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Relations for the relativistic energy and metric are analyzed inside and outside the body in 

the framework of the covariant theory of gravitation. The methods of optimal energy gauging 

and equations for the metric are chosen. It is shown that for the matter inside the body a 

procedure is required to average the physical quantities, including the cosmological constant 

and the scalar curvature. For the case of the relativistic uniform system, the cosmological 

constant and the scalar curvature are explicitly calculated, which turn out to be constant values 

inside the body and are assumed to be equal to zero outside the body. Comparison of the 

cosmological constants inside a proton, a neutron star and in the observable Universe allows us 

to explain the cosmological constant problem arising in the Lambda-CDM model. 
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1. Introduction 

The relativistic energy of the physical system is part of the time component of the four-

momentum of the system and is one of the most important characteristics, along with the 

momentum. In this case, the energy is determined with an accuracy up to a constant, selected 

arbitrarily based on the convenience of calculation. Thus, the problem of energy gauging arises 

in each theory. In the covariant theory of gravitation, the energy is gauged based on the fact 

that the value of the cosmological constant is proportional with an accuracy to a constant 

multiplier to the energy density of the matter particles in the proper fields of the system under 

consideration [1]. 

The use of the cosmological constant for energy gauging results in certain changes in the 

equation for the metric, in which the cosmological constant is present alongside with the scalar 
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curvature. Therefore, we will further analyze both – the expressions for the metric and for the 

energy. 

The purpose of this article is to clarify the question  how the cosmological constant and 

the scalar curvature in the matter inside bodies should be understood. The point is that, as a 

rule, representative volumes occupied by typical particles should be selected in the matter, and 

calculations should be carried out for such particles, including solution of the equation of 

motion. Applying the method of typical particles implies we need to use the appropriate 

averaging of the physical quantities acting on such particles. Such quantities as the 

cosmological constant and the scalar curvature are not exceptions.  Thus, they should also be 

considered as some averaged quantities. As a result of our analysis for the case of the relativistic 

uniform system, we will calculate the cosmological constant and the scalar curvature inside the 

body, and will show that they are constant quantities. In addition, we will try to clarify the 

cosmological constant problem in connection with its inconsistency with the zero energy of the 

vacuum. 

 

2. Equations for the metric and the energy 

The use of the principle of least action in the framework of the covariant theory of 

gravitation leads to the following relation for the metric [1]: 

 

2 2

,

ckR ckR g ck g

D J g U A j g W U J g B J g P

     

                   

   

    

       
           (1) 

 

where c  is the speed of light; k  is the constant, which is part of the Lagrangian in the terms 

with the scalar curvature R  and the cosmological constant  ; R   is the Ricci tensor; g   is 

the metric tensor; J   is the mass four-current; j  is the charge four-current; D , A , U   and 

  are the four-potentials of the gravitational and electromagnetic fields, the acceleration field 

and the pressure field, respectively; U   , W   , B   and P   are the stress-energy tensors of 

these fields, respectively. 

 

Equation (1) can be contracted by means of multiplying by the metric tensor, taking into 

account that 0g U 

   ,  0g W 

   ,  0g B 

   ,  0g P 

   ,  g R R 

   , and in 

the four-dimensional spacetime 4g g 

   : 
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4 2 2 2 2ckR ck D J A j U J J   

         .                             (2) 

 

Substitution of (2) into (1) gives an equation for the metric: 

 

 
1 1

4 2
R R g U W B P

ck

                 .                                (3) 

 

Let us take the covariant derivative 
  of both sides of equation (3): 

 

 
1 1

4 2
R g R U W B P

ck

           

           .                        (4) 

 

For the tensors on the right-hand side, the relation   0U W B P       

      is valid 

as an expression of the equation of motion [1]. Consequently, the right-hand side of (4) 

vanishes. 

The Ricci tensor and the scalar curvature are part of the Einstein tensor, the covariant 

derivative of which is equal to zero due to the properties of the curvature tensor and the 

differential Bianchi identity: 

 

1
0

2
R g R   

 

 
    

 
.                                                 (5) 

 

From comparison of (5) with the left-hand side of (4), which must also be equal to zero, it 

follows that 0R  . It means that the covariant derivative of the scalar curvature must be 

equal to zero at any point in space, both inside and outside the system. 

In addition to relation (2), which contains the scalar curvature R  and the cosmological 

constant  , there is another relation in [1], which contains these quantities. In particular, for 

the Hamiltonian and the relativistic energy of the physical system with continuous distribution 

of matter we found the following: 
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ckR ck Φ Φ F F

G
g dx dx dx

c c
u u f f

 

 

 

 

      

 

  

      

 
     

  
 
   
 





                (6) 

 

In (6) 0  and 0q  denote the invariant densities of mass and charge, respectively;  ,  ,   

and  are the scalar potentials of the gravitational and electromagnetic fields, the acceleration 

field and the pressure field, respectively; Φ , F , u  and f  are the tensors of these fields, 

respectively; 
0u  is the time component of the four-velocity of the matter unit; g  is the metric 

tensor determinant; 1 2 3dx dx dx  is the product of the differentials of space coordinates; G  is the 

gravitational constant; 0  is the magnetic constant;   is the acceleration field constant;   is 

the pressure field constant. 

 

3. Gauging outside the body 

We will use (6) to calculate the contribution into the system’s energy outside the body, 

where there is no matter and there are only the gravitational and electromagnetic fields, so it is 

sufficient to take into account only the second integral. In this case, the mass and charge four-

currents are equal to zero and the condition 4o oR    remains in (2), where the symbol o  refers 

to the quantities outside the body. Under this condition, the contribution into the energy (6) 

outside the body will be: 

 

2
1 2 3

0

1
2

16 4
o o

c
E ck Φ Φ F F g dx dx dx

G

 

 
 

 
      

 
 .                  (7) 

 

It is convenient to assume that in (7) the cosmological constant 0o  , that is, the 

contribution into the relativistic energy in the volume outside the system depends neither on the 

scalar curvature nor on the cosmological constant. Then the condition 4o oR    implies the 

equality 0oR  . As a result, we obtain the equality 0oR  , which follows from (4) and (5). 
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The fact that both the scalar curvature oR  and the cosmological constant o  are assumed 

to be zero outside the body was used in [2] to calculate the metric tensor components and to 

simplify the equation for the metric (3) to the following form: 

 

 
1

2
R U W

ck

        .                                                 (8) 

 

4. Gauging inside the body 

We will now pass on to the situation inside the body, where all the stress-energy tensors on 

the right-hand side of the equation for the metric (3) are non-zero. Since according to (4) and 

(5) the condition 0iR   must hold, where the symbol i  refers to the quantities in the matter 

inside the body, then after applying the covariant derivative to all the terms in (2) the following 

remains: 

 

(2 ) 0ick D J A j U J J   

           .                              (9) 

 

We will now substitute the scalar curvature from (2) into the expression for the energy (6): 
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0
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      



    

      

      
 

  
    
 





     (10) 

 

We find the cosmological constant i  in two relations – in (9) and in (10). In (9), the 

covariant derivative 2 ick    must behave with an accuracy up to a sign like the covariant 

derivative ( )D J A j U J J   

        . And in (10) the term 2 ick  is some additional 

energy density. The choice of the value of i  for gauging purposes is not initially limited by 

anything, except that it must be invariant with respect to the covariant transformations of 

coordinates and time. For convenience we will use the simplest variant, which significantly 

simplifies the expression for the energy. 

Just as in [1], we will suppose that the cosmological constant i  in the matter inside the 

body is such that the following relation would hold: 
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ick D J A j U J J   

         .                                     (11) 

 

Then, according to (10) and (11), the energy in the space inside the body occupied by the 

matter and fields will no longer depend on the cosmological constant: 

 

  0 1 2 3

0 0 0 0

2 2 2
1 2 3

0

1

1
.

16 4 16 16

i qE u g dx dx dx
c

c c c
Φ Φ F F u u f f g dx dx dx

G

   

   

      

   

      

 
     

 





     (12) 

 

Assuming that the cosmological constant outside the body is equal to zero because of the 

absence of matter there, 0o  , we will compare the relations for the energy (7) and (12). From 

these relations we can see that the general expression for the energy is (12), in which the energy 

iE  must be replaced with E . The system’s energy E  with the right-hand side in the form of 

(12) was derived by us earlier in [1]. 

The denser the cosmic object is, the higher is the energy density of the particles in the field 

potentials on the right-hand side of (11), and the greater is the cosmological constant i  inside 

the body. Since (11) and (2) imply the relation 2i iR   , then the scalar curvature iR  inside the 

bodies is not equal to zero and varies proportionally to the cosmological constant i . 

Consequently, in denser bodies the scalar curvature has greater value. 

We will express the four-potentials of the fields in (11) in terms of the respective scalar and 

vector potentials of these fields: ,D
c



 
  
 

D  for the gravitational field, ,A
c



 
  
 

A  for 

the electromagnetic field, ,U
c



 
  
 

U  for the acceleration field, ,
c


 

  
 

Π  for the 

pressure field. In the limit of the special theory of relativity, the four-currents have the following 

form: 0 0 ( , )J u c      v , 0 0 ( , )q qj u c      v , where   is the Lorentz factor of the 

particle of the moving and continuously distributed matter of the system, v  is the velocity of 

the particle’s motion. This gives the following: 

 

0 0 0 0 0 0 0 0i q qck                                D v A v U v Π v .      (13) 
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Relations (11) and (13) must hold true not only for the matter inside the body, but also for 

the matter in such a state, when this matter has not yet aggregated into a closely connected 

system and was in the form of particles distant from each other. In the latter case, the 

cosmological constant and the scalar curvature inside individual particles have their proper 

values. 

In the limit of low velocities we can neglect the terms containing the velocity v  of the 

particles and the vector potentials D , A , U  and Π . Then in (13) the Lorentz factor is 1   

and only the terms with scalar field potentials are left. For the particles scattered at infinity in 

cosmic space we can assume that these potentials arise only from the particles’ proper fields 

and are the potentials averaged over the volume of particles. In this case, according to [3], 

2

c c  , where c  is the Lorentz factor for the matter at the center of the particles. Denoting 

the cosmological constant for individual particles in cosmic space by 0  we can write: 

 

2

0 0 0 0 0q cck c            .                                      (14) 

 

From (11) and (14) it follows that in the absence of matter the cosmological constant 

vanishes. This is consistent with the fact that in Section 3 we assumed that the cosmological 

constant outside the body is equal to zero.  

According to (14), 0  is defined by the rest energy density of the particles with a certain 

addition from the energy density of the particles in the gravitational and electromagnetic fields 

and in the pressure field in the matter. Now we can average 0 over the entire space, as well as 

the mass density 0  and the charge density 0q , without changing the values of the field 

potentials. To do this, we will take into account that in the first approximation the product 0c   

is the ratio of the particle’s mass to the particle’s volume as some average density. Averaging 

over the entire space will take place if we distribute the particle’s mass over the entire volume, 

which, on the average, can be attributed to one particle in cosmic space. In this case 0c   is 

changed to 0  and 0  to 0 . Leaving in (14) only the rest energy as the basic term due to its 

value, we can approximately write: 

 

2

0 0ck c   . 
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Using the definition in the following form: 
3

16

c
k

G 
  , where  is a constant of the 

order of unity, we find the averaged value 0
0 2

16 G

c

 
  . Substituting instead of 0  the 

estimate of the cosmological constant 
5210   m–2 according to the Lambda-CDM model [4], 

we find the corresponding density: 27

0 2.7 10    kg/m3, which is close enough to the 

observed average mass density of the matter. 

If we consider the proton, which is stable in all respects, as the basic particle in cosmic 

space, then we can estimate the cosmological constant 0  for it in (14). To do this, instead of 

0c   we should use the average proton density of the order of 176 10p    kg/m3 with its 

radius 
168.73 10  m, according to [5]. This gives the value 8

0 2

16
2.2 10

pG

c

 
     m–2, 

which is 44 orders of magnitude greater than the cosmological constant 
5210   m–2 averaged 

over the entire cosmic space. 

The next step can be made by taking into account the strong gravitation described in [6, 7], 

and assumed as the basis for describing the strong interaction at the hadron level. If we 

substitute the gravitational constant G  with the strong gravitational constant 291.514 10aG    

m3/(kgˑs2) according to [8], then the corresponding cosmological constant for the proton will 

equal 31

2

16
5.1 10

a p

p

G

c

 
     m–2. The relation for the scalar curvature 2i iR    for the 

matter inside the proton will be written as 322 10p pR     m–2. Assuming in the first 

approximation that the spacetime inside the proton has constant curvature, we will estimate the 

radius of curvature, based on the expression in [9], which relates the scalar curvature and the 

radius of curvature: 1612
3.4 10p

p

r
R

    m. The value pr , calculated in the field of strong 

gravitation, is of the order of the proton radius. 

 

5. Averaging of physical quantities inside the body 

While estimating the matter parameters the usual procedure is to single out particles or 

volume elements of such sizes, that they could characterize on the average the basic properties 

of the matter. For example, in a crystalline solid body a typical element is a crystal cell, so that 

the whole body can be divided into a number of such cells. If we consider the intervals between 

the typical particles of matter to be small, then to such matter in the form of liquid we can apply 
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the approximation of continuous medium. In this case, the particles remain independent to some 

extent and can move at different velocities. However, due to the close interaction of particles, 

in each stationary system certain dependences of physical quantities on the coordinates and 

time are established, which characterize the system on the average. We will assume that the 

typical particles of the system have exactly such parameters, which define the average physical 

quantities in the matter. Actually this means that in all equations used to describe the matter all 

quantities refer to typical particles. 

We will next consider a non-rotating body of a spherical shape, which represents a physical 

system of closely interacting particles and fields, held in equilibrium by gravitation, and will 

use a relativistic uniform model to describe all physical quantities. 

Within the framework of the special theory of relativity, the covariant derivatives are 

replaced with the four-gradient, and this relation follows from (11) and (9): 

 

( ) 0ick D J A j U J J   

              .                          (15) 

 

On the right-hand side of (15) we will express the products of the four-potentials of the 

fields by the four-currents in the same way as it was done in (13). For the physical system under 

consideration, the vector field potentials D , A , U  and Π  averaged over a sufficient number 

of typical particles vanish due to the chaotic motion of these particles, and the Lorentz factor 

of the particles is the quantity    as a function of the current radius. Consequently, in (13), in 

a first approximation we can neglect the terms with the vector potentials, and the following 

remains in (15): 

 

0 0 0 0( ) 0i qck                       .                            (16) 

 

The scalar potentials of the fields inside the sphere with the radius a  were found in [3], 

[10]: 

 

2 3 2 2

0
0 0

0

2 ( 3 )
cos 4 sin 4

34

c c cG c G c G r aa r

c cr

    
    

   

   
     

   
, 

 

2 3 2 2

0 0 0

0 0

0 0 00 0 0

( 3 )
cos 4 sin 4

4 64 4

q c q c c q
c c r aa r

c cr

     
    

        

   
       

   
, 
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3 2
2 2 0

0

0

2
4

34
sinc c

c

c rr
c c

cr

   
    

 

 
    

 
, 

 

2 3 2

0
0

0

2
sin 4

34

c c c
c c

c c rr

cr

       
 

   

 
     

 
,              (17) 

 

where r  is the current radius, 0  is the electric constant, c  is the pressure field potential 

at the center of the sphere, and c  is the Lorentz factor at the center of the sphere. 

 

The scalar potentials (17) depend on the current radius and give the averaged values as a 

consequence of interaction of the entire set of typical particles. Before substituting these 

potentials into (16), equation (16) should be averaged over the volume of a typical particle. This 

also means that when using the cosmological constant and the scalar curvature inside the body, 

these quantities should be considered as some averaged quantities. 

If we denote by 0 pV  the proper volume of a typical particle and by pV  the apparent volume 

of a moving particle from the viewpoint of an observer, who is stationary relative to the body, 

then averaging of the left-hand side of (16) over the volume of the moving particle yields: 

 

0

1
i p

p

ck dV ck
V

 

 
        

 
 ,                                          (18) 

 

where   is the averaged scalar curvature inside the body at the location of the given typical 

particle. 

 

For the right-hand side of (16), averaging leads to the following: 

 

 0 0 0 0

0

1
( ) 0q p

p

dV
V

                 .                            (19) 

 

The volume element pdV  in the integrals (18) and (19) is the volume element of a moving 

particle from the viewpoint of an observer, who is stationary relative to the body, so that 
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p pV dV  . The value 
0

1

pV
 in the approximation of the special theory of relativity is a constant 

value for the particle under consideration, and therefore in (19) it was taken outside the 

derivative sign. 

Since the whole set of particles densely fill the sphere, for the given observer the sum of the 

volumes of all moving particles should give the volume of the sphere: 
s p

p

V V . Hence it 

follows that the volume element pdV  can also be considered as the volume element dV  of a 

fixed sphere, so that by summing all these volume elements this observer can determine the 

volume of the sphere. 

On the other hand, the typical particle chosen by us moves at a certain averaged velocity v  

and with the corresponding Lorentz factor   . As a result, if a particle at rest has the volume 

0 pV , then a moving particle, from the point of view of the theory of relativity, has the reduced 

volume pV , while 0 p pV V  , as well as 0 p pdV dV dV    , taking into account the 

equation pdV dV . This fact was used in [11] when considering the virial theorem. 

In (19), the quantities 
0 0 0p p pdV dV dm      and  

0 0 0q p q p pdV dV dq      represent 

the elements of mass and charge of the particle. With this in mind, equation (19) can be rewritten 

using the averaged scalar potentials (17) of the fields inside the sphere: 

 

0 0

0

1
( ) ( ) 0p p q

p

m q
V

                        .                  (20) 

 

Expression (20) is a certain four-vector, each component of which must be zero. The time 

component of this four-vector vanishes, since the potentials in the stationary sphere do not 

depend on time, just as the Lorentz factor    of the particles. It remains to consider the space 

components in (20), for which we will use the relation for the field coefficients, derived in [12] 

from the equation of motion of matter: 

 

2 2

0

2 2

0 0 04 4

q p

p

q
G G

m


 

  
     .                                     (21) 
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If we substitute the potentials (17) into (20) and take into account (18) and (21), then we see 

that indeed for the time and space components of the four-gradient of the averaged cosmological 

constant the following relation holds true: 

 

0 0( ) 0qck                  .                                   (22)  

 

6. Cosmological constant and scalar curvature inside the body 

Since (11) and (2) imply the relation 2i iR   , a similar equation must also exist for the 

averaged quantities. This means that the scalar curvature inside the body must also be averaged 

and transformed into R , while the relations 2R    and 0R   must be satisfied. 

Accordingly, equation for the metric (3) inside the body must be written for the averaged 

quantities: 

 

 
1 1

4 2
R R g U W B P

ck

                 .                            (23) 

 

We can assume that relation (22) was obtained by averaging (11) and subsequent taking of 

the four-gradient. Removing the sign of the four-gradient   from (22), taking into account 

(17) and (21), we find the following inside the body: 

 

0 0

2 22 2
00 0

0 0 0

0 0

( )

cos 4 cos 4 .
4

q

q cc c
c

ck

cG c ca a

c c

    

     
    

     

      

   
       

   

      (24) 

 

Let us now use the value of the system’s total charge bq , as well as the value of the system’s 

gravitational mass gm , which, according to [10], is equal to the total mass of the system’s 

particles bm : 

 

2

0

0 0 0

0 0

sin 4 cos 4
4

q c

b q

c c a a
q dq dV a

c c

 
     

  

    
       

     
  . 
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2

0 0 0

0

sin 4 cos 4
4

c
g b

c c a a
m m dm dV a

c c


     

  

    
        

     
  . 

 

Expressing in (24) the corresponding cosines in terms of the mass gm  and the charge bq , 

and then expanding the sine according to the rule 
3

sin
6

x
x x  , in view of (21) we find: 

 

3

0
0

0

3 2
0 0 0

0 0

0 0 0

0 0 020
0 0

0 0

sin 4
4

sin 4
4 4

.
2 4 8

c
g

q q c c
b c

g b q q cc
c c

G c a
ck m

a c

c ca
q

a c

Gm q qGm
c

a a a a

 
 

  

     
  

    

    
  

   

  
      

   

  
       

   

       

              (25) 

 

In (25) the auxiliary mass 
3

04

3

a
m

 
  and the auxiliary charge 

3

04

3

q a
q

 
  are used. 

Introducing then the scalar potential of the gravitational field 
g

a

Gm

a
    and the scalar 

potential of the electric field 
04

b
a

q

a


 
  on the surface of the body at r a , we obtain: 

 

020
0 0 0 0

02 8

q cc
a c q a c

qGm
ck c

a a

  
      

 
         .                     (26) 

 

Thus, the averaged cosmological constant   is non-zero and is a constant value inside the 

fixed body. The same is true for the averaged scalar curvature R  in (23) since 2R   . In this 

case the required condition 0R   is met automatically. 

Actually relations (25-26) for the body repeat relation (14) for an individual particle. 

However, (25-26) are much more informative. In particular, from (26) it follows that the 

cosmological constant   depends on the scalar potentials of the fields. In this case, the potential 

c  of the pressure field and the potential 2

c cc   of the acceleration field are taken at the 

center of the body, but the potentials of the gravitational field a  and the electric field a  are 

taken not at the center, but on the surface of the body. The latter is associated with a special 
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way of gauging the energy and potentials of the gravitational and electric fields – they are 

gauged so that as the distance to infinity increases, they vanish. 

We can also specify the values of the quantities c  and c  so that in (26) all the quantities 

were determined more precisely. In [11], the expression was found for the square of the 

particles’ velocities 2

cv  at the center of a spherical body, with the help of which we can 

estimate the value of the corresponding Lorentz factor: 

 

22 4 2 2

2 4 2 2 42 2

31 3 9 27 9
1 1 1 1

2 8 10 2002 14 2 141

c c
c

c

v v m m

c c ac a cv c

 


   
           

   
. 

 

In this case, the scalar potential of the pressure field at the center of the body is 

approximately equal to: 

 

3 9
1

10 2 14
c

m

a

  
   

 
, 

 

and the constant of the acceleration field   and the constant of the pressure field   are 

expressed by the formulas: 

 

2

0

2

0 0

3

5 4

q
G




 

 
   

 

,                      

2

0

2

0 0

2

5 4

q
G




 

 
   

 

. 

 

7. Conclusion 

According to the conclusions in Section 3, outside the body both the cosmological constant 

o  and the scalar curvature oR  are assumed to be zero. This leads to expression (7) for the 

contribution of the field energy outside the body into the total relativistic energy of the system 

and to equation for the external metric (8). 

As for the situation inside the body, it is necessary to perform an operation of averaging 

the physical quantities in such a way that they would correspond to the typical particles, which 

most fully characterize the physical system. The order of averaging of the physical quantities 

is described in Section 5. After averaging, the scalar curvature and the cosmological constant 

inside the body are connected by the relation 2R   , where they are constant quantities. In 

(25-26) the cosmological constant   is expressed in terms of the potentials of all the fields 
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existing in the system. The same is true for the scalar curvature R , in this case the potentials 

of the acceleration field and the pressure field are taken at the center of the body, and the 

potentials of the gravitational and electric fields are taken on the surface of the body. 

For gravitationally bound bodies the second most important value after the rest energy is 

the gravitational energy. It follows from (26) that if the coefficient k  is negative, then as the 

mass density 0  inside the sphere with the constant radius a  increases, then due to the increase 

in the rest energy density both the cosmological constant   and the scalar curvature R  increase 

as well. But since the absolute value of the gravitational energy density inside the body 

increases proportionally to the square of the mass density, this somewhat slows down the 

increase of the   and R . 

Taking into account 
3

16

c
k

G 
   we will apply (26) to estimate the cosmological constant 

in the matter inside a neutron star, leaving on the right-hand side only the rest energy density: 

8

2

16
1.4 10s

s

G

c

       m–2. Here we used the average mass density of the star of the order 

of 173.7 10s    kg/m3 with its radius of 12 km and the mass of a typical star of 1.35 solar 

masses. Passing on to the scalar curvature with the help of the equation 2s sR   , we can 

estimate the radius of static spacetime curvature inside the star as in a spherical Riemannian 

space: 412
2.1 10s

s

r
R

    m. 

As a rule, particles are located inside the bodies in such a way that some gaps remain 

between the particles. This leads to the fact that in massive objects the average densities of mass 

and energy do not exceed the corresponding values of the densities inside the particles. As a 

consequence, in the process of transition to such objects the values of the averaged 

cosmological constant and the scalar curvature decrease. In addition, the cosmological constant 

in each system turns out to be limited to a certain value, which is, according to (11), proportional 

to the rest energy density of this matter with regard to the proper fields, and which is a certain 

reference point in gauging of the relativistic energy (12). 

We can compare our calculation for the neutron star and calculation for the proton made in 

Section 4. According to the theory of infinite nesting of matter [13], these objects are analogous 

to each other in many respects, while for the proton we used both the ordinary gravitational 

constant and the strong gravitational constant. Both for the neutron star, and using the strong 

gravitational constant for the proton, we obtained that the radius of the spacetime curvature 
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does not differ much in the order of magnitude from the radius of the corresponding object. The 

ratio of the specified radii is the following: 

 

196 10
ps

p s

Rr

r R
   .                                                    (27) 

 

We will now use the coefficients of similarity between the neutron star and the proton. The 

ratio of the star’s mass of to the proton’s mass gives the coefficient of similarity in mass 

571.62 10   , the ratio of the radii of these objects gives the coefficient of similarity in sizes 

191.4 10P   , and the coefficient of similarity in speeds of same-type processes equals 0.23S 

. It seems that the ratio s

p

r

r
 should equal P , but this is not so, because the radius of curvature is 

derived through the energy density and is not simply a linear dimension. In order to show this, 

we will take into account that in (27) the scalar curvature inside each object is proportional to 

the corresponding gravitational constant and mass density: 

 

a ps

p s

Gr P

r G S




  . 

 

Meanwhile, according to the dimension theory, the ratio of the gravitational constants is 

2

a

G RS

G 
  and the ratio of the mass densities is 

3

s

p P

 


 . 

From the results of Section 4 it follows that inside the proton the cosmological constant, 

taking into account the strong gravitational constant, should be of the order of 

31

2

16
5.1 10

a p

p

G

c

 
     m–2. This is 83 orders of magnitude greater than the cosmological 

constant 
5210   m–2, which follows from the general theory of relativity as applied to the 

observable Universe. In this connection we recall that in cosmology there is still unexplained 

problem of the cosmological constant. The essence of this problem is that the cosmological 

constant, calculated with the help of the general theory of relativity for the cosmic space, is 

almost 120 orders of magnitude less than the cosmological constant for the zero vacuum energy, 

according to quantum physics.  The cosmological constant is a required element in the Lambda-

CDM model, and in this case it becomes unclear why the expected large magnitude of the zero 
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vacuum energy is transformed into such a small cosmological constant of the cosmic space of 

the Universe [14]. 

Our explanation of the problem of the cosmological constant is as follows. Discrepancy 

between the conclusions of the quantum physics and the general theory of relativity in respect 

of the cosmological constant is associated with the geometrical approach of the general theory 

of relativity, which replaces the gravitation, as a force action, with the spacetime curvature. 

This leads to the absence in this theory of the stress-energy tensor of the gravitational field and 

to the impossibility of calculating the energy of the internal parts of the physical system under 

study, which also significantly complicates quantization of the general theory of relativity. 

In the covariant theory of gravitation there are no such problems. We find separate 

components of the energy inside the body, and with their help we determine the corresponding 

cosmological constant for each body. The observed part of the Universe can be considered as 

the internal part of some global body, and in this case the cosmological constant is of the order 

of 
5210   m–2, besides it is a constant value, which characterizes the entire space filled with 

stars and galaxies. For the neutron star, the cosmological constant reaches the value of 

81.4 10s

    m–2, and for the proton it equals 8

0 2.2 10    m-2 for the ordinary gravitation 

and 315.1 10p    m–2 in the strong gravitational field. 

According to the approach to energy and metric gauging in the covariant theory of 

gravitation, outside the body in the space without matter the cosmological constant and scalar 

curvature of spacetime vanish. Thus, the alleged relation between the cosmological constant 

and the zero vacuum energy of the quantum physics outside the body is broken. As for the 

difference between the cosmological constants inside the proton and the neutron star on the one 

hand, and the cosmic space on the other hand, it is explained by the fact that the cosmological 

constant of the observable Universe is the cosmological constant of all the particles and bodies 

of the Universe averaged over the space. 

We should note that in the modernized Le Sage’s model gravitation can arise as a 

consequence of the action of the fluxes of relativistic particles of the vacuum field on the bodies 

[15, 16]. In this case, the standard problems of the Le Sage’s model are eliminated by explaining 

the way in which the vacuum particles interact with the matter [17]. In this case, instead of 

searching for the quantum zero energy of the vacuum it is possible to determine the energy 

density of the vacuum field particles, to derive the gravitational constant and the electric 

constant through the vacuum field parameters and to explain the effect of the Newton’s and 

Coulomb’s laws for gravitational and electric forces. 
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The equations of the covariant theory of gravitation describe only the consequences of 

interaction of the vacuum field’s particles with the matter, which are expressed in changing 

of the acting forces, changing of the matter energy, as well as in creating inertia of the bodies 

and imparting mass to them. This means that the energy density of the vacuum field’s 

particles, despite its largeness, is not taken into account as an essential component of the 

cosmological constant. However, the energy of the vacuum field’s particles influences 

indirectly the magnitude of the cosmological constant inside a particular system through the 

averaged density of the rest energy of the system’s particles. 
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