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Abstract This paper represents an attempt to give a solution of the Navier-
Stokes equations under the assumptions (A) of the problem as described by
the Clay Mathematics Institute [2]. After elimination of the pressure, we ob-
tain the fundamental equations function of the velocity vector u and vorticity
vector {2 = curl(u), then we deduce the new equations for the description of
the motion of viscous incompressible fluids, derived from the Navier-Stokes
equations, given by:
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Then, we give a proof of the solution of the Navier-Stokes equations u and p
that are smooth functions and u verifies the condition of bounded energy.
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To the memory of my Father who taught me calculus.

1 Introduction

As it was described in the paper cited above, the Euler and Navier-Stokes equa-
tions describe the motion of a fluid in R™ (n = 2 or 3). These equations are to

be solved for an unknown velocity vector u(x,t) = (u;(x,t), uz(z,t), ..., u,(z,t))T €
R™ and pressure p(x,t) € R defined for position 2 € R™ and time ¢ > 0.

Here we are concerned with incompressible fluids filling all of R™. The
Navier-Stokes equations are given by:

Oui +3 Ou; :yAui—@Jrfi(x,t) ie{l,.,n} (xR, t>0) (1)

s —
ot = J@xj 83:1
=n 0u1
divu = =0 R™ t>0) (2
u 2 oz, (xeR", t>0) (2)
with the initial conditions:
u(z,0) =u’(z) (z€R") (3)

where u°(x) a given vector function of class C*, f;(x,t) are the components
of a given external force (e.g gravity), v is a positive coefficient (viscosity),
and A is the Laplacian in the space variables. Euler equations are equations
(1) (2) (3) with v = 0.

2 The Navier-Stokes Equations

We try to present a solution to the Navier-Stokes equations following assump-
tions (A) as described in [2] that summarized here:

* (A) Existence and smooth solutions € R?® the Navier-Stokes
equations:
- Take v > 0. Let u°(z) a smooth function such that div(u®(x)) = 0 and
satisfying:
102, 4" (@)|| < Cox (1 + [|2]) ™ on R® V6, K (4)

- Take f = 0. Then show that there are functions p(z,t),u(x,t) of class C'*°
on R? x [0, +00) satisfying (1),(2),(3),(4) and:

/ |[u(z,t)||*dx < C ,¥t >0, (bounded energy) (5)
R3
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We consider the Navier-Stokes equations in this case, we take v > 0 and
fi =0, then equations (1) are written for n = 3 as :

6u1 8u1 6’&1 6U1 8p
gt it dur U Ay, =
ot Ty T, Ty, TvAM =Ty (©)
8u2 8’&2 8’11,2 é)ug 8p
Jguz duz duz U2 Ay, = 2P
ot + or +u2 dy +us 0z vauz dy (™)
8’11,3 8’[1,3 au;), 6U3 ap
gus s gus I Age = — 2
ot Tthgy T, Ty, TrAl =Ty ®)
Let:
Ouy duy Ouy
or Oy 0z
- 3uz aUQ 6’&2
AW =1 3z By oz ©
Oug Dug dug
or Oy 0z

The equations (6-7-8) can be written under vectorial form:

% + A(u).u = vAu — gradp (10)

Let 2 the vector curl(u), then:

w1 8;6 Ul ay’LL3 - azu2
R=|w | =0y Nuz = | O:u1 — Opus (11)
w3 az us ag;UQ — ayul

Taking the curl of the both members of (10), then, equation (10) becomes as
follows:

A(u).£2 — A(2)uw =vAQ — % (12)
where:
Owy Ownr Oun
or Oy 0z
A(.Q) _ aWQ 8w2 6w2 (13)

Oxr dy 0z

O g Ows
dr 0Oy 0z
The equations (12) are the fundamental equations of this study. These are

nonlinear partial differential equations of the third order. Their resolutions are
the solutions of the Navier-Stokes equations.
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3 The Study of The Fundamental Equations (12)
3.1 A New Fundamental Equations of the Navier-Stokes Equations

We re-write the equations (12):

A(u).2 — A(Q)u =vAQ — %
We can also write it :
on
A(—u).(—02) — A(-2).(—u) = vAQ — e (14)
As u and {2 are not independent variables, we have curl(—u) = —curl(u) =
—{2, we obtain :
(-
A(—u).(—2) — A(-Q2).(—u) = vA(-2) — (825 ) (15)
Comparing the last two equations (14-15), we arrive to:
a2 a(=02) on
Hence:
o1
A — — = 1
v ot 0 (16)
From the equation (12), we get necessary that:
A(u).2—A(2)u=0 (17)

The first new fundamental equation is (16), from it we will obtain u(x,t).
Taking the divergence of the both members of equation (10), we obtain the
known equation determining p(z,t) :

3

- Bul 8uj
Ap = Z ox; ’ o, (18)

ij=1

It is therefore the new fundamental differential system:

VAQ—@:0:> U
ot
19
Affg 8ui.8uj ()
P = P 8xj aCL‘Z‘ p
4,j=1
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4 Resolution of the equations (19)

From the first equation of (19), we can write that:

ou

l(vAu — —) =0 20
curl(vAu 5 ) (20)
then:
Ou n
Case 1- Z/Au—aEO(xER , t>0);
Case 2- vAu — % = K(t) with K is a vector function depending only of
t.

4.1 Resolution of the equations (19) case 1

Let the change of variables:

r=vX (21)
y=vY (22)
z2=vZ (23)
t=uvT (24)
w(z,y,2,t) =U(X,Y,Z,T) (25)
p(z,y,2,t) = P(X,Y,Z,T) (26)

Then:

Ozudx + Oyudy + 0,udz + Orudt = OxUdX + Oy UdY + 0,UdZ + 0rUdT
v(0pudX + OyudY + 0,udZ 4 OyudT’) = OxUdX + oyUdY + 0,UdZ + 0rUdT

81;U = laxU, 8yu = l({9)/(._]7 8zu = lazU, 8tu = l({9TU (27)
14 14 14 14

Then the equation:

% —vAu=0
becomes:
oU
T AU =0 (28)

This is the heat equation!



6 Abdelmajid Ben Hadj Salem

4.1.1 Resolution of the Equation (28)

Noting that U%(X,Y,2) = U%(X) = U(X,Y, Z,0) = u(x,vy,2,0) = u°(x,y, 2),
then the solution of (28) with T > 0 satisfying:

U € R? and of class C™(R? x [0, +00)) (29)
U(X,0)=U%X) (30)
is given by [3]:
(X —a)?+ (Y =B+ (Z—1)°
U(X,T) = 2\1/7? B UO(%’”)J a7 av

(31)

where dV = dadBdy and U(X,T) is unique with U(X,0) = U°(X), then u

is unique.
We denote:

X=(X,v,2)" (32)
I'=(a,f,7)7" (33)

Then, we can write the norm of U(X,T) as

XA YP 422
B (IR -2rx)
UX,T)|| < U%a e 4T v
WD) < e [ 0.8
(34)
XA YP 42
The presence of the term e 4T implies that if ||X|| — o0,

[|lU(X,T)|| — 0 fast enough [4]. Then, for ¢ fixed, ||u(x,y, z,t)|| — 0 when
2 + y2 + 22 — +o00, hence, from now, we assume that we are dealing only
with such rapidly decreasing velocities.

4.1.2 Expression of U

2T Jgs

VT

We have:
(X =)+ (Y =B +(Z —v)?
_ 1 U{)(a,ﬁ,'y) ei AT
U, = N T dv  (35)
(X —a)P?+ (Y = B)*+(Z 1)
1 Ud(a,B8,7) —
UQ_Qﬁ g 2\/T e 4T dV  (36)
(X —a)?+ (Y =B +(Z—~)?
Us = 1 U3(e, 8,7) e AT dv  (37)
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4.1.8 Checking div(U) =0

Let us calculate dxU;, we get:

(X —a)’+ (Y = B> +(Z—9)°
AT v

(38)

o, _ -1 [ (X-a)Ui(ef,7) ~
0X 4w Jrs ™VT

We can write the above expression as follows:

8U a=+o00 o (X —a)24+(Y —B)2+(Z—)2
dbd a5 ar da
(3 Nﬁ/w 4 7/__Oo f:7)5, ( )

(39)
Now we do an integration by parts, we get:
a=-+40oc0
- (X e+ (Y= B+ (2 =)
1 0
—_— = — dpdy Ui (e, B,7).€ aT +
0X ~ 2T Lo By | Uy (o, B,7)
=T (x—a2v—p2+z=n? OUY (o, B,7)
/ dﬁd’y/ aT ——— " da (40)
2vV7T Jr2 - Oa
Taking into account the assumption that:
10%, U°(X)|| < vCs(1+v||X[))™% on R® V4, K (41)

where X; denotes one of the coordinates X,Y,Z, and choosing K > 1 and
6 = 0, we obtain :
1U°(X)|| < Coxc (1 +v[| X))~ F (42)

and the first term of the right member of (40) is zero. Then:

(X—a)2+(Y—B)2+(Z—7)2

a=+oco __
8U1 ; dﬁd’y/ 4T M
X 27T Jr2 — Oa
(43)
or:
X —a)P+ (Y =B+ (Z -7,
0X 27T Jrs Oa '
As a result:

(X —a)’+ (Y =5+ (Z—9)?

oU; oU; (o, B,7)
; = 4T g =
div(U) 2 ax, QW/W agv £ AV =0
(45)

because U°(a, 3,7) satisfies div(U°) = 3
Qj

=0.

@
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4.1.4 Estimation of/ |[U(X, T)[|*dV
R3

We have:

2

(X a4 (Y =B+ (Z =)
WEDIP =02 = o7 || 0% 5)e a7 av

<o / 0%, .)€ oT av (46)

Using the condition (42):
IU°(X)]| < Coxc (1 + 2|1 X |7

We obtain as a result:

(X —a)’+ (Y =p)*+(Z2—7)*
2T

Cc? e
XT 2 OK/ 4
IUX, D" < 7 RN N eI dodBdy  (47)

Let us now majorize / llu(z,t)||*dedydz :
R3

/ ||u(:c,t)||2da:dydz:/ |\U(X,T)||2dxdydz=y3/ |[U(X,T)||?dXdYdZ
R3 R3 R3

_(X—a)? Y ﬁ) +(Z=v)?

312
v>Cox

< — YU
~ AnT /R3 l/Rd (14 v||va? + 52 +~2]])2K

As the integral / e XY -2 yxaydz < +o00, we can permute the two

dadﬂdfy] dXdydZ —(48)

R3
triple integrals of the above equation. Let:

V3 Cg %
= 2 K 49
To o (49)

we obtain:

dadBdry

2 2 2
/ ||u(.’L‘,t)H2d.’Edde < 7o |:/ e_(X—a) +(Y;T5) +(Z-7) axdydz| .
£ T Joo Lo (T v|[/o? + B+ )P
50)
Let:
(X -0+ (Y =B+ (Z—9)?
I= / e 2T dXdYdZ (51)
R3
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and let the following change of variables:

— o — -2 X—a)?
X = X2 — dX = V2TdX and)g = { QT:
v _Y-§ _ i\ v _ (Y-8
Y_ﬁzd}/_\ﬂTdY andY2 = o (52)
— 7= __ — Z_~)2
Z =22 — dz =\2TdZ and 7 = Z)
I is written as:
I=(V2r1)? [ / e X dX] = 2TV2T {2 / e~ ¢ dg] = 9TVT.7y/7 = 2nTV7T
o 0
(53)
+oo 5
using the formula 2/ e % d¢ = /7. Then the equation (50) becomes:
0
dadpd
/ [u(z, t)||Pdedydz < 2ron V7T adfdy (54)
R3 s (L+v|lva? + 8% +2|])*K
Let us now: dodBd
_ / adfBdry (55)
e (1+ vl V/aZ + 2+ 72 2K
and we use the spherical coordinates:
a = rsinfcosy
B = rsinfsing (56)

v = rcost

the form of the volume dadBdy = r?sinfdrdfdy and B becomes:

. p=2m " r2dr " rldr
/9:0 o /cp—O 90/0 (14 vr)2K 7T/0 (1+vr)2K (57)

We take K = 2, the integral B is convergent when r — +o00. Let:

Pl /T r2dr /+°° r2dr /1 r2dr +/+°° r2dr
= lim, 00 - = = —
sty Grot o Gret Sy Gromi )i Ao

(58)
But : . . .
2d 3 1
/77" r4</r2dr:[r} =— (59)
o (L+uvr) o 3], 3
oo 24y
We calculate now / ———. Let the change of variables:
1 (I4+wvr)t
-1 d
§:1—&—1/7":>r:£7éd7’:—g (60)
v v
then:
+o0 2 +00 ¢2
redr 1 & -26+1 3v2+9v 45
—_— = — = —d¢=1 (v)= ————+
/1 (1 + Z/T)4 l/3 ‘/1_;'_” 54 5 (V) avec (V) 1/3(1 + 1/)3

(61)
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As a result: .
B < 47r(§ +1(v)) (62)
Hence the important result:
1
/ w(z, t)||?dzdydz < 8mon*V/T <3 + l(y)> (63)
R3
or:
/ lu(z, £)|Pdzdyds < +o00 Vi (64)
R3
let:
/ |lU(X,T)||?dXdYdZ < +oo VT (65)
R3
because:

1
/||U(X,T)||2dXdeZ:—3/ |[u(z, t)||>drdydz
R3 Ve Jr3

4.1.5 The expression of partial derivatives of U(X,T)

We begin with the first partial derivative dx of the first component of U (X, T):
it is given by the equation (44):

_ 2 _ 2 _ ~)2
I S S LA PP

_ . AT
0X 2v/ 7T JRrs oo

Let us calculate 00y We obtain:
X2 :

(X —a)?+ (Y - B)* +(Z—9)?

02U, -1 - AU (a, B,7)
— X — AT it S e Ret M) Ve
0X2  AT7T Ra( a)e Oa
_ -1 ge_w—a)%(y&m%(zﬂ)? .8U10(oz,ﬂ,*y) v
2\/7rT rs O e’
(X—a)?4(r @24 (=72 | ¥ T
d U(a, B,7).€” aT +
2\/@ Rzﬁv[ Uy (e, B,7) o
A= (x—a2rv-m?+z-v? QU (o, B,7)
dpd aT — L2 da 66
2\/7TT /Rz ’ 7/:m da? (66)
Taking into account the assumption (41), we obtain:
X—-a)?+ (Y -8)?2+(Z-
o RO gy
0X?2 o 2v/ 7T JRrs Oa? ' "

(67)
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0%U,
0X?2
|| X|| — +o0. Then for ¢ fixed ||Ozu(z,y,z,t)|| — 0 if /22 +y2 + 22 —
~+00. We easily verify this property for the derivatives of u(z,y, z, t) concerning
the spatial coordinates of all orders, with ¢ fixed.

— 0 when

Using the same assumption cited above, we obtain that H

4.1.6 The expression of p(x,y, z,t)

We rewrite equation (10):

ou; - ou; _ Op
5 —|—Zu z; —vAu; = — :

It can be written under vectorial form:

Vp =vAu — % — A(u).u (68)

with the matrix A(u) given by (9). As vAu — % = 0, then the equation (68)
becomes:
Vp=—A(u).u (69)

Asu € R? and of class C*°(R3x[0,+00)), d;p are of class C*°(R?*x [0, +00)) =
p(w,y, 2,t) is also of class C*°(R? x [0, +00)).

With the variables X, Y, Z, T, the pressure verifies the equation:

L oU; oU;

AP = — . 70
“—~ 0X; 0X; (70)
3,j=1
we denote:
3
oU; 0U;
H=HX)Y,ZT)= = =1 (71)
Pt 0X; 0X;
The equation (70) becomes:
AP =—-H (72)
It is the Poisson equation.
Definition 1 The function :
B(X) = (73)
Ar|| X ||

defined for || X|| € R3, X # O is the fundamental solution of Laplace equation.
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The solution of Poisson equation (72) is given by [5]:

P=P(X,Y,Z,T)=P(X,T) = 417T /W ﬁH(Q)dQ (74)

where Q = (X',Y’,Z")T € R? and dQ = dX'dY’'dZ’ the volume form.

From equation (69),, we can write for example, the first component of Vp :

ou
Z U s (75)
Using the new variables, we obtain:
6U1 8U1(04,KZ,T)
ZUJ Z/ (a,Y, Z, T)Tda
(76)
Then:
oULW(X,Y,Z,T oU(X,Y,Z, T
Pl< S Il v. 2| 22D <gpxo. | 2R D)
(77)
oU(X,Y,Z,T)

As seen above, || U|| and ‘

5%, HtendtozeroifHX—\/X2+Y2+Z2||—)

+00. With the presence of the term e~!IX I” in the expression of the vectors
U and its first derivative ox U, || X||.||U]|. HM’
|| X|| — +o0. Then |P| — 0.

tend to zero as

Again, from equation (69), we can write for the vector Vp :

2
92 = L) <A@l @
J
Taking ||A(u)|| = maz , then:
J
Op Ou;
— < < — 1.
| < 19 < mae |2 |t 0 (79)

As seeing in paragraph (4.1.1), for ¢ fixed, ||u(z,y, z,t)|| and ||0x,u(z,y, 2,t)||

tend to zero as \/x? + y2 + 22 — +oo. We easily verify this property for the
derivatives of p concerning the spatial coordinates of all orders, with ¢ fixed.
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oP
Let us study limXHJrooa—T. With the variables X,Y, Z, T, we have for exam-
ple:
8’11,1 8U1
=2 gy, —ax — 2 Vix,
8le (OZ, ﬂa s )
————=d 80
Z/ O e (s0)

We calculate 0rP(X,Y, Z,T), we obtain:

B aU; aU, 02U,
ar ~ _Z/ (aT dar; UZaaiaT) da (81)

We suppose that X > 0, then:

oP oU; oU, 0%U,
—| < X. . U;.X. 82
X2 + Y2 + Z2
The presence of e 4T in the bounded expression of the six terms

P
of the right member of the above inequality gives that lim 'gT‘ — 0 when

X2+Y2+4 Z2 — 4o00. We verify easily that the derivatives 8§(,Y’Z’TP of
all orders, for T fixed, tend to zero as VX2 +Y?2 + 72 — +o0.

We have given a proof of smooth solutions u(z,y, 2,t), p(z,y, 2, t) of Navier-
Stokes equations, defined for (z,y,2) € R® and t € [0,7) for any 7 € R.

4.2 Resolution of the equations (19) case 2

With the new variables X,Y, Z,T the equation of case 2 is written as:

AT - % ~R(T) (83)
— — T*
with K(T) =vK(t). Weput U =U — / K(7)dr, then the new function U
verifies: 8;

T
The solution of (83) is the function U = U — / K(7)dr where U is the
0

solution of the case 1 studied above. The function U verifies the same remarks
studies above as U.
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5 Conclusion

In this work, we have obtained new fundamental equations derived from the
classical Navier-Stokes equations. The first equation is the heat equation: the
movement of fluids is like the propagation of the heat that can be acceptable.
The expression of the solution founded (u, p) verifies the conditions (A) of ex-
istence and u, p are smooth functions of spatial coordinates and time solution.
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