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Abstract. The main idea of this article is simply calculating integer functions

in module. The algebraic in the integer modules is studied in completely new

style. By a careful construction the result that two finite numbers is with
unequal logarithms in a corresponding module is proven, which result is applied

to solving a kind of high degree diophantine equation.
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In this paper p, pi are primes. m,m′ are great enough. All numbers that are
indicated by Latin letters are integers unless with further indication. C(z) mean
constant independent of z. F (z) means variable F is the function dependent of z.
The formula a << b means that b is far greater than a.

1. Function in module

Theorem 1.1. Define the congruence class in the form:

[a]q := [a + kq]q,∀k

[a = b]q : [a]q = [b]q

[x]qq′ = [a]q[b]q′ : [x = b]q, [x = b]q′ , (q, q
′) = 1

then

[a + b]q = [a]q + [b]q

[ab]q = [a]q · [b]q
[a + c]q[b + d]q′ = [a]q[b]q′ + [c]q[d]q′ , (q, q

′) = 1

[ka]q[kb]q′ = k[a]q[b]q′ , (q, q
′) = 1

[ak]q[bk]q′ = ([a]q[b]q′)
k, (q, q′) = 1

Definition 1.2. Function of x ∈ Z: c +
∑m

i=1 cix
i is called power-analytic (i.e

power series), it’s denoted by P (x).
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Theorem 1.3. Power-analytic functions modulo p are all the functions from mod
p to mod p

[x0 = 1]p

[f(x) =

p−1∑
n=0

f(n)(1− (x− n)p−1)]p

Theorem 1.4. (Modular Logarithm) Define

[lma(x) := y]pm−1(p−1) : [ay = x]pm

[E :=

n∑
i=0

pi

i!
]pm

n is sufficiently great. then

[Ex =

n∑
i=0

pixi

i!
]pm

[lmE(px + 1) =

n∑
i=1

(−1)i+1pi−1

i
xi]pm−1

[Q(q)lm(1 + xq) =
∑
i=1

(xq)i(−1)i+1/i]qm

Q(q) :=
∏
i

[pi]pm
i
,∀pi : pi|q

Define

[lm(x) := lme(x)]pm−1

e is the generating element in mod p and meets

[e1−p
m

= E]pm

To prove the theorem, one can contrast the coefficients of Ex and Elm(1+px) to
those of real exponents of exp(px) and exp(log(px + 1)).

Definition 1.5. P (q) is the product of all the distinct prime factors of q.

Definition 1.6.

[lm(px) := plm(x)]pm

Definition 1.7.

y := [x]q : [y = x]q,−q/2 < y ≤ q/2

2. Unequal Logarithms of Two Numbers

Theorem 2.1. If

a + P (q)b ≤ q

a > b > 0

P 2(q)|q
(a, b) = (a, q) = (b, q) = (a− b, q) = 1

then

[lm(a) 6= lm(b)]q/P (q)
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Proof. Define
r := P (q)

[v + 1 := 1− pmi ]pm
i (pi−1), v > 0, pi|q

Presume
q′ =

∏
i

(av+1 − bv+1, pmi ), q|q′

Set
0 ≤ x, x′ < q′

0 ≤ y, y′ < q′r + r

d := (x− x′, qm)

l :=
∏
i

[
av+1

bv+1
]pm

i

Consider

(2.1) [lax− by = lax′ − by′ = q′rU ]q′2

(x, y, x′, y′) = (b, a, b, a)

After checking the freedom and determination of variables and the symmetry be-
tween (x, y), (x′, y′), and with the Drawer Principle, we can find two distinct points
(x, y), (x′, y′) satisfying these conditions.

Make for some z
[lax− kby = lax′ − kby′]pm

i

[k =
u

b(by − by′)
:= 1 + q2z/d]pm

i

K :=
[upi−1]pm

i

bpi−1(by − by′)pi−1

Therefore
[lpi−1(ax− ax′)pi−1 = K(by − by′)pi−1]pm

i

[api−1(ax− ax′)pi−1 = Kbpi−1(by − by′)pi−1]pm
i

[api−1(ax− ax′)pi−1 = [upi−1]pm
i

]pm
i

Because
|api−1(ax− ax′)pi−1 − [upi−1]pm

i
| < pmi

then
Zpi−1 := api−1(ax− ax′)pi−1 = [upi−1]pm

i

Vary m on this formula

Zpi−1 = [upi−1]pm′
i
,m′ << m

Hence

[[u]
pi−1
pm′
i

]
pm′
i

= [[u]
pi−1
pm
i

]
pm
i

[[u]
pi−1
pm
i

]
pm′
i

= [[u]
pi−1
pm
i

]
pm
i

Then

[u]
pi−1
pm
i

<< pmi

Zpi−1 = [u]
pi−1
pm
i
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Z = [u]pm
i

This means
[a2(x− x′) = kb2(y − y′)]pm

i

It’s invalid unless
q′|d

So that
[ax− by = ax′ − by′]q′2

|(ax− by)− (ax′ − by′)| < q′2

ax− by = ax′ − by′

x− x′ = y − y′ = 0

It’s invalid.
If (q′, pmi ) is great enough then

api−1 = bpi−1

It’s invalid. �

On this proof, we can easily find if (l−1, pmi ) = (q′/r, pmi ) then (d, pmi ) 6= (q′, pmi ).
Or, make

(X,Y,X ′, Y ′) = (x, y, x′, y′) + rz′(kb, a, kb, a)

to set
[laX − kbY = 0]pm

i

then
(laX − bY − (laX ′ − bY ′), pmi ) = (q′2/r, pmi )

if
(lax− by − (lax′ − by′), pmi ) = (q′2, pmi )

Theorem 2.2. For prime p and positive integer q the equation

ap + bp = cq

has no integer solution (a, b, c) such that (a, b) = (b, c) = (a, c) = 1, a, b > 0 if
p > 8, q > 2.

Proof. Make logarithm on a, b in mod cq. The conditions are sufficient for a con-
troversy. Prove on the module (a− b, c)m or the other part of module. �
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