degrees. This 
allows us to re-write Maxwell’s equations using complex numbers. We have done that in other papers, 
so if the reader is interested he can check there. 29 The point to note is that, while we will often sort of 
forget to show the magnetic field vector, the reader should always think of it – because it is an integral 
part of the electromagnetic wave: when we think of E, we should also think of B. Both oscillations carry 
energy. 

The mention of energy brings me to another important point. As mentioned above, we think of a 
circularly polarized beam – and a photon – as a superposition of two linear waves. Now, these two 
linearly polarized waves will each pack half of the energy of the combined wave. It is a very important 
point to make because any classical explanation of interference – like the one we will offer in the next 
section – will need to respect the energy conservation law. Note that, while each wave packs half of the 
                                                           
26 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 
27 Note the reference frame in the illustrations of the LHC and RHC wave – which we took from Wikipedia – is left-handed. Our 
argument will use a regular right-handed reference frame. 
28 As usual, we use boldface letters to represent geometric vectors – the electric (E) and magnetic field vectors (B), in this case. 
There is a risk of confusion between the energy E and the electric field E because we use the same symbols, but the context 
should make clear what is what. 
29 See, for example, Jean Louis Van Belle, A geometric interpretation of Schrödinger’s equation, 
http://vixra.org/pdf/1812.0202v1.pdf.  
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energy of the combined wave, their (maximum) amplitude is the same: there is no change there. Let us 
briefly elaborate this point. The energy of any oscillation will always be proportional to (1) its amplitude 
(a) and (2) its frequency (f). Hence, if we write the proportionality coefficient as k, then the energy of 
our photon will be equal to: 

E = 𝑘 ∙ 𝑎ଶ ∙ ωଶ 

What should we use for the amplitude of the oscillation here? It turns out we get a nice result using the 
wavelength30: 

E = 𝑘𝑎ଶωଶ = 𝑘λଶ
Eଶ

ℎଶ
= 𝑘

ℎଶ𝑐ଶ

Eଶ

Eଶ

ℎଶ
= 𝑘𝑐ଶ ⟺ 𝑘 = m and E = m𝑐ଶ 

However, we should note this assumes a circularly polarized wave. Its linear components – the sine and 
cosine, that is – will only pack half of that energy. We can now offer the following classical explanation 
of the Mach-Zehnder experiment for one photon only.31  

A classical explanation for the one-photon Mach-Zehnder experiment 
We offered a geometric interpretation of the wavefunction. When analyzing interference in quantum 
mechanics, the wavefunction concept gives way to the concept of a probability amplitude which we 
associate with a possible path rather than a particle. The math looks somewhat similar but models very 
different ideas and concepts. Before the photon enters the beam splitter, we have one wavefunction: 
the photon. When it goes through, we have two probability amplitudes that – somehow – recombine 
and interfere with each other. What we want to do here is to explain this classically. 

Let us look at the Mach-Zehnder interferometer once again. We have two beam splitters (BS1 and BS2) 
and two perfect mirrors (M1 and M2). An incident beam coming from the left is split at BS1 and 
recombines at BS2, which sends two outgoing beams to the photon detectors D0 and D1. More 
importantly, the interferometer can be set up to produce a precise interference effect which ensures all 
the light goes into D0, as shown below. Alternatively, the setup may be altered to ensure all the light 
goes into D1. 

Figure 7: The Mach-Zehnder interferometer32 

 

                                                           
30 We use the Eλ = hc  λ = hc/E identity. The reader might think we should use the amplitude of the electric and magnetic 
field. We could – the model is consistent – but it requires some extra calculations as we then need to think of the energy as 
some force over a distance. We refer to our papers for more details. 
31 We have written about this topic before (see: Jean Louis Van Belle, Linear and circular polarization states in the Mach-
Zehnder interference experiment, 5 November 2018,  http://vixra.org/pdf/1811.0056v1.pdf). Hence, we will only offer a 
summary of what we wrote there. 
32 Source of the illustration: MIT edX Course 8.04.1x (Quantum Physics), Lecture Notes, Chapter 1, Section 4 (Quantum 
Superpositions). 
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What is the classical explanation? The classical explanation is something like this: the first beam splitter 
(BS1) splits the beam into two beams. These two beams arrive in phase or, alternatively, out of phase 
and we, therefore, have constructive or destructive interference that recombines the original beam and 
makes it go towards D0 or, alternatively, towards D1. 

When we analyze this in terms of a single photon, this classical picture becomes quite complicated – but 
we argue there is such classical picture. Our alternative theory of what happens in the Mach-Zehnder 
interferometer is the following: 

1. The incoming photon is circularly polarized (left- or right-handed). 
2. The first beam splitter splits our photon into two linearly polarized waves. 
3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 
4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

We will detail this in the next section, because what happens in a Mach-Zehnder interferometer is not 
all that straightforward. We should note, for example, that there are phase shifts along both paths: 
classical physics tells us that, on transmission, a wave does not pick up any phase shift, but it does so on 
reflection. To be precise, it will pick up a phase shift of π on reflection. We will refer to the standard 
textbook explanations of these subtleties and just integrate them in our more detailed explanation in 
the next section.33 Before we do so, we will show the assumption that the two linear waves are 
orthogonal to each other is quite crucial. If they weren’t, we would be in trouble with the energy 
conservation law. Let us show that before we proceed. 

Suppose the beams would be polarized along the same direction. If x is the direction of propagation of 
the wave, then it may be the y- or z-direction of anything in-between. The magnitude of the electric field 
vector will then be given by a sinusoid. Now, we assume we have two linearly polarized beams, of 
course, which we will refer to as beam a and b respectively. These waves are likely to arrive with a phase 
difference – unless the apparatus has been set up to ensure the distances along both paths are exactly 
the same. Hence, the general case is that we would describe a by cos(ω·t  k·x) = cos() and b by cos( + 
Δ) respectively. In the classical analysis, the difference in phase (Δ) will be there because of a difference 
of the path lengths34 and the recombined wavefunction will be equal to the same cosine function, but 
with argument  + Δ/2, multiplied by an envelope equal to 2·cos(Δ/2). We write35: 

cos() + cos( + Δ) = 2·cos( + Δ/2)·cos(Δ/2) 

We always get a recombined beam with the same frequency, but when the phase difference between 
the two incoming beams is small, its amplitude is going to be much larger. To be precise, it is going to be 
twice the amplitude of the incoming beams for Δ = 0. In contrast, if the two beams are out of phase, the 

                                                           
33 For a good classical explanation of the Mach-Zehnder interferometer, see: K.P. Zetie, S.F. Adams and R.M. Tocknell, January 
2000, How does a Mach–Zehnder interferometer work? 
(https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf, accessed on 5 
November 2018). 
For a good quantum-mechanical explanation (interference of single photons), see – for example – the Mach-Zehnder tutorial 
from the PhysPort website (https://www.physport.org/curricula/QuILTs/, accessed on 5 November 2018).  
34 Feynman’s path integral approach to quantum mechanics allows photons (or probability amplitudes, we should say) to travel 
somewhat slower or faster than c, but that should not bother us here. 
35 We are just applying the formula for the sum of two cosines here. If we would add sines, we would get sin() + sin( + Δ) = 
2·sin( + Δ/2)·cos(Δ/2). Hence, we get the same envelope: 2·cos(Δ/2). 
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amplitude is going to be much smaller, and it’s going to be zero if the two waves are 180 degrees out of 
phase (Δ = π), as shown below. That does not make sense because twice the amplitude means four 
times the energy, and zero amplitude means zero energy. The energy conservation law is being violated: 
photons are being multiplied or, conversely, are being destroyed.  

Figure 8: Constructive and destructive interference for linearly polarized beams 

 

Let us be explicit about the energy calculation. We assumed that, when the incoming beam splits up at 
BS1, that the energy of the a and b beam will be split in half too. We know the energy is given by (or, to 
be precise, proportional to) the square of the amplitude (let us denote this amplitude by A).36 Hence, if 
we want the energy of the two individual beams to add up to A2 = 12 = 1, then the (maximum) amplitude 
of the a and b beams must be 1/√2 of the amplitude of the original beam, and our formula becomes: 

(1/√2)·cos() + (1/√2)·cos( + Δ) = (2/√2)·cos( + Δ/2)·cos(Δ/2) 

This reduces to (2/√2)·cos() for Δ = 0. Hence, we still get twice the energy – (2/√2)2 equals 2 – when the 
beams are in phase and zero energy when the two beams are 180 degrees out of phase. This doesn’t 
make sense.  

Of course, the mistake in the argument is obvious. This is why our assumption that the two linear waves 
are orthogonal to each other comes in: we cannot just add the amplitudes of the a and b beams because 
they have different directions. If the a and b beams – after being split from the original beam – are 
linearly polarized, then the angle between the axes of polarization should be equal to 90 degrees to 
ensure that the two oscillations are independent. We can then add them like we would add the two 
parts of a complex number. Remembering the geometric interpretation of the imaginary unit as a 
counterclockwise rotation, we can then write the sum of our a and b beams as: 

(1/√2)·cos() + i·(1/√2)·cos( + Δ) = (1/√2)·[cos() + i·cos( + Δ)] 

What can we do with this? Not all that much, except noting that we can write the cos( + Δ) as a sine for 
Δ = ± π/2. To be precise, we get: 

(1/√2)·cos() + i·(1/√2)·cos( + π/2) = (1/√2)·(cos  i·sin) = (1/√2)·ei·   

(1/√2)·cos() + i·(1/√2)·cos(  π/2) = (1/√2)·(cos + i·cos) = (1/√2)·ei·  

                                                           
36 If we would reason in terms of average energies, we would have to apply a 1/2 factor because the average of the sin2 and 
cos2 over a cycle is equal to 1/2. 
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This gives us the classical explanation we were looking for: 

1. The incoming photon is circularly polarized (left- or right-handed). 
2. The first beam splitter splits our photon into two linearly polarized waves. 
3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 
4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

What about the 1/√2 factor? If the ei· and ei· wavefunctions can, effectively, be interpreted 
geometrically as a physical oscillation in two dimensions – which is, effectively, our interpretation of the 
wavefunction37 – then   then each of the two (independent) oscillations will pack one half of the energy 
of the wave. Hence, if such circularly polarized wave splits into two linearly polarized waves, then the 
two linearly polarized waves will effectively, pack half of the energy without any need for us to think 
their (maximum) amplitude should be adjusted. If we now think of the x-direction as the direction of the 
incident beam in the Mach-Zehnder experiment, and we would want to also think of rotations in the xz-
plane, then we need to need to introduce some new convention here. Let us introduce another 
imaginary unit, which we’ll denote by j, and which will represent a 90-degree counterclockwise rotation 
in the xz-plane.38 We then get the following classical explanation for the results of the one-photon 
Mach-Zehnder experiment:  

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 
i·sin)   is split into 
two linearly polarized 
beams: 
Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes j·j·sin 
= j2·sin = sin 
The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 
becomes j·sin. The 
lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos + j·sin = e+j·.   
This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

LHC Photon (ei· = cos  
i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes 
(j)·(j)·sin = = 
j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 
becomes j·sin. The 
lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos  j·sin = ej·.  
This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

                                                           
37 We can assign the physical dimension of the electric field (force per unit charge, N/C) to the two perpendicular oscillations. 
38 This convention may make the reader think of the quaternion theory but we are thinking more of simple Euler angles here: i 
is a (counterclockwise) rotation around the x-axis, and j is a rotation around the y-axis.  
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Of course, we may also set up the apparatus with different path lengths, in which case the two linearly 
polarized beams will be out of phase when arriving at BS1. Let us assume the phase shift is equal to Δ = 
180° = π. This amounts to putting a minus sign in front of either the sine or the cosine function. Why? 
Because of the cos( ± π) = cos and sin( ± π) = sin identities. Let us assume the distance along the 
upper path is longer and, hence, that the phase shift affects the sine function.39 In that case, the 
sequence of events might be like this: 

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 
i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes j·j·sin 
= j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 
j·sin( + π) = j·sin. 
The lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos  j·sin = ej·.  

This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

LHC Photon (ei· = cos  
i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 
oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 
= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes 
(j)·(j)·sin = = 
j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 
represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 
j·sin( + π) = +j·sin. 
The lower beam is still 
represented by cos 

The photon 
wavefunction is given 
by cos + j·sin = e+j·.   
This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

 

What happens when the difference between the phases of the two beams is not equal to 0 or 180 
degrees? What if it is some random value in-between? Do we get an elliptically polarized wave or some 
other nice result? Denoting the phase shift as Δ, we can write: 

cos + j·sin( + Δ) = cos + j·(sin·cosΔ + cos·sinΔ) 

However, this is also just a circularly polarized wave, but with a random phase shift between the 
horizontal and vertical component of the wave, as shown below. Of course, for the special values Δ = 0 
and Δ = π, we get cos + j·sin and cos  j·sin once more.   

                                                           
39 The reader can easily work out the math for the opposite case (longer length of the lower path). 
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Figure 9: Random phase shift between two waves 

 

. 

Mystery solved? Maybe. Maybe not. We just wanted to show that one should try to go everywhere. 😊 

Jean Louis Van Belle, 29 December 2018 
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