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Abstract  

First off, the term t  is for the smallest unit of time step. Now, due to reasons we will discuss  we state that. contrary 

to the wishes of a reviewer, the author asserts that a full Galois theory  analysis of a quintic is mandatory for reasons 

which reflect about how the physics answers are all radically different for abbreviated lower math tech answers to this 

problem. I.e. if one turns the quantic to a quadratic, one gets answers materially different from when one applies the 

Gauss- Lucas theorem. So, despite the distaste of some in the physics community, this article pitches Galois theory 

for a restricted quintic.We begin our analysis of if a quintic equation for a shift in time, as for a Kerr Newman black hole affects 

possible temperature values, which may lead to opening or closing of a worm hole throat. Following Juan Maldacena, et. al, we 
evaluate the total energy of a worm hole, with the proviso that the energy of the worm hole, in four dimensions for a closed 
throat has energy of the worm hole, as proportional to negative value of (temperature times a fermionic number, q)  which is if 
we view a worm hole as a connection between two black holes, a way to show if there is a connection between quantization of 

gravity, and if the worm hole throat is closed. Or open. For the quantic polynomial,we  relate t to a 

( ) ( )
5 2

1 2 0t A t A +   + =  Quintic polynomial which has several combinations which Galois theoretical sense are  

generally  solvable. We find that 
2A has a number, n of presumed  produced gravitons, in the time interval t and that both 

1A

and 2A have an Ergosphere area, due to the induced Kerr- Newman black hole. If Gravitons and Gravitinos have the relationship 

the author purports in an article the author wrote years ago, as cited in this publication, then we have a way to discuss if 
quantization of gravity as affecting temperature T, in the worm hole tells us if a worm hole is open or closed. And a choice of the 

solvable constraints affects temperature, T, which in turn affects the sign of a worm hole throat. is far harder to solve. We  explain 

the genesis of black hole physics negative temperature which is necessary for a positive black hole entropy, and then state our 

results have something very equivalent in terms of worm  ding ( ) ( )
5 2

1 2 0t A t A +   + =  we will be having X t=    

assumed to be negligible, We then look at a quadratic version in the solution of X t=    so we are looking at four   

regimes  for solving a quintic , with the infinitesimal value of t effectively reduced our quintic to a quadratic equation.  Note 

that in the small t  limit for d = 1,3,5, 7 we cleanly avoid any imaginary time no matter what the sign of tempT is. In 

the case where we have X t=    assumed to be negligible, the connection in our text about coupling constants, if d 

= 3, may in itself for infinitesimal  t lend toward supporting d= 3. This is different from the more general case for 

general Galois  solvability of ( ) ( )
5 2

1 2 0t A t A +   + = .  1d   means we need to consider Galois theory.  If 

d=,2,4,6, need  tempT < 0 for coefficient 
1A  to be greater  than zero .  If 1d   and is instead d=3, 5, 7, there is an 

absence of general solutions in the Galois solution sense. This because if . 1d 
1A  < 0 whenever d = 3,5,7. And 

when d=1 in order to have any solvability one would need X t=    assumed to be infinitesimal in 

( ) ( )
5 2

1 2 0t A t A +   + = .  
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I. Set up of the problem : precursor to answering innumerable issues 
 

We assert that due to the fact that abbreviated lower math tech approximations to the derived 

quintic yield incommensurate very different physics answers to the delta t, t  ,  problem, hence 

due to those very different answers, it is necessary to stop convenient approximations and to 

solve the problem via Galois theory. The godfather  review of all solvable quintic  problems is 

given here [1] and although a reviewer refused to learn the points raised, a solution to this 

specialized quintic is given in [2]. Whereas it will be the job of explaining in simple language 

why this is necessary. What we found is that if one changed the quintic to a quadratic, that the 

answers for the t  problem look radically different from what we get when we take the 

derivative of the quintic, changing it, to  understanding that golly gee, the following are not 

commensurate with each other. Note that the 2nd entry into Eq. (1) below comes from applying 

the Gauss- Lucas theorem [3] [4]. In the end the three different would be general solutions to t  

in these three equations look very different from each other. This is using manipulations of the 

original quintic as given by the author in [5] 
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A reviewer did the  assertion that a specialized solution to the third equation existed, whereas he was 

contravening several hundred years of Quintic polynomial research[ 6,7,8]  . We will in the end answer 

that.  And now to the physics of  how the third equation the Quintic arose in the first place. [5] 
 

This document will address the problem of a worm hole, as to the question of if its throat is opened or 

closed [9] , in doing so, the author references an earlier publication [5] which isolated a quintic 

polynomial in terms of delta t, i.e. t , and claims that a general solution in terms of what is called a 

restricted Quintic, with a fifth order term of   helps determine the likelihood that a determination can be 

made as to if gravity is semi  classical, or could be quantized. The quintic in question [5] is for a black 

hole[5] but if we make the assertion that a worm hole may connect two black holes, with information 

transmitted between them by quantum teleportation [10,11]   we then assert that in a general sense the 

classical versus quantum nature of gravity of the worm hole may be ascertained. A subsidiary issue is, 

does the existence of a solution to t  allow for a minimum uncertainty principle solution for gravitons 

via [12,13] E t  , and if E t   is solved, do we have a criteria to state if gravity and gravitation 

is classical, semi classical or quantum? Note that the solution to the quintic, in [2] may have as noted by 

a reviewer, to have particular solutions which are trivial. We state for the record that such trivial solutions  

in no way contradict the complexity of the general solution and that the readers of this document should 

consult the Galois theory, and Abel’s insolvability theorem [7,8]for general quintic solutions as a good 

reason as to disregard trivial solutions to the quintic as communicated to the author by a referee as given  

in  [14] . i.e. one has to consider generalized solutions  to the quintic according to problems, but if we go 

to higher dimensions, i.e.  1d   gets very complicated fast. Hence this long article. And also, we will be 
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dealing with the reviewers [14] distaste for negative temperature, which is what started this inquiry in the 

first place due to comments raised by the reviewer in [14] is related to Kaluza Klein cosmology as given 

in reference [15] where we have an explanation as with respect to reference  [16] and negative 

temperatures. As is noted in reference [16] , negative temperatures when connected with the solution to 

the quintic as in [2] and [5] do, in certain cases which will be outlined connect solidly with negative 

temperatures. Contributing to positive entropy in black holes. This is relatable to the physics in [17,18] 

which will be in our article. [2] due to the range of values of 
1A  and 

2A  in [5] . This in turns of the 

additional dimensionality, d, for space times above four dimensions specifies 
tempT . [5]. When d=1 we 

have Kaluza Klein type physics, and so it goes. The Kaluza Klein [15] situation with d=1 is by far and 

away the easiest situation to work with, and with the least  .  
 

II. A  reviewer’s complaints, and four cases to consider 
 

The paper confused a reviewer  who did not understand the references as to negative temperature. Hence, 

the first main part of the document is with regards to .negative temperature.[15]Then the idea of a general 

solution to a polynomial equation, the quintic. [2,5] 

 

Before we do this temperature discussion , i.e. the necessary condition for picking the sign of  
tempT is 

gone into, using results from [2],  we can state then that (from the abstract) that, the following is what we 

adhere to. 

 

There are here, though four   cases to consider, and three of these arise if t  is infinitesimally small, in 

which we have the following rules for the sign of tempT  

 

We are here, revising what is brought up in the discussion of Eq. (1) which is that we have three different 

would be equations to contend with which are linked to [5] and its results. 
 

 

Case 1:   

 

The first one, is for when we have an effective quadratic equation for t  due to t  being infinitesimally 

small. And we are avoiding at all costs having imaginary t  

 

Note that for extra dimensions d=1,3,5,7, the coefficient 
1A  is always less than zero, leading to no 

requirement for tempT to be < 0. . If d=,2,4,6, need  tempT < 0 for coefficient 
1A  to be less than zero . This 

will be shown to conflict with conditions for general Galois solvability of ( ) ( )
5 2

1 2 0t A t A +   + = . 

Note, that special solutions for ( ) ( )
5 2

1 2 0t A t A +   + = are easy to obtain, as a reviewer noted, but that 

we are referring to completely general solutions, not specific special case solutions. 

 

Now for  the sign of tempT , in terms of if we have 
1A   < 0 , and we claim this is also convenient as to obtain 

an easily determined value of , for d = 1,2,3,4,5,6,7, and a very small value of  t  
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                     (2) 

 

Note then that if d=1, as in Kaluza Klein theory, we have then that there are no questions of imaginary time, 

and also no 
tempT restrictions. In answer to one of the reviewer’s questions, we are avoiding having 

imaginary time, hence, this puts restrictions as to the choice of 
tempT . Ironically, in the case of very small 

t , if d = 1,3,5, 7,  we have t always real valued and setting  
tempT >  0 is not necessary. I.e. negative 

temperature tempT  < 0 may occur.   In doing so, if we do this, it means that there can could be positive 

entropy, for black holes, as is discussed in  [ 16  ] . Whereas for d = 2,4, 6, and above we must have 
tempT

>  0 and then the case of if we have sufficiently small  t  an unavoidable situation for possible negative  

black hole entropy, no matter what which is discussed in [ 16 ].  i.e. if we have small t and case 1 used, 

for d = 3  we may have a connection with quantized gravity for reasons we will discuss later on in this 

manuscript. 

 

Case 2, infinitesimal  t and d =1 the Kaluza Klein case.  

 

We then always have t real valued , and no restrictions on 
tempT  

 

Case 3 , infinitesimal t , and the possibility that t could be imaginary. If d =2,4,6, and 
tempT  < 0 

 

The reviewer does not like imaginary time. Therefore, for the time being this is a mathematical 

demonstration only and will be only included in for completeness of this document. However, if we have d 

=2,4,6, and tempT  < 0 the following limiting behavior is noted, in Eq. (3) 

 

This in all of what the reviewer has asked for is putting a very strong preference in for d=1 as the Kaluza 

Klein case avoids multiple pathologies, but again only in the case that t   to the fifth power is neglected.  

 

Can this dropping off of t to the fifth power be justified. A full comment on that issue will be in the final 

part of this manuscript. 

 

For the record, this below  is the case, and situation which the reviewer disliked the most.  
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                  (3) 

i.e. imaginary time, for d= 2,4,6,…  

 

Note this cannot happen, i.e. imaginary time, for d=1,3,5, 7 
 

 

If we can accept imaginary time, then in the case of d=2,4,6, we could have 
tempT  < 0. However, the 

reviewer of this manuscript has indicated that he does not favor the existence or acceptance of imaginary 

time. Needless to say though, for infinitesimal t if we wish to avoid imaginary times, it is best to consider 

dimensions d = 1,3,5, and above to have a situation for which t infinitesimal but real valued, no matter 

what the sign of 
tempT is. And d = 3 ties in directly with the situation given in [17,18,19];  we have that there 

is a situation which favors d = 3 for reasons which are given on page 639 of [19] and which indicate a 

connection to coupling coefficients, of effective Yang Mills theory which will be commented upon  in a 

reply to the referee in the later part of this document.  
 

Note that in the small t  limit for d = 1,3,5, 7 we cleanly avoid any imaginary time no matter what the 

sign of tempT is. But that for small t limit for d = 2,4,6, we can have imaginary time. And this, plus the 

connection to the discussion on page 639 about coupling constant, if d = 3, reference [19] , page 639 may 

in itself for infinitesimal  t lend toward supporting d= 3. This arises also because of the AdS/CFT 

correspondence bought up in [20, 21] which we use. 
 

 

All this is well trod physics, and is not disturbing, but the problem becomes glaring if we have t not as 

infinitesimal, in which then we have some truly bizarre physics. i.e. in that case, we have to appeal to Galois 

theory and a quintic Galois solution [5][7][8] 
 

Case 4, when we have a generalized solution for a Quintic polynomial, when t is not necessarily 

infinitesimal.  

 

Note that for extra dimensions d=1,3,5,7, the coefficient 
1A  is always less than zero, leading to no 

requirement for tempT to be < 0. The problem is though, that for d= 1,3, 5,7 and above, that if [5] is true, 

then there is no generalized Gauss theory solution to the restricted Quintic. As due to communication by 

the referee which we will discuss at length, due to [5] he very quickly came up with a specialized trivial 

example for solving this quintic, but in doing so he contravened not only [5] but also [7,8]. 
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If we do not have an infinitesimal t  and if d=1,3,5,7, the coefficient 
1A  is always less than zero, then if 

the Galois solvability criteria is correct for the quintic as given in [5]  as we will outline , we have a huge 

problem.  
 

This for general Galois solvability of ( ) ( )
5 2

1 2 0t A t A +   + = . If d=,2,4,6, need  
tempT < 0 for 

coefficient 
1A  to be greater  than zero .  This for general Galois solvability of ( ) ( )

5 2

1 2 0t A t A +   + =

. Note, that special solutions for ( ) ( )
5 2

1 2 0t A t A +   + = are easy to obtain, as a reviewer noted, but 

that we are referring to completely general solutions, not specific special case solutions. 

 

As has been noted by Galois, and others, there are trivial specific solutions as to the quintic, but what is 

referred to is a general polynomial solution to the quintic fifth order is not solvable in a general algebraic 

sense. i.e. there are noted fourth order general solutions to fourth order polynomial equations, but none 

in the sense of generalized solutions for  fifth order polynomials [2,5,7,8]  A reference to a Rocky 

mountain journal of mathematics is included for a general solution to a specific fifth order equation [2] 

[5] , and as correctly noted by the reviewer, that in one sense the specialized general fifth order equation 

so derived by the author has a trivial special case solution Precisely because we do not have a physics 

reason for making the restriction to the specific special case solution suggested by the reviewer, we have 

to appeal to a general solution, and that involves a decomposition rooted in Galois theory, among others.  

 

Finally, a comment as to the minimum uncertainty principle, as a way to imply quantization is included. 

Generally, as noted by the reviewer, the absence of a solution to a problem in terms of the minimum 

uncertainty principle, in this case  delta E delta t = h bar, written as E t  in itself is not evidence as 

to quantization. In this case, it actually does imply quantization [5] [6]  for a reason given in this 

manuscript. The reviewer also is bothered by a discussion as to semi classicality versus alleged quantum 

solutions via an AdS/CFT [2] [16]correspondence discussion. 
 

The main problem has been the Qintic polynomial, and this is taking up the lions share of this manuscript. 

i.e. it is famously noted by Galois and others that a generalized equation for completely general  fifth 

order polynomials is not solvable. [5,7,8] The restricted general  fifth order polynomial, the restricted 

quintic does have trivial specialized solutions, but it still s a very tough technical problem, for generalized 

solutions. Again, as noted , there is a reference as to solving the restricted fifth order general quintic 

polynomial. . [5,7,8]  And the author urges that people actually read it. And also review a bit of the 

literature as to Galois theory provided. [5,7,8]  
 

In doing so, the author is not suggesting that there are not numerical solutions to the restricted fifth order 

quintic polynomial. Certainly they are, and the author actually has a PhD dissertation using Runge Kutta 

techniques[22,23,24,25]  as to a condensed matter solution to a very tough condensed matter physics 

problem.[26]  In a sense, this entire article is motivated by the author’s PhD dissertation, as of 2001 which 

had to be numerically iterated, via Runge Kutta and also reviewed by quantum field theory to solve a 

similar extremely complicated nonlinear problem, [26] Due to the comments of the reviewer, the author 

hopes that readers take the time to review the Galois motivated manuscript, and realize that the author 

has a mathematics degree in numerical analysis, so the author is fully aware of the special case solution. 

The special case solution as alluded to by the reviewer is not a general equation solution [14] , for reasons 

in Galois theory, and in other similar work by Abel and other mathematicians. [5,7,8] Having said that, 

we get to the first complaint area of the reviewer, as to the physical nature of assumed negative 

temperatures in black hole, and in our case, worm hole physics. Keep in mind that we will relate the 

closure of a worm hole throat to temperature, tempT as given by Visser, [9]. So, all this is physically 

pertinent. The methods as to numerical interpolation were studied in [26, 27,28] , whereas [27] and [28] 
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actually reflect some of the modeling issues which show up even today, and where the idea of gravitons, 

as information carriers, as given in [23] .  

Before we proceed further, as a bridge to the negative temperature issue of black holes, we wish to 

address the most direct complaint raised by the reviewer, and that has to do with the problem of this 

formalism and its adherence to String theory 

 

III. How to reconcile String theory which is a quantum gravity regime, with results 

which seem to be inconsistent with quantum gravity. 

 

The reviewer, in [14] sent the  following question which deserves an answer, i.e. 
 

Quote 

Another issue is that in all of this the author is working within a “stringy” framework, for instance the 

values of d are chosen such as to be compatible with string theory, AdS/CFT concepts are used throughout 

the work, and so on. However, string theory is a theory of quantum gravity. How can you make 

assumptions consistent with quantum gravity and then derive conditions which are inconsistent with 

quantum gravity at the same time? This is very inconsistent 

 

End of quote 

 

The author refers the readers to [19], specifically go to page 639 as to the coupling constants used in super 

Yang Mills theory. i.e. in the section labeled “the Coupling constants”, [24] write that 

 

Quote, from [19], page 639 

 

 “The dimensional effective coupling of super Yang Mills theory in d+1 dimension is scale dependent. 

At an energy scale E, it is determined by dimensional analysis to be  

 

                                                                
2 2 3( ) d

eff YMg E g NE −
                                                                (3) 

This coupling is small, so that perturbation theory applies for large E ( the UV) for d<3, and for small E 

(the IR) . The special case of d = 3 corresponds to 4= super Yang Mills theory in four dimensions, 

which is known to be a UV finite, conformally invariant theory. In that case, 
2 ( )effg E is independent of  

the scale E and corresponds to the t’Hooft coupling constant 

 

                                                                        
2

YMg N                                                                  (4) 

 

This is the constant which is held constant in the large – N expansion of the gauge theory discussed below 

 

End of quote from page 639 of [19]  

 

I.e. in our work, the question of d dependence will be crucial in the application of the tempT to the question 

of if we have adherence to quantum gravity, via if we need a negative temperature, will show up as follows, namely  

 

If we have from [2] the following decomposition of the quintic polynomial, and for this see Eq.(5) below, 

we will be able to go look at the dynamics of what may be occurring for d=3, i.e. what if we have 

independence of a coupling constant from energy, we have from d=3 in the situation where we have no 

dependence of the coefficient  1A  upon the sign of the tempT . If say we have a typical dependence of system 



 8 

 

energy, say 
2

B applied temperature

statistical

k T
E

−
=  we are saying, if we believe that this removes the necessity of 

having a negative, or positive temperature, that then the possibility of, say a black hole having negative 

entropy (for positive temperature) as given by [15] is not important. But this would mean an effective 

statistically based negative energy, which would be for say energy flowing into a black hole . However, 

in our derivation of the quintic polynomial, in [2]  we are dependent upon an entropy count based upon 

infinite statistics counting algorithm based upon entropy being based upon an admitted particle count, i.e. 

S ~ particle count n, as given in [29]. The upshot is, that if we have d = 3 that we have a string theory-

based removal of the sign of energy, and temperature in coupling which means that the coupling constant 

as given in Ea.(3) and Eq. (4) is also consistent with [30] and is also covered in [5] as we derived it.  I.e. 

that the result we have, which uses [29] and [30] , for d=3 is fully consistent with the Eq. (3) and Eq. (4) 

removal of the centrality of how we evaluate energy, in terms of the sign of energy, if we in doing this 

regard our input energy, as say along the lines of 
2

B applied temperature

statistical

k T
E

−
= . In this sense, our results in  

terms of removal of the importance of the sign of the temperature, and by extension statistical energy, 

given in Eq. (5) below may make a partial linkage between Eq. (5) below, and Eq. (4) if we can write 

2

B applied temperature

statistical

k T
E

−
= = E, as an input into Eq. (4), with the applied temperature applied temperatureT −  =  

tempT  
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. 0 0

tempT does not have to be negative if d for A

but the solvability requirement for a Galois solution by

is impossible And A all the time A



 − − − − − − − = 
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 (5) 

 

If the removal of the sign of the temperature, as given in tempT , is similar  to  reducing the importance of the 

sign of energy, as an input using 
2

B applied temperature

statistical

k T
E

−
= = E, with E used in Eq. (4), we then have a 

connection with string theory which is in a sense answering the referees objections. This is different from 

when we have sensitivity as to the sign  

 

In fact, as discussed earlier, using [2] and [5]we have that if we have this, that we can only use d=2,4,6, 

so as to have a preference for negative temperatures and if [16] is believed, then a situation for which all 
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black hole entropy is then positive. If we have positive entropy, and we model the worm hole as a 

connection between two black holes, then we may have a consistent physical model, indicating positive 

entropy. 

 

i.e. for values of d=2, d=4, d=6, we have a situation where we are looking for where we have would be 

quantum behavior, i.e. a solution for this quintic, if we have negative temperatures. i.e. 
1A   > 0.We claim 

then that we have a relationship to the situation given in Eq. (4) above. And thereby answer the reviewer’s 

question.  

 

When d=1,3,5,… we claim then that Eq. (5) is in sync with Eq. (4) and that especially when d=3 we have 

the tie in with Eq. (5) and Eq. (4) .And most telling the d=3 case appears to superimpose directly with 

Eq. (5) and the discussion as to what that implies given on page 639 but we rule out d=3, if we are looking 

at a generalized Galois  solution given through Eq.(5)  

 

IV. Negative temperatures.  
 

One of the complaints of a reviewer has been about the idea of negative temperatures. Before we begin 

our discussion, we will briefly allude to the history of negative temperatures, and black hole physics, then 

allude as to what it may have to do with our problem.[16]   is the starting reference, i.e. we will reference 

negative temperature as far as the history of black hole physics.  

 

The executive summary of black hole physics, is that , indeed, as given by [16] and its additional 

references, as cited below that in order insure that the entropy of a black hole is non-negative, i.e. positive 

that we require having a negative Hawking temperature.  

From [16] we will follow the following quote 

 

II. NEW HAWKING TEMPERATURES FROM THERMODYNAMICS  

In the spin systems the temperature can be negative, due to the upper bound of the energy spectrum [4]. 

Recently, a number of black hole solutions which have similar upper bounds of the black hole masses 

have been discovered [31,32,33,34,35,36]   I have argued that the Hawking temperatures for these systems 

might not be given by the usual formula T+ = ¯hκ+/2π [31,32,33,34 ] which is non-negative, but by new 

formulae which can be negative depending on the situations [35,36]  The argument was based on the 

Hawking’s area theorem and the second law. This has been found to agree completely with CF T analysis, 

being related to the AdS/CF T correspondence, as far as the CF T analysis is available [35,36] . 

End of quote 

 

Admittedly, negative temperature appears to contravene the Hawking black hole temperature formula.  

 

Quote, from [36], HERE WE ARE USING OUR APPENDIX ENTRIES TO COVER ENTRIES GIVEN 

IN [36] 

 

But this seems to be physically nonsensical since the entropy is non-negative, “by its definition” as a 

measure of disorderedness [37] ; the positiveness of the entropy is a “minimum” requirement that must 

be satisfied if the entropy has a statistical mechanical origin [33], [38], [39] . Moreover, without the 

guarantee of the second law, there would be no justification for identifying the entropies, even though 

they satisfy the first law [34]  [40]. So, in this paper I consider a different approach which can resolve the 

two problems, simultaneously. The new resolution is to consider an entropy  

                                                                                               
2

4
w

r
S

G

 +
 =                                          (6) 

Commented [AB6]: ADDED [34] 

Commented [AB7]: See this explanation as to the reasons 

for the numbering 
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 which is non-negative manifestly and also satisfying the second law from the area theorem , as in the 

case of 
wS  in 

                                                                                                 
2

4
w

r
S

G

 +=                                          (7)  

 

for a positive Ω. But, in this case I must pay the price, by ˆ considering a new temperature  

 

                                                                                         T+ ′ ≡ −T+                                           (8) 

 

End of quote 
 

The tack of reference [9],[31][38] is that in order to have a positive black hole entropy, that we have to 

entertain negative temperature, which is given in Eq. (8) and which is elaborated on in page 5 of reference 

[9],[31][38] i.e. by the following adage, i.e. in order to have positive black hole entropy, the temperature 

has to be negative, i.e. Eq. (7) could give negative black hole entropy , and in order to obtain positive 

entropy for a black hole, as given by Eq. (6) we have to have Eq. (8) with negative temperature. To those 

whom still do not believe this summary? Go to reference [9],[31][38]  and look it up. Now how does this 

connect  worm holes ? i.e. a typical model of worm holes has in its formulation a worm hole bridge 

between two black holes. The complete Schwarzschild geometry consists of a black hole, a white hole, 

and two Universes connected at their horizons by a wormhole [41]  .  We have already discussed that 

negative temperature may exist in astrophysics, i.e. our next section is to link that to worm holes.[42] 

  

V. Negative Temperatures, and the total energy of worm holes  
 
As we will argue accessing Juan Maldacena, et. al,[43] , the total energy of a worm hole reads as follows, 
h namely 
 

/ 8

2 1

1/ 2

wormhole

temperature

E q

q j

T

= −

= +

=

                                                                                     .                                             (9) 

 

In short, if the total wormhole temperatureT   , temperature  is less than zero, we have, then that the wormholeE  

is greater than zero. So, what does this mean ?  Negative energy appears in the speculative theory 
of wormholes, where it is needed to keep the wormhole open. A wormhole directly connects two 
locations which may be separated arbitrarily far apart in both space and time, and in principle 
allows near-instantaneous travel between them [44] 
 

I.e. for a negative temperature, the worm hole throat is shut, and if the wormhole is open, the temperature 

has to be >0 , indeed temperatureT  is less than zero, we have a shut worm hole. But we observe in [44]  in 

its figure 1, of page 1446 a figure 1, of [44] which has the likely interpretation of being a black hole, 

linked to a white hole, with a worm hole specifying entanglement between the two regimes. Of the two 

astrophysical objects. This is also part of  [45] 

 

VI. Wormholes and black holes, and possibly white holes 
 

Commented [AB8]: Ordering of references fixed 

Commented [AB9]: Reference ordering fixed 

Commented [AB10]: Reference ordering fixed 
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As mentioned before, we have in [44]  in its figure 1, of page 1446 of[44] a possible linkage between a 

black hole, to a white hole via a worm hole.  In any case, according to [3] there is a connection via 

quantum teleportation which may link two black holes, hence, this is akin to [44]  [9][37] with some 

additional caveats/ i.e. as seen in  [4]. And [4], the subject of a linkage of transversal worm holes is being 

revisited, and we claim also that we can add more specific structure to the analysis, as recently presented. 

Note that in[4] that the introduction to the abstract states, i.e. go to [4] and do not forget what is in [46][38] 

about quantum teleportation linkage between two black holes as to a worm hole bridge, Now, consider  

 

 

 

 

Quote, from abstract of  [4] 
We study various aspects of wormholes that are made traversable by an interaction between the two    of boundaries. 

We concentrate on the case of nearlyAdS2 gravity and discuss a very simple mechanical picture for the gravitational 

dynamics. 

End of quote 

 

Our supposition goes beyond this, i.e. an analysis as to the physics of  transversable worm holes is built 

upon gravitational physics as it affects the energy value, as given in Eq (9). i.e. we assume a set of given 

conditions which allow for if the temperature, 
temperatureT is positive or negative. To do this though we will 

answer a complete mathematical mis understanding of quintic mathematics by the referee  

 

 

VII. Answering a  mis understanding by the referee as  to the mathematical 

solution  of a quintic polynomial, which is used to ascertain if temperatureT is 

positive or negative 
 

First of all, we ask the readers to review Eq. (9), and this will be to determine if temperatureT or positive 

and this comes from use of [2], i.e. we will look at the following equations (10) , Eq. (11) 

and then if Eq. (11) holds, Eq. (12) below which mandates having 
1 0A   in Eq. (5) which then 

leads to what the reviewer incorrectly found a trivial solution for, i.e. the reviewer, and also readers are expected to 

look at Galois theory to come up with a generalized, as opposed to looking at Galois theory for general solvability.  

 
Note that for reasons which will be discussed in terms of its attendant physics in the later part of the 

manuscript, that for extremely small ( )
5

t that in that situation where we have a simple quadratic, that instead 

of having  1 0A   we have, instead  

 

1 1 3
2

0
4 4

3

graviton count

d

temp

n
A

T Jc

d

 

−

−
= − 

   
    

  

  when we have ( )
5

t about zero                                          (10) 

 

This is reflected in a simple general physics solution to  
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( )
( )

2

2

1 33
22

16
0

4 44

33

graviton count

d

temp

n
t

T JcJc

d



 

−

−


−  + 
    

     
   

                                                                (11) 

If we have non-vanishing ( )
5

t the situation changes, and we have then 

 

( ) ( )
( )

2

5 2

1 33
22

16
0

4 44

33

graviton count

d

temp

n
t t

T JcJc

d



 

−

−


 −  + 

    
     
   

                                                  (12) 

We will, in spite of the protests of the reviewer, avoid the specialized solution , use a general solution, and then 

state 

 

1 1 3
2

0
4 4

3

graviton count

d

temp

n
A

T Jc

d

 

−

−
= − 

   
    

  

 when we have ( )
5

t still contributing                                (13) 

 

If Eq. (11) no longer holds due to the fact we no longer have a quadratic equation due to ( )
5

t not 

vanishing, we will have to go to what the reviewer found so distasteful, i.e. Eq. (13), and then the odd situation of 

what is given below. It is expected that the reviewer and also readers will take the time to go to this reference, which 

is in [2] and also [11] and then take the time to read some Galois theory. FTR we will then go back to Eq. (5) when 

setting up the usage of Eq. (14) below 
 
 

Let a and b be nonzero rational numbers. We show that there are an infinite number of essentially 

different, irreducible, solvable, quintic trinomials X^5 + ax + b. On the other hand, we show that there are 

only five essentially different, irreducible, solvable, quintic trinomials x^5+ax^2+b, namely, by 

[2],[11] 

 

 x^5 + 5x^2 + 3, 

 X^5 + 5x^2 - 15, 

 X^5 + 25x^2 + 300, 

X^5 + 100X^2 + 1000,                                                                                                      (14) 

and X^5 + 250X^2 + 625. 

 

Here, X t=  , and we change the dimensional scaling of 
1A  and 2A , so as to be consistent with 

Eq. (14), and in addition, the d in Eq. (5) can range in size from d=2, 4,6 so as to keep our 

construction consistent with String theory.  

 

If d =1,3,5,7 we have then that we could have then, with tempT  either greater than or less than zero, 

with the odd situation that at d=1, a situation where the sign, and the value of tempT could even be 

zero itself, i.e. as an artifact of Kaluza Klein theory, but then all connection then to Eq. (14) would 

be lost and the following , at d=1  1A  would always be negative. i.e.  
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If d = 1, then the following would always be true, ( Kaluza Klein theory) and then we would be 

having 

 

                                       1 1 3
2

0
4 4

3

graviton count

d

temp

n
A

T Jc

d

 

−

−
= − 

   
    

  

                               (15) 

 

The only way to avoid having all connections with Kaluza Klein theory removed is to say that in 

the case of d=1 that we would have to have X t=   infinitesimally small, hence we state the 

following 

 

Theorem A 

If d =1 in order to come up with solvable conditions for Eq. (5) X t=   will be assumed to be 

negligible, i.e. we then look at a quadratic version in the solution of X t=    of Eq.(5), and that 

then only when d=1 . I.e. d =1 will presumably be having use of Eq. (11), hence having a situation 

which involves no requirement on 
tempT being less than zero. In fact, 

tempT  could be any value we 

wished including the positively weird situation that tempT could go to zero itself. So long as d=1 

that is allowed. Once d does not equal 1, we have then very tempT  dependent behavior. 

 

If 1d   we have then very tempT  dependent behavior. And then we have to go to the weirdness 

which the referee found so objectionable. 

 

Now we will take the position of directly quoting the referee in [10] in full and to really answer 

him 

Quote 

 

Let me now come to the main problem of the paper. All the arguments of the paper rely on the fact 

that a given quintic polynomial of the form X^5 + A1X^2 + A2 = 0 is only solvable for certain 

choices of coefficients. In fact, the author says he shows there are only five essentially different, 

irreducible, solvable, quintic trinomials which are solvable. First of all, I don’t understand what 

“essentially different” means. Does it mean polynomials which are not multiples of each other? I 

find it in any case very hard to believe that there are no other polynomials of that type which are 

solvable. For instance, the following equation: X^5 + X^2 − 2 = 0 , (1) is trivially solved by X = 

1, it is not a multiple of any of the other polynomials (assuming that’s what is meant by essentially 

different) and is irreducible. And similarly, one can construct infinitely many other examples. So, 

the author should clarify this point, 

 

End of quote 

 

In the case of d=1, i.e. Kaluza Klein there is no problem, i.e. see Theorem 1 above. and it becomes 

a trivial general solution which is reflected in Eq. (15) at d=1  1A  would always be negative. And 

the quintic would in d =1 reduce to solving Eq, (11), i.e. d=1 as being solvable would require ( )
5

t

not contributing, presumably due to being negligible in the full sense of the word and the only for 
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Eq. (11) , and d=1 we would then have (Kaluza Klein) a situation where the sign of 
tempT , and its 

magnitude do not play any role in the determination of t  

 

In the case of 1d  , we will then have to consider when ( )
5

t intrudes, hence the following 

discussion below 

 

 

I.e. the supposition given above is that there is a specific set of conditions for which the author 

specifically refutes this by the following  statement. i.e. that this is verbatim. I.e.  we are not using 

the specialized solution to the general solution for Eq. (16) . In particular we have that for a 

generalized quintic, even in trinomial form that one is not going to come up with a particular 

solution which fits the requirements of a general solution. i.e. what was done in [14] was to 

arbitrarily demand that Eq. (16) have A1 = -1 and A2 = 1, and then from there have a trivial 

solution made out which would simply satisfy the needed delta t value, which the referee set as 

equal to 1. We say without reservation that if we wish to have generalized inputs into A1 and A2 

of the quintic equation that the following must be adhered to, and that without reservation we 

make, in the spirit of a generalized polynomial solution the following statement as to the values of 

the quintic equation. I.e.. 
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
=  −

 
 
 

                             (16).  

 

There are no conceivable conditions for which one would have such a situation. We are referring 

to general solvability. Of quintics, by what is known as by radicals. See more on this as follows 

  

In order to make this a bit more to the point, the author will go to Galois theory, temporarily, since 

the referee did not  read the following  i.e.[6,7,8]   The next section of this paper will cite some of 

the foundational issues brought up in [8] which shows specifically the problem. First will be how 

the uncertainty principle is related to 5-dimensional  physics, since this is one of the reasons why 

we actually bothered to have a quintic equation formed upon the minimum uncertainty given in 

the reference [5] which we will justify in our document.  

 

VIII. How to relate and embed the uncertainty principle from five-dimensional physics 
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From [47] we have the following discussion which we find is very pertinent to d=1 Kaluza Klein 

physics and its relationship to the  

 

i.e. consider first Let us now, briefly allude to the [48,49]  reference, namely: 
Start with the idea of an embedding of four-dimensional space-time in a 5-dimensional time interval. 

[47,48]  and realize it inter connections with [50, 51, 52, 53] where L = length of canonical metric in 5-

Dimensional theory 

                            

2
2 2

2 2 2

5 dim 4 dim2 2

4

2

/

3 /

( )

L L
dS ds dl

l l

x l h mc

L

L scale of scale of universe Potential well

− −

 
= − 

 

= =

 =

= − − − − − −

        (17)           

And then we present, the five momenta as given by  

                                       

2
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4

4
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2
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P
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
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                                                                                (18)       

Then, if  
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2

2

4

4

2
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0

2

2
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& / /

l

A
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l l e dl ds l L








 −



=
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 = = 

 
                                             (19)          

One eventually, as given by [48]  obtains the Heisenberg type of relations that 

                                 

                                       

2
n dl

dp dx h
c l





   
=    
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                                                         (20)        

Depending upon how we evaluate 

2
n dl

c l

   
  
   

, we can then say that if /n L l= , and if we have L as the 

length of the additional dimension, that we have from deterministic reasoning in 5 dimensions achieved 

Eq. (20) which in four dimensions, depending upon how 

2
n dl

c l

   
  
    is evaluated is in common with 

x p    [54]  
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To proceed with this further in [55] we have that E t    , and that the following holds, in cosmological 

physics, in a general sense, i.e. in cosmology we can depend upon the following assumptions, namely, as 

derived by the author in [56]. We use the approximation as presented in [56] which we reproduce below as 

also in [57,58] 

                                                                                       (21)              

    

If we use the following, from the Roberson-Walker metric [56]   

                                                                            (22)                       

        

Following Unruh [57,58], write then, an uncertainty of metric tensor as, with the following inputs  

         (23)         

Then, if     [56,57,58]  

                                                                          (24)            

             

This Eq(24) is such that we can extract, up to a point the HUP principle for uncertainty in time and energy, with one 

very large caveat added, namely if we use the fluid approximation of space-time[56]  

                                                                          (25)                      

              

Then by [56]   

                                                                           (26)                   

             

Then, by[56]    
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           (27)             

In this case, looking at a rewrite of the Eq(20)  to read, approximately as              
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                                                                                (28)         

With the 
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                     (29)        

~ (1)ttUnless g O  

Having processed in how 5 dimensional geometry may allow for the HUP according to the above argument 

let us now see how, if we do not have ( )
5

t  not contributing, i.e. a quintic, in line with a simple 

reduction in complexity solution to the Eq. (16) problem, i.e. a quick and dirty solution [59, 60] 

[51, 52] 

 

IX. Applying the Gauss- Lucas theorem to Eq. (16) 
 
Gauss–Lucas theorem gives a geometrical relation between the roots of a polynomial P and the 
roots of its derivative P'.i.e... If P is a (nonconstant) polynomial with complex coefficients, 
all zeros of P' belong to the convex hull of the set of zeros of P. [52] 
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                (30) 

 

Superficially, this imposes the same sort of restrictions upon t  for d=1,3,5,but then 
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d d
t t

n nJc

n n
t t

T Jc

d

 






 

− −

− −

−

−

     
        

             
      
   

 =   =
   

    
  

1/3

1 3
24 4

5
3

on count

d

tempT Jc

d

 

−

−

 
 
 
 

         
   

(31) 

 

Hence, we have to do further root analysis. 

 

X. Brief summary of reference [8]and the problem of a solution by radicals. 

  

Readers are recommended to go to page 4 of [8] where the question of if a quintic polynomial is 

exactly solvable. Well it is not  

 

The answer to why this is known as the Abel Ruffini theorem[53]    i.e. to look at the following 

 
The theorem does not assert that some higher-degree polynomial equations have no solution. In fact, 
the opposite is true: every non-constant polynomial equation in one unknown, 
with real or complex coefficients, has at least one complex number as a solution (and thus, 
by polynomial division, as many complex roots as its degree, counting repeated roots); this is 
the fundamental theorem of algebra. These solutions can be computed to any desired degree of 
accuracy using numerical methods such as the Newton–Raphson method or the Laguerre method, 
and in this way they are no different from solutions to polynomial equations of the second, third, or 
fourth degrees. It also does not assert that no higher-degree polynomial equations can be solved in 

radicals: the equation xn - 1 = 0 can be solved in radicals for every positive integer n, for example. 

The theorem only shows that there is no general solution in radicals that applies to all equations of a 

given degree greater than 4. 

 

Also, see [61,62] , . i.e. what the referee does not understand is  

 

quote 

 
no general solution in radicals for degree five generalized quintic equations means the following 
cannot be done. 

 

A general solution in radicals .An algebraic solution or solution in radicals is a closed form 
expression, and more specifically a closed-form algebraic expression, that is the solution of 
an algebraic equation in terms of the coefficients, relying only on addition, subtraction, 
multiplication, division, raising to integer powers, and the extraction of roots (square roots, 
cube roots, etc.). 
 

As stated , we can also go to [63]  i.e. page 54 where the definition of solvability by Radicals is 

done abstractly. See “ section 9, solvability of polynomials by radicals. Also [64] 

https://en.wikipedia.org/wiki/Real_numbers
https://en.wikipedia.org/wiki/Complex_numbers
https://en.wikipedia.org/wiki/Polynomial_division
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Laguerre%27s_method
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The result of reference [11] which is  mis understood here, is in determining if a radical solution 

of the given quintic exists. I.e.. In terms of Galois splitting field. The results of Eq. (31) ignored 

by the referee, is in obtaining a solution in terms of radicals is only achievable with regards to the 

five linear combinations of the sort given for coefficients given in Eq. (32). Now if we restrict the 

solution to the specialized quintic referred to in Eq. (11)   

 

XI. Next objection by the referee. From [14], is the absence of being able to apply 

a minimum uncertainty principle , as a proof of lack of quantum gravity.  

  

Quote  from[14]  

 

It is unclear to me how the author reaches certain conclusions about a possible quantum nature 

of gravity. For instance, the whole line of rea1 solving in Eq. (11) is unclear. Why if T 

temperature > 0 then gravity must be semi-classical? Is it because then one cannot have a 

minimum uncertainty principle? If so, then it is unclear to me why the absence of a minimum 

uncertainty principle is in itself an indication that gravity cannot be quantum. Certainly, it hints 

in that direction, but it is not a solid indication. 

 

End of quote 

 

We will go to two cases, only since these are referred to in terms of first, very small t  in the case 

of a definitely real value to the time interval, in which we will be looking at in terms of d = 

1,3,5,7… 

 

Case one, Tiny time step, temperature T can either be less than or greater than zero, and no 

imaginary time.  

 

Again, as indicated by Eq. (1) we have that for a very small-time step, for a non-imaginary time, 

that no matter what the sign of Temperature, T, that  

 

                  
( )

( )
31 24 42

32

3
2

16
; 1,3,5,..

4

3

d
tempT Jc

d

graviton count

t d
nJc

 





−
  

      
   

−

 
 
  =  =
  

      

        (32)     

 

In this case, the referee’s question is pertinent. i.e. it is related to the minimum uncertainty 

principle. We do not, in the case of very small-time step, have a situation for which temperature T 

is required to be either positive or negative, hence we reduce this situation to being of the form 

E t   
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i.e.                       ( )
1

2

4

1
; 1,3,5,..

4

graviton count

d
temp

n

T

d

E d




−

−
 

  
 

 
 
  =  =
 
 
 

                            (33)           

The sign   temp
T   plays no role in the determination of an energy value, other than that this 

conceivably be the minimum state of a graviton condensate.   

 

Now let us consider what if d=1, i.e. Kaluza Klein, i.e. then we have  

 

( )
1

2

1

4

1
; 1,3,5,..

4 4d
temp

graviton count graviton count

d

T

d

n n
E d


 −

− −

=

 
  

 

 
 
  =  = ⎯⎯→
 
 
 

                    (34)          

 

We are then   leading to, if we have a distance, we call gravitiona . 

 

 

                                  ( )
2

/
4

graviton countn

gravitona c


−  
                               (35)       

 

If in this situation we have    1/graviton graviton gravitona       

 

( )

( )

1

2
1

4

2

/ ; 1,3,5,
4

1/

1

/
4

graviton count

d
temp

graviton count

n

graviton graviton

T

d

graviton graviton graviton

n

graviton graviton

a c d

a

if d

a c






 




−

−

−

 
  

 

 
 
      =

   
 
 

 

=

   
 

    (36)     
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We claim that in the case of d=1 in the situation for which         ( )
5

0t + → ,  that indeed the ground 

state , as referred to in Eq. (36) is a strong indicator of quantum gravity. I.e.. The zero-point energy 

is dependent upon a graviton count,   graviton countn −       

 

We see that in the case of minimum uncertainty in quantum mechanics, Quantum mechanically, 

the uncertainty principle forces the electron to have non-zero momentum and non-zero expectation 

value of position. If a is an average distance electron-proton distance, the uncertainty 

principle informs us that the minimum electron momentum is on the order of ħ/a. I.e. if we have 

the same situation with a presumed graviton, and give it a mass of gravitonm infinitesimally small but 

not zero, and say we have a distance we call gravitiona . So, the minimum graviton momentum is  

 

                                              ( ) / gravitongraviton
p momentum a                              (37)       

Assume that gravitons are then endowed with mass , and then the mass vanishes 

 

                            
( ) ( ) ( )

( )

222
2 2

2
2

/

/ 0

graviton graviton graviton graviton

graviton graviton graviton

p c E m c a c

E a c if m

 = −  
 

    →
 

                  (38)        

 

leads to a minimum energy equation looking like  

 

                     ( )
1

2

4

1
/ ; 1,3,5,

4

graviton count

d
temp

n

graviton

T

d

a c d




−

−
 

  
 

 
 
     =

   
 
 

                   (39)        

 

The HUP is central to the discussion of if a minimum uncertainty exists. In any stationary state  

0p =  or at least is a constant so any system in which there is a stationary state that has a gaussian 

wave function will have minimum position/momentum uncertainty. One case where this occurs is 

the ground state of the harmonic oscillator. In the case of a graviton we have that 

( )graviton

graviton

h h

p p
 

 
 =   

 

 from the de Broglie hypothesis, we will answer in the last part of the 

question the final issues of if the quantum condition is due to a minimum uncertainty principle 

being satisfied. 

 

  

Doing so means that we can, if d = 1, as in the case of Kaluza Klein theory, and 5-dimensional 

cosmology [5] still stick with temperatureT <  0. Other values of d will lead to different situations. I.e... for 

d = 0, d = 2, d =4, and d = 6 there is a chance for temperatureT < 0 leading to an exactly solvable value for Eq. 

(7) for the X t=     X = delta t substitution 
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XII. Three  theorems, so as to have a case by case rendition of the physics of our 

quintic polynomial. ( ) ( )
5 2

1 2 0t A t A +   + =  

 

Theorem 1 

 

For  d = 0, d = 2, d =4, and d = 6, Eq. (2) and Eq. (3) are solvable, in terms of  X t=  , hence, then for 

the 
1A  and 

2A  terms, contributing to a value of X t=   we do not have an exactly solvable Quintic 

polynomial. Hence, then, temperatureT <  0 is not going to contribute to 
1A  being changed from a negative 

value, as given in Eq. (2) to a positive value so it would be commensurate with Eq.(3). Hence, so 

that temperatureT  < 0 changes 
1A  > 0. 

 

Hence, a necessary condition for exact solvability of the restricted quantic commensurate for Eq. (2) and 

Eq (3) and 
1A  > 0 is that the dimensions, d, as far as AdS/CFT correspondence have even values. 

 

Theorem 2 

 

For d = 0, d = 2, d =4, and d = 6, Eq. (2) and Eq. (3) are solvable, hence we have that for these values of d, 

that we have an exact solution for X t=   , hence then we do have a minimum uncertainty principle 

quantum gravity . We will then say that we DON’T have semi classical treatment of gravity. 

 

Theorem 3 

 

If we have  d = 1, d = 3, d = 5, d = 7 set in AdS/CFT in dimensions, so that temperatureT  < 0 changing 

1A  > 0 is NO LONGDER POSSIBLE . We have then no solvability of Eq. (2) and Eq. (3) hence, 

then ODD values of d, as given above, lead to SEMI Classical gravity. 

 

Corollary is that then, ODD values of d, lead to SEMI classical treatment of gravity, and we can 

say then that the Kaluza Klein  [5] 5-dimensional treatment is at best SEMI classical.  

 

XIII. Analyzing when we have a very small X t=    

 

changing  
 

( ) ( )
5 2

1 2 0t A t A +   + =
 

to                                                                                                              (40)                                                                                                         

                 ( )
2 2

1

0
A

t
A

 + =  

Theorem 4 
 

X t=   very small, so that the first quintic polynomial term being ignorable, leads then to writing: 
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( )

( )

5

1

2 2

0

4

6

d

temp

graviton count

if t

T

d
t

n





+

−

−

 

 
 
   +  

                                                                          (41) 

 

We claim that this is rather than a case of semi classical, versus quantum a case of real and imaginary time, 

with a preference toward have  d = 1, d = 3, d = 5, d = 7 set in AdS/CFT in dimensions, so that 

temperatureT  < 0 is not necessary, and then we have the following  d = 1, d = 3, d = 5, d = 7 to work with, 

so that we get 
 

Theorem 5  

Very small values of  the sort with ( )
5

0t +  lead to , if   d = 1, d = 3, d = 5, d = 7 then  temperatureT < 0 

is not necessary for real values of t , and then we have values of E t   , so that E  is real 

valued. Also, then, E  is equivalent to H, with H a Hamiltonian system, i.e. a 1-1 and onto linkage 

then to the Hamiltonian being the same as the total energy  of our system. This is in line with 

Abraham and Mardsen [6], Arnold [7], and Goldstein [8], as well as Spiegel [9] of a condition 

where the Hamiltonian is equal to the total energy of a system.  
 

XIV. Conclusion, Relevance to the problem of the closed throat of a wormhole. And small 

to large delta t values  

 

According to applying the criterial of  [2] we have that if we look at a worm hole 

 

Theorem 6 

 

                     

( )/ 8 2 1 / 8

0

0

0

wormhole temperature

wormhole

temperature

wormhole

E q j T

E Open wormhole throat

T Semi Classical

No quantum gravity if E

= − = − +  

  − −

   −

 − − − 

                            (42) 

 

Keep in mind that this is making a connection with  a Gravitino, of a very light mass, so as to be 

congruent with [2] , we would have, say a gravitino of about .25 electron volts, i.e. see [10] whereas 

we make the connection to [11] as brought up by the author as a link between gravitons and 

gravitinos, and Mach’s theorem. Should this be fleshed out in further generality, we will have the 

conundrum of addressing for very small delta t , Eq. (42) in conjunction with  Eq.(43) below compared to 

Eq. (41) ) being usefully compared with connections to Eq. (41) 
 

 

                           ( ) ( ) ( ) ( )
5 5 2 2 2

1 2

1

0 , 0 0
A

if t t A t A t
A

+   +   + =   + =      (43) 

This would d = 1, d = 3, d = 5, d = 7 then  temperatureT < 0 is not necessary for real values of t , and then 

we have values of E t   , so that E  is real valued. And equal to the Hamiltonian.  
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Also, if Eq. (43) does not hold 

 
Whereas for greater time step delta t, we have the consider the cases given in Theorems 1, 2, and 3 above. 

Where if d = 1, d = 3, d = 5, d = 7 then  temperatureT < 0, and then the following summing up 

 

Theorem 7 

 

if Eq. (43) does not hold, i.e. for non-negligible delta t 
 

if d = 1, d = 3, d = 5, d = 7 then  temperatureT < 0, and then  

(i) ( )/ 8 2 1 / 8wormhole temperatureE q j T= − = − +    > 0, HENCE the worm hole throat is 

closed 

(ii) We also do not have classical gravity if (i) is true. I.e. we can have quantum gravity 

 

(iii) Open throat worm hole means we assume  semi classical gravity 

 

Else 

 

  Theorem 8 

 

 if Eq. (43) does hold, i.e. for  negligible delta t 

 

if d = 1, d = 3, d = 5, d = 7 then  temperatureT < 0 IS NOT NECESSARY , for real values of t , and then 

we have values of E t   , so that E  is real valued. And equal to the Hamiltonian. Note then 

if temperatureT < 0 IS NOT NECESSARY for quantum gravity and  then 

( )/ 8 2 1 / 8wormhole temperatureE q j T= − = − +    < 0 and we have an open worm hole throat 

 

I.e. for very small t  it is easy to come up with real values of t , and non-imaginary E  and it’s 

easy to obtain ( )/ 8 2 1 / 8wormhole temperatureE q j T= − = − +    < 0 for an OPEN worm hole throat. 

 

Theorem 9 

 

If t  not so negligible, in order to obtain ( )/ 8 2 1 / 8wormhole temperatureE q j T= − = − +    < 0 for an 

OPEN worm hole throat. We would then have to go to semi classical gravity. Due to the difficulty 

of obtaining temperatureT > 0  

 

 

With regards to this problem, it is useful to make reference to [2] , as its review of the fact that a 

general solution to Quintic 5th order polynomials does not exist. What we are doing is accessing 

instead results from Galois theory, as to Quintics, [6,7]   
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In a nutshell, we will be formally deriving ( ) ( )
5 2

1 2 0t A t A +   + =  in our next section and from 

there ascertaining if the polynomial so derived, is explainable in terms of [5], in terms of exactly solvable 

solutions for  t . For the sake of referencing the development of this article, we have as our 

motivating hypothesis, that if  ( ) ( )
5 2

1 2 0t A t A +   + =  is a polynomial in a form given in [5] that 

indeed, since n will be in terms of a graviton count from a black hole  that then we have a NECESSARY 

condition for quantum gravity, at least in the framework of aligning ( ) ( )
5 2

1 2 0t A t A +   + = in terms 

of the polynomials given in [5] which are allegedly exactly solvable. If ( ) ( )
5 2

1 2 0t A t A +   + = does 

not meet the conditions given in [5], then we say that the criteria for exact solvability of an expression for 

t have not been met, and that indeed, then we have at best a semi classical treatment of gravity for reason 

which we will discuss at the end of our manuscript. 

 
Finally, the reference [9] by C. A. Pickett and J. D. Zunda gives an area calculation which neatly fits into 
[10] and [11] , whereas there is in [10] a precise calculation of entropy which also has an area to volume 

identification for black holes and entropy calculations. We close after all of this in stating that the 

energy, will be part of E , as in the usual Heisenberg Uncertainty relationships, E t   , 

whereas we take the minimum condition of uncertainty by writing E t   [12], and [13] 

confirms that indeed we have that use of minimum uncertainty in terms of data analysis has a long 

history if done correctly. Keep in mind that we do an abbreviation of  

 
2 / /E mc t m c t  =   = 

                                                                                       (44)  

This will allow us to obtain, in entropy a polynomial which we identify as 

( ) ( )
5 2

1 2 0t A t A +   + =  . The exact solution of this analysis, in terms of [2] will then form the basis of 

our analysis of if we have classical gravity, or quantum gravity, in terms of necessary conditions. If Eq. 

(44) and ( ) ( )
5 2

1 2 0t A t A +   + =  is not exactly solvable, in terms of [5] we will the assert that this 

means gravity, in the case of the derived expression for Kerr – Newman black holes, is semi classical. 
 

XV. Derivation of the polynomial  ( ) ( )
5 2

1 2 0t A t A +   + =  

 

We begin by looking at[20,21] for which we have that in terms of an AdS/CFT representation 

of entropy that we have , especially if we use [9] for Area, and S proportional to n for graviton 

count related to Entropy, as by [28], then 
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( )

( )

2

3 3
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2
2 2

2 2

2 2

1
1 2

2

/ /

4 4
16 16 /

3 3

1

1

4
16

4 3
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d
d

entropy

N

E mc t m c t

J Jc t
A m c t

m

L r dr
dS dt dx dx

r r r

r

L r Jc
S E

G r E

 
 




+

+

−
−

+

  =   = 

   
= +  =   +    

   

 
 

   
 =  − − + +  
          −       

 
=     +  

 

13
4

d

temp

graviton count

T

d

n


−

−

    
         



                     (45)     

 

We then have the following representation for a polynomial in t , namely if we have 

conflating of the material in Eq.(45)  as far as a quantic treatment of delta t, as by {5] we have 

that 

 

 

( )
( )

31 1
1 2

2 44
16 /

4 3 /

d d
d

temp

graviton count

N

TL r Jc
t n

G r t d




− −
−

−

+

     
     +               

    (46)  

 

We will then, describe how to obtain from Eq. (46)(3) ( ) ( )
5 2

1 2 0t A t A +   + =  

 

XVI. Obtaining ( ) ( )
5 2

1 2 0t A t A +   + =  from Eq. (46) 

 
In order to obtain this, we make the following substitutions below, and we will state specifically that in 

order to have a negative temperature in order to obtain the conditions as given in [5][65] for a Quintic 

polynomial which is solvable in the sense of what that article [5][65]  is saying. We will later on describe 

this in detail. But below we put in the substation needed so we can obtain the polynomial in delta t, which 

we will then subsequently modify. This also uses [20] and [21] 
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( )
( )

( )
( )

( ) ( )

31 1
1 2

2

3
2

2

1

3
2

2 5

44
16 /

4 3 /

4
16 /

3 / 4

4
16

3

d d
d

temp

graviton count

N

graviton count

d

temp

TL r Jc
t n

G r t d

nJc
t

t T

d

Jc
t












− −
−

−

+

−

−

     
     +               

  
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 (47) 

 
I.e. in order to obtain, in a sense a Quintic equation which can be solved, [2][5][65],  
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 − −

          (48)  

 

XVII. Can we have negative temperature? 

 
This requires using [21, 22]  and it is not clear that this is actually obtainable, in the experimental set up 

as given in our [21, 22]   input into a black hole 

 

What else do we need ? 

 

According to the abstract of [2] and which is used in [5]  

 

Quote 
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Let a and b be nonzero rational numbers. We show that there are an infinite number of essentially different, 

irreducible, solvable, quintic trinomials X^5 + ax + b. On the other hand, we show that there are only five 

essentially different, irreducible, solvable, quintic trinomials x^5+ax^2+b=0, 

namely, 

 

 x^5 + 5x^2 + 3, 

 X^5 + 5x^2 - 15, 

 X^5 + 25x^2 + 300, 

X^5 + 100X^2 + 1000,                                                                                               (49)      

and X^5 + 250X^2 + 625. 

 

End of quote 

 

Aside from having a negative temperature, as for the reason given in Eq. (47) we have that if  [21,22] is 

satisfied and still commensurate with reference [21,22] that we also need to have a polynomial in delta t, 

which is commensurate with Eq. (48)(6) which is also influenced by Eq. (49) which is taken from the 

abstract in [2],[5] and is linkable to Eq.(47). 

 

XVIII. Conclusion. i.e. a necessary condition for quantization of 

induced Kerr Newman black hole  

 
We first of all need to have a “negative “ temperature. I.e. is this doable ? This has to be rigorously 

explored experimentally and determined. 

 
Secondly our  Eq. (47) terms have to be consistently comparable to Eq. (48) (6). This requires rescaling of 

Eq. (47) but this is doable pending dimensional analysis, and perhaps Planckian physics units.  

 

Both these conditions would be a NECESSARY condition for satisfying in terms of reference [5] 

 ( ) ( )
5 2

1 2 0t A t A +   + =  which we state would be due our construction a necessary condition for a 

complete quantum gravity analysis of gravitons being emitted from a Kerr- Newman black hole. 
 

We state that these two points have to be determined and investigated, and also that an optimal 

value of d, for dimensions for a problem, involving Kerr Newman black holes would have to be 

ascertained in future research. 

 

 

Finally, we refer the reader to references [65] [66] [67], [68] for additional ideas which may be 

used in future projects 

 

Note also that Valev wrote [72]  

 

                                                 graviton

graviton

h

m c



                                          (50) 

 

, and Valev indicates in his article that this gives a light year, or more length GW of unimaginably 

low frequency. Obviously, in terms of experimental conditions, this breaks down, i.e. in the limit 



 29 

 

of say a simulated worm hole in a laboratory, so it would be useful to find ways to experimentally 

test and vet Eq. (49) in our review of basics 
 

Arguing further, the derivation done above, as for a HUP is likely doable and obtainable from higher 

dimensions. The referee asked that if a minimum uncertainty relation exists which is what I am asserting 

via [2] which is influenced by [5] that there are then several cases  

In the situation of Kaluza Klein , d = 1  that we should assert the following  

Going to the text, there are two equations which bear examination. i.e. see this in the text. Recall Eq. 

(35) and Eq. (36) of this text.  We will summarize again what came in Eq. (35) and Eq. (36) as follows. 

We are then   leading to, if we have a distance, we call gravitiona . And  Eq. (35) and Eq. (36) that  

if in this situation we have    1/graviton graviton gravitona      We go to Eq. (36) with the result that  

in the case of d=1 in the situation for which         ( )
5

0t + → ,  that indeed the ground state , as 

referred to in Eq. (36) is a strong indicator of quantum gravity. I.e.. The zero-point energy is 

dependent upon a graviton count,   graviton countn −       

 

End of my argument here.  

 
I.e. my argument is that in the case of Eq. (36) due to the last line, that one is having a graviton count, as 

linked to lowest level uncertainty , for energy and that this, in itself is supporting a quantum interpretation 

of gravity based upon minimum time step 

Keep in mind, too, what is in the answer to my answer to the reviewers first question. i.e. S ( entropy) ~ n 

(graviton count) is put in directly into the derivation of Eq. (5). There is no way to guarantee . S ( entropy) 

~ n (graviton count) being positive as to two black holes at the two ends of a worm hole. i.e. that is one of 

the wormhole configurations. Unless one has NEGATIVE temperature. I.e. see the discussion of the text 

on this, and that ties in directly with the sign of 
1A , as given in 

1 1 3
2

0 1
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 

−

−
= −  

   
    

  

 

The d=1,3, 5, … cases have a different behavior than what is in d=2,4,6. . when we are looking at Eq. (5) it 

really hits home.  And the sign of A1 influences the solvability of finding t  which in turn affects the 

likelihood of Eq,(36) above, and also, we have that we want a minimum energy to depend upon 

graviton count, with that process being inherently quantum nature of gravity. 

 

The d=1 case, as with having ( )
1

2

4

1
; 1,3,5,

4
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d
temp
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d

E d




−

−
 

  
 

 
 
  =  =
 
 
 

. i.e. if d=1, our minimum 

uncertainty, which is solvable then will be giving us functional linkage to gravity and gravitons. 
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End of quote 
 

The tack of reference [9] [31][38] is that in order to have a positive black hole entropy, that we have to 

entertain negative temperature, which is given in Eq. (8) and which is elaborated on in page 5 of reference 

[9] [31][38] . i.e. by the following adage, i.e. in order to have positive black hole entropy, the temperature 

has to be negative, i.e. Eq. (7) could give negative black hole entropy , and in order to obtain positive 

entropy for a black hole, as given by Eq. (6) we have to have Eq. (8) with negative temperature. To those 

whom still do not believe this summary? Go to reference [9] [31][38]  and look it up. Now how does this 

connect  worm holes ? i.e. a typical model of worm holes has in its formulation a worm hole bridge 

between two black holes. The complete Schwarzschild geometry consists of a black hole, a white hole, 

and two Universes connected at their horizons by a wormhole [41]  .  We have already discussed that 

negative temperature may exist in astrophysics, i.e. our next section is to link that to worm holes.[42] 

  

4. Negative Temperatures, and the total energy of worm holes  
 
As we will argue accessing Juan Maldacena, et. al,[43] , the total energy of a worm hole reads as follows, 
h namely given in Eq. (9) which has  
 

/ 8

2 1

1/ 2

wormhole

temperature

E q

q j

T

= −

= +

=

                                                                                     .           (9) reduplicated.  

 

End of quote 

So far this is not stringy, or linked to AdS/CFT correspondence, but then observe the following 

From the text. i.e.  

 

IV. How to reconcile String theory which is a quantum gravity regime, with results 

which seem to be inconsistent with quantum gravity. 

 

The reviewer, in [14] sent the  following question which deserves an answer, i.e. 
 

Quote 

Another issue is that in all of this the author is working within a “stringy” framework, for instance the 

values of d are chosen such as to be compatible with string theory, AdS/CFT concepts are used throughout 

the work, and so on. However, string theory is a theory of quantum gravity. How can you make 

assumptions consistent with quantum gravity and then derive conditions which are inconsistent with 

quantum gravity at the same time? This is very inconsistent 

 

End of quote 

 

The author refers the readers to [19], specifically go to page 639 as to the coupling constants used in super 

Yang Mills theory. i.e. in the section labeled “the Coupling constants”, [24] write that 

 

Quote, from [19], page 639 
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 “The dimensional effective coupling of super Yang Mills theory in d+1 dimension is scale dependent. 

At an energy scale E, it is determined by dimensional analysis to be given by Eq. (3) we write as 

 

                                                                
2 2 3( ) d

eff YMg E g NE −
                                          (3) reduplicated 

This coupling is small, so that perturbation theory applies for large E ( the UV) for d<3, and for small E 

(the IR) . The special case of d = 3 corresponds to 4= super Yang Mills theory in four dimensions, 

which is known to be a UV finite, conformally invariant theory. In that case, 
2 ( )effg E is independent of  

the scale E and corresponds to the t’Hooft coupling constant which we use the results of Eq(4) we write 

as 

 

                                                                        
2

YMg N                                                (4) reduplicated. 

 

This is the constant which is held constant in the large – N expansion of the gauge theory discussed below 

 

End of quote from page 639 of [19]  

 

I.e. in our work, the question of  d dependence will be crucial in the application of the tempT to the question 

of if we have adherence to quantum gravity, via if we need a negative temperature, will show up as follows, namely 

 

If we have from [2]  the following decomposition of the quintic polynomial, and for this see Eq.(5) below, 

we will be able to go look at the dynamics of what may be occurring for d=3, i.e. what if we have 

independence of a coupling constant from energy, we have from d=3 in the situation where we have no 

dependence of the coefficient  
1A  upon the sign of the tempT . If say we have a typical dependence of system 

energy, say 
2

B applied temperature

statistical

k T
E

−
=  we are saying, if we believe that this removes the necessity of having 

a negative, or positive temperature, that then the possibility of, say a black hole having negative entropy 

(for positive temperature) as given by [15] is not important. But this would mean an effective statistically 

based negative energy, which would be for say energy flowing into a black hole . However, in our 

derivation of the quintic polynomial, in [2]  we are dependent upon an entropy count based upon infinite 

statistics counting algorithm based upon entropy being based upon an admitted particle count, i.e. S ~ 

particle count n, as given in [29]. The upshot is, that if we have d = 3 that we have a string theory-based 

removal of the sign of energy, and temperature in coupling which means that the coupling constant as 

given in Ea.(3) and Eq. (4) is also consistent with [30] and is also covered in [5] as we derived it.  I.e. that 

the result we have, which uses [29] and [30] , for d=3 is fully consistent with the Eq. (3) and Eq. (4) 

removal of the centrality of how we evaluate energy, in terms of the sign of energy, if we in doing this 

regard our input energy, as say along the lines of 
2

B applied temperature

statistical

k T
E

−
= . In this sense, our results in  

terms of removal of the importance of the sign of the temperature, and by extension statistical energy, 

given in Eq. (5) below may make a partial linkage between Eq. (5) below, and Eq. (4) if we can write 

2

B applied temperature

statistical

k T
E

−
= = E, as an input into Eq. (4), with the applied temperature applied temperatureT −  =  tempT  

 

 

XIX. Brief summary of reference [8]and the problem of a solution by radicals. 
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Readers are recommended to go to page 4 of [8] where the question of if a quintic polynomial is 

exactly solvable. Well it is not in general solvable. That is the point of reference [2], and the 

trinomial quintic. And Eq. (14) 

 

The answer to why this is known as the Abel Ruffini theorem[53]    i.e. to look at the following 

 
The theorem does not assert that some higher-degree polynomial equations have no solution. In fact, 
the opposite is true: every non-constant polynomial equation in one unknown, 
with real or complex coefficients, has at least one complex number as a solution (and thus, 
by polynomial division, as many complex roots as its degree, counting repeated roots); this is 
the fundamental theorem of algebra. These solutions can be computed to any desired degree of 
accuracy using numerical methods such as the Newton–Raphson method or the Laguerre method, 
and in this way they are no different from solutions to polynomial equations of the second, third, or 
fourth degrees. It also does not assert that no higher-degree polynomial equations can be solved in 

radicals: the equation xn - 1 = 0 can be solved in radicals for every positive integer n, for example. 

The theorem only shows that there is no general solution in radicals that applies to all equations of a 

given degree greater than 4. 

 

Also, see [62] , . i.e. what the referee does not understand is  

 

quote 

 
no general solution in radicals for degree five generalized quintic equations means the following 
cannot be done. 

 

A general solution in radicals an algebraic solution or solution in radicals is a closed form 
expression, and more specifically a closed-form algebraic expression, that is the solution of 
an algebraic equation in terms of the coefficients, relying only on addition, subtraction, 
multiplication, division, raising to integer powers, and the extraction of roots (square roots, 
cube roots, etc.). 
 

As stated , we can also go to [63]  i.e. page 54 where the definition of solvability by Radicals is 

done abstractly. See “ section 9, solvability of polynomials by radicals. Also [64] 

 

The result of reference [11] which is  mis understood here, is in determining if a radical solution 

of the given quintic exists. I.e.. In terms of Galois splitting field. The results of Eq. (31) ignored 

by the referee, is in obtaining a solution in terms of radicals is only achievable with regards to the 

five linear combinations of the sort given for coefficients given in Eq. (32). Now if we restrict the 

solution to the specialized quintic referred to in Eq. (11)   

 

End of quote 

 

It is important to review the issues brought up in [65],[66],[67],[68],[69],[70],[71],[72],[73] before 

going to the next point. I.e. what needs to be said is that we are looking at 

a. A minimum condition for quantization 

b. Looking at what happens to algebraic theory as to precise delineation as to roots 

c. Basic conditions as to black hole and worm hole physics.  

 

Commented [YZ11]: Next one should be [65][66][67]… 

Commented [AB12R11]: I just did put them in 

Commented [AB13R11]: See the comments below 
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In order to parse this we should review the physics of why we are even going to review the 

application of [2]. 

 

 

This closed form solution is a direct result of the failure of the quadratic equation approximation 

and the application of Gauss- Lucas theorem to have any commonality.  

 

We furthermore make the following observation, i.e. 

Quote 

 

 

There are tons of references to Galois theory in this paper. I.e. the readers should READ them. 

And the following is, in lieu of Eq. (31)  

 

. We say without reservation that if we wish to have generalized inputs into A1 and A2 of the 

quintic equation that the following must be adhered to, and that without reservation we make, in 

the spirit of a generalized polynomial solution the following statement as to the values of the 

quintic equation. I.e. as given below we have a re duplication of Eq. (16) to consider 
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            (16). reduplicated 

 

There are no conceivable conditions for which one would have such a situation for a GENERAL 

solution  . We are referring to general solvability. Of quintics, by what is known as by radicals. 

See more on this as follows 

 
End of quote 

The referee, and readers are enjoined to review this paper, and look at these details. Secondly, and I 

cannot stress this more than once, READ the following paper, i.e. [2] Spearman, B. and Williams, K. 

(1998) On Solvable Quintics X^5 + ax + b and X^5 + ax^2 + b. Rocky Mountain Journal of 

Mathematics, 28. 

 

Note that it is very important  
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5. Why was the Kerr Newman black hole chosen as a statement about quantum 

gravity ? What is special about it ? How can this be justified ? 

Here, I urge people to read the following 

Quote, from [73]  

The Kerr-Newman metric describes a very special rotating, charged mass and is the most general 

of the asymptotically flat stationary 'black hole' solutions to the Einstein-Maxwell equations of 

general relativity. We review the derivation of this metric from the Reissner-Nordstrom solution by 

means of a complex transformation algorithm and provide a brief overview of its basic geometric 

properties. We also include some discussion of interpretive issues, related metrics, and higher-

dimensional  analogues 

End of quote 

It is the specific adage as to this black hole being the most GENERAL solution.  I.e. this generality is why it 

was picked, as the most general, easily analyzed case. 

We urge readers whom may not be satisfied by this to if they have to look at more extensions of this black 

hole business to look at [74] which is an encyclopedia of black holes in higher dimensions. It re enforces 

many of the same themes brought up here 

Keep in mind that the next  final section has essential details as to solvability of what is called the restricted 

trinomial quintic, which is the main focus of the second array of complaints by the reviewer. This is highly 

specialized and is algebraic field theory, and Galois theory. For your edification. 

It is useful to include in the following  

XX. FINAL SET OF COMMENTS  as to the suitability of using Galois theory, 

i.e. [2], to solve the Quintic, due to additional questions raised. 

 

See  page 398, of [75] i.e. this came from subsequent questions in several additional rounds of 

inquiry by the referee, in [14]. Hence, to give a reality as to the restricted nature of the coefficients 

of Eq. (14) we first of all referred to the following theorem, as to what not to use in our problem. 

This primarily because the reviewer was so dead set against complex to imaginary time values. i.e. 

consider the following basic theorem 

 

Theorem , the Fundamental theorem of algebra 
 

The field of complex numbers is algebraically closed, that is, every polynomial in  x  has a 

root in  

 

i.e. in our case, as requested by the referee, we will be avoiding in analyzing a  given polynomial

( ) ( )
5 2

1 2 0t A t A +   + =  having any 1A   and  2A  with complex coefficients; so as  to avoid t  be 

forced to be a root in  

Commented [YZ14]: The order is not right. 

Commented [AB15R14]: Fixed it. See the above. 
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Now, assume we are working with a real valued quintic equation. i.e.  
 

In addition, we have Descartes' rule of sign [76]  is used to determine the number of real zeros of a 

polynomial function, i.e. see this example.  For the number of positive real roots, look at the 

polynomial, written in descending order, and count how many times the sign changes from term 

to term. This value represents the maximum number of positive roots in the polynomial. For 

example, in the polynomial f(x) = 2x4 – 9x3– 21x2 + 88x + 48, you see two changes in sign (don’t 

forget to include the plus sign of the first term!) — from the first term (+2x4) to the second (-9x3) 

and from the third term (-21x2) to the fourth term (88x). That means this equation can have up to 

two positive solutions. 

 

Descartes’s rule of signs says the number of positive roots is equal to changes in sign of f(x) or is 

less than that by an even number (so you keep subtracting 2 until you get either 1 or 0, i.e. Negative 

real roots. For the number of negative real roots, find f(–x) and count again. Because negative 

numbers raised to even powers are positive and negative numbers raised to odd powers are 

negative, this change affects only terms with odd powers. This step is the same as changing each 

term with an odd degree to its opposite sign and counting the sign changes again, which gives you 

the maximum number of negative roots. The example equation becomes f(–x) = 2x^4 + 9x^3 – 

21x^2 – 88x + 48, which changes signs twice. There can be, at most, two negative roots. However, 

similar to the rule for positive roots, the number of negative roots is equal to the changes in sign 

for f(–x) or must be less than that by an even number. Therefore, this example can have either 2 

or 0 negative roots 

 

This has been generalized in [77] in the following manner, i.e. In the 1970s Askold Georgevich 

Khovanskiǐ developed the theory of fewnomials that generalises Descartes' rule. The rule of signs 

can be thought of as stating that the number of real roots of a polynomial is dependent on the 

polynomial's complexity, and that this complexity is proportional to the number of monomials it 

has, not its degree. Khovanskiǐ showed that this holds true not just for polynomials but for algebraic 
combinations of many transcendental functions, the so-called Pfaffian functions.[78] 
 

Here, a monomial is defined as [79] , and in addition, note that If a polynomial doesn’t factor, it’s 

called prime because its only factors are 1 and itself. Having said that, let us now go to some other 

issues.  

 

Note  
 

 Eq. (14) is a carbon copy of part of  the abstract result from [2] 
 
Observe 
 
Here is the question.  See eq. (14) 
 
The referee in [14]  questioned  as to the following, i.e. these are desired combination of the 

given  polynomial ( ) ( )
5 2

1 2 0t A t A +   + = . This in itself is fair. But the allegation that Eq. (14) from 

the text below was constructed  out of thin air is , actually from [2]. We use also, here that X t=   and 

that then we will review the math descriptions given in [2] 

https://en.wikipedia.org/w/index.php?title=Askold_Georgevich_Khovanski%C7%90&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Askold_Georgevich_Khovanski%C7%90&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Fewnomial&action=edit&redlink=1
https://en.wikipedia.org/wiki/Pfaffian_function
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From [2] and also Eq.(14) of this manuscript. We observe that Eq. (14) is synchronized with the 
appendix entry of reference [2]  
 
Let a and b be nonzero rational numbers. We show that there are an infinite number of essentially 
different, irreducible, solvable, quintic trinomials X^5 + ax + b. On the other hand, we show that 
there are only five essentially different, irreducible, solvable, quintic trinomials x^5+ax^2+b, 
namely, by [2], which is Eq.(14) of the text  
 
The Descartes rule of signs would indicate that such combinations would allow for real valued 

X t=  . Why is this important ? First, the referee has stated a preference for  finding roots of 

X t=    being real valued. I.e. don’t believe it ?  Go to pages 28 and 29 of this manuscript where this 

preference is explicitly stated. Secondly, if say a worm hole is in its throat permitting negative time, 

say in conjunction that the time variable would become positive in the mouth of the worm hole. 

i.e. what we have been doing is to look at the conditions of the time dynamics in the throat of a 

worm hole.  We shall go to the terms in reference [2] and begin to describe them, mathematically speaking. 

i.e. one of the first items is that the coefficients  
1A  and 

2A  are at least real valued. In fact, we have 

that from Eq. (5) of the text, that the break down of the equation is, given. In this case, go to Eq.(5) 

of the text. 
 

If we have that d=2,4,6, the sign of temperature does not play a role, and we will have then that 
we will have no commensurate connection with Eq.(14) of the text. It also would indicate a positive 

time component, as to X t=   whereas we do wish to have the following convention 
 

A. For the throat, we would prefer to have negative time , which would transition to positive 
time, at the mouth of the worm hole. This so long as d=2,4,6 

B. If d=1,3,5,7, then we could have, by use of the Descartes sign convention negative time 
roots for time in the worm hole throat 
 

Using [75], [76], [77],[78] , [79] we would have then a situation for which we would first of all avoid 
having imaginary time, if we use the conventions of Eq. (14) and also keep in mind the first part 
of Eq. (5) from the text we avoid imaginary, or complex time, which is what the referee would not 

stand for, and in addition, negative roots for X t=   as well as being real valued which is what we 

would prefer to have. 
 
Note, that a possible problem, about using [2] is that the field as specified in Eq.(14) would require 

that 1A  and 2A  have rational coefficients. The restriction this would mean is that we would then 

say have to have, for the application of Eq. (14) the following, namely use this part of Eq.( 5) 
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−

−
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   
    

  
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 
 
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 { Part of Eq.(5) from text} 
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In the case of 
2A  this happens immediately. As for 

1A , it likely would mean defining graviton countn −  

or some other input variables in such a way as to lead to a canceling out of the   term. i.e. my 

preference would be to have tempT  and J defined in such a way as to effectively cancel out the   

term from 1A . Note if graviton countn − effectively vanished, we would then have a very easy to solve 

equation for X t=   i.e. no problem in terms of a defined X t=   . However, in doing so we would 

have another problem in that the linkage to quantum gravity, i.e. a linkage to gravitons and 

quantum mechanics  would be effectively demolished. 

 

Next, in this is a question of the different terms in reference [2]. We will review them . First of all 

is the idea of irreducible polynomials. Let F be a finite field. As for general fields, a non-constant 

polynomial f in F[x] is said to be irreducible over F if it is not the product of two polynomials of positive 
degree. A polynomial of positive degree that is not irreducible over F is called reducible over F. [81], 
[82], [83], [84], [85] 

 

Now a polynomial of positive degree is  such that the degree of a polynomial and the sign of its 

leading coefficient dictates its limiting behavior, and in our case,  we have positive degrees with 

the term ( )
5

t .  

 

Going back to [2] we have that the following shows up, i.e. 

 
If the equation f (x) = 0 is solvable by radicals, the quintic polynomial f (X) is said to be solvable. If f (X) is 

solvable, its Galois group is solvable and is thus contained in the Frobenius group Fzo of order 20, and hence 

is isomorphic to 20F  . Here , polynomial  f(x)= 0 is solvable by radicals, means that definitions as 

to solvability in [86] is satisfied in that we have operations given in the examples delineated by 

[87] 
 

 

To re capitulate, what we choose in [2] was largely chosen due to the physical issues brought up 

in pages 48 to 51, as is conveniently brought up in Eq. (14) which was not arbitrarily chosen 

 

Also, due to another issue once again, Eq. (16) of the text, as to what to avoid reads as 
1 1A = ,  

2 2A = − , and my objection is clearly rendered in Eq, *16 as reproduced below. As to avoiding  , 

1 1A =  and  2 2A = −  with these two values chosen not by me, And the equation below representing 

what we wish to avoid. I.e.. Particular solutions in the case where we want general solutions. Note 

the following as to what to avoid. i.e. see Eq. (16)  In short, reference [2] was chosen as to its 

intersection with the Descartes result as of , once again 

 
If we have that d=2,4,6, the sign of temperature does not play a role, and we will have then that 
we will have no commensurate connection with Eq.(14) of the text. It also would indicate a positive 

time component, as to X t=   whereas we do wish to have the following convention 

 
C. For the throat, we would prefer to have negative time , which would transition to positive 

time, at the mouth of the worm hole. This so long as d=2,4,6 

https://en.wikipedia.org/wiki/Irreducible_polynomial
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D. If d=1,3,5,7, then we could have, by use of the Descartes sign convention negative time 
roots for time in the worm hole throat 
 

Using [75], [76], [77],[78] , [79] we would have then a situation for which we would first of all avoid 
having imaginary time, if we use the conventions of Eq. (14) and also keep in mind the first part 
of Eq. (5) from the text we avoid imaginary, or complex time, which is what the referee would not 

stand for, and in addition, negative roots for X t=   as well as being real valued which is what we 

would prefer to have. 

 

Both physics and mathematics is well served, and we used ‘[2] also in addition to the above, due 

to Eq, (1) which we render again as the three cases, with the derivative of the polynomial having 

very different solution behavior for X t=  , than what we would obtain for the quadratic 

approximation. Plus again, wishing to have by Descartes convention of signs the possibility of 

guaranteed access to non-imaginary, real valued roots, which could have, by Descartes convention 

of signs cases where not only could we have real valued X t=   but also negative time for X t=   

in the throat of the wormhole. 

 

See Eq. (1) reproduced below as to giving us this starting point.  
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A t A

versus needing Galois solution to

t A t A

 + =



  + =

 +   + =

                     (1) reduplicated again 

 
Note in addition that there are other wormhole issues, vitally important which will be brought up, 
extending these issues once review is commenced.  
 
Keep in mind that we have one extension which will be stated here 
 
As a parting remark, this business of choice of sign, for temperature and the behavior of a worm 
hole, and the question of if we have quantization behavior has similarities to some of the research 
work goals done by John Klauder [88] which we put in as the final reference as to our inquiry, 
especially if the worm hole construction is prevalent in the early phases of the expansion of the 
universe, as given in this document. In all we will seek connections with Dr. Klauder’s work in 
future extensions of our inquiry.  
 
Finally, and not to be minimized, we view that not only is Dr. Klauder’s work important that we 
also have what is known as the Jones Polynomials to compare our polynomial idea with. i.e. see 
[89] , page 332.  
 
Since we have referenced temperature, it would be expedient to go to page 332 where there is 
linkage to polynomials, and the idea of a partition function, and in page 328. Undoubtedly there 
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will be connections made to what is known as the Alexander – Conway polynomial of the Hopf 
link, as given in Figure 45 of page 328 of [89] 
 
We close in stating also that there are more polynomial issues brought up in [90] which are linked 
to higher order curvature terms, which will be playing a role in our inquiries.  

 
XXI. Final remarks to bring up for reference as to the next 

publication as a sequel to this document.  
 
One of the issues which has been raised in conversations, has been about the dimensionality of d. ie. As 

Johnathan Dickau suggested [91] December 20 , it could be fractal or an irrational number . I.e. a fractal 

d may, with some caveats so that one would have Eq. (32) be consistent with the Galois theory of 

reference [2] so we could use directly the Rocky Mountain journal of mathematics as to having  
1A  and 

2A  with rational coefficients, which would make our results consistent with the choice of Eq. (14) 

and reference [2]. To do that we wish to have that the following equation , as given below avoid 

having irrational number character. As presented below. 

 

                  

1 1 3
24 4

3

,

graviton count

d

temp

n
A

T Jc

d

has no irrational character but is a fraction

 

−

−
= −

   
    

  
                      (51)       

At the minimum, it would be also helpful to investigate if  we could look at   also, the role of 

additional dimensions, in terms of gravitational waves, as brought up in [92], as well as research 

done by Dr. Li, Dr. Wen Hao, and others in terms of  [93] , as to how the character of gravitons 

which are in space time, as say in scalar-tensor gravitational theories influences polarizations. 

A suggested update as to this research would be to investigate both the issues of references [92], and [93] 

in terms of the worm hole physics, as given in this document, as well as the extensions of worm hole 

physics brought up in [90]. 

Finally, [94], namely what Maggiore brought up in page 663 as to Thermal Tunneling theory, as to a first 

order phase transition material which may have very strong similarities as to the generation of GW as 

seen in our model, should be further developed and compared with our model, i.e. the Maggiore 

Tunneling and the bounce section of this manuscript, as of [94] may have GW characteristics similar to 

what we are bringing up in our problem. I.e. there is in page 668 of [94] a tunneling rate, as given by the 

physics of Eq. (33) below, which is for GW and gravitons emerging from the worm hole. 
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exp( )e

e

A S

A proportinality const

S Value of Euclidian action

 = −

= −

= − − −

                                    (52) 

 

Is such a construction even remotely feasible for the tunneling rate of gravitons say from a closed worm 

hole throat, to our present universe, and what is the counter part to the Euclidian action in our model ? 

As of now, it is assuming a closed throat which appears to be consistent with our paper, but then say what 

is the value of the Euclidian action?  A final issue to add, if this Eq. (52) is relevant, to graviton production  

and say if we restricted ourselves to d=1, i.e. the Kaluza Klein case, could we also look at an intermixture 

of gravitons with the electromagnetic field, which is given in [95], where from pages 295 to 299, the Kaluza 

Klein theory of electromagnetism is brought up, a purported linkage between the fine structure constant, 

and a nominal topological charge, i.e. if d=1, look at say a linkage between a topological charge, 
nQ and a 

fine structure constant value. And possibly gravity itself as from the worm hole throat, via linkage 

between gravitons, eventually, and the 1/r^2 gravitational potential. See this from [95] and its 

equations from 295 to 299 of [96] which gives an introduction to Kaluza Klein, and charges 
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              (53)  

The idea would be to make linkage between the production of Gravitons, and a gravitational 

potential energy system, i.e. in this case through the 1/r^2 potential energy system. i.e. along the 

lines of a first order approximation of gravitational potential energy, as to a modification of the 

the 1/r^2 potential energy system, and a linkage with that to gravitons, and then from there, using 

that, assuming some variant of Eq. (52} to then link graviton production behavior to the filling in 

of detail as to creating charge, 
nQ , i.e. in this case creating a unification, via the cosmological 

constant with the idea of gravitational characteristics, and electromagnetics, in the d=1 case. 

Keep in mind that as given in [96] there are extensions of the electromagnetic field, beyond 

Maxwell’s equation, as given by Terence Barrett, and that what we are asking about is in the 

same spirit. i.e. this is a long term project of linkage of electromagnetic field, with gravitation, in 

the case of the wormhole throat, and is a step beyond our present endeavor we should try for. i.e. 

for d=1 linkage of gravitons, with a 1/r^2 potential and gravity and an open question of if this 

1/r^2 potential could be linked to the state of gravity emerging from a worm hole, and charge Q 

of electromagnetic fields. 
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