Review on rationality problems of algebraic k-tori

Youngjin Bae

Abstract

Rationality problems of algebraic $k - tori$ are closely related to rationality problems of the invariant field, also known as Noether's Problem. We describe how a function field of algebraic $k - tori$ can be identified as an invariant field under a group action and that a $k - tori$ is rational if and only if its function field is rational over k . We also introduce character group of $k - tori$ and numerical approach to determine rationality of $k - tori.$

Contents

1 Introduction

Let k be a field and K is a finitely generated field extension of k . K is called rational over k or k-rational if K is isomorphic to $k(x_1, ..., x_n)$ where x_i are transcendental over k and algebraically independent. There are also relaxed notions of rationality. K is called *stably k-rational* if $K(y_1, ..., y_m)$ is k-rational for some transcendental and algebraically independent y_i . K is called k – unirational if $k \subset K \subset k(x_1, ..., x_n)$ for some pure transcendental extension $k(x_1, ..., x_n)/k$.

The Noether's Problem is the question of rationality of the invariant field under finite group action. For example, if $K = \mathbb{Q}(x_1, x_2)$ and $G = \{1, \sigma\} \cong C_2$ and G acts on K as permutation of variables x_1, x_2 (i.e. σ fixes $\mathbb{Q}, \sigma(x_1) = x_2$ and $\sigma(x_2) = x_1$, then the invariant field K^G is \mathbb{Q} – *rational*.

Example 1.1 $K = \mathbb{Q}(x, y)$ and $G \cong C_2$, acting on K as permutation of variables. Let $\frac{f}{g} \in K^G$, f, g are coprime. We have

$$
\frac{f(x,y)}{g(x,y)} = \sigma(\frac{f(x,y)}{g(x,y)}) = \frac{f(y,x)}{g(y,x)}
$$

By observing that $gcd(f(x, y), g(x, y)) = gcd(f(y, x), g(y, x)) = 1$, we have $f(x, y) = f(y, x)$ and $g(x, y) = g(y, x)$.

Therefore, $K^G = \{ \frac{f(x,y)}{g(x,y)} \}$ $\frac{f(x,y)}{g(x,y)}$ |f, g are symmetric}, field of fractions (quotient field) of $S = \{f \in \mathbb{Q}[x, y]| f(x, y) = f(y, x)\}.$ It is easy to see that $\psi : S \to \mathbb{Q}[s, t]$ is isomorphism, where

$$
\psi(x+y) = s, \quad \psi(xy) = t
$$

Therefore, $S \cong \mathbb{Q}[x, y]$ and $K^G \cong \mathbb{Q}(x, y)$, $\mathbb{Q} - rational$.

We can also consider case of G acting on both of coefficients and variables.

Example 1.2 $K = \mathbb{C}(x, y)$ and $G = Gal(\mathbb{C}/\mathbb{R}) = \{1, \sigma\} \cong C_2$. Suppose G acts on K by permuting x, y and as complex conjugation on coefficients. For example, $\sigma(ix+(1-i)xy+y^2) = -iy+(1+i)yx+x^2$. Then, $K^G \cong \mathbb{R}(x, y)$, is \mathbb{R} – rational.

Proof. For $\frac{f(z,w)}{g(z,w)} \in K^G$, where f, g are coprime, $\sigma(f)$ and $\sigma(g)$ are also coprime. From $\frac{f}{g} = \frac{\sigma(f)}{\sigma(g)}$ $\frac{\sigma(f)}{\sigma(g)}$, we have $f = \sigma(f)$ and $g = \sigma(g)$. Thus, K^G is quotient field of S where $S := \{f(z, w) \in \mathbb{C}[z, w] | f = \sigma(f)\}.$

Define a map $\psi : S \to \mathbb{R}[x, y]$ as

$$
z = x + yi, w = x - yi
$$

and

$$
\psi(f)(x,y) = f(z,w)
$$

The coefficients of $\psi(f)$ are real numbers. This is because, if we let $f(z, w) =$ $\sum_{n,m} a_{n,m} z^n w^m$, we have that

$$
\psi(f)(x,y) = f(z,w) = \sigma(f(z,w)) = \sigma(\sum_{n,m} a_{n,m} z^n w^m) = \sum_{n,m} \overline{a_{n,m}} w^n z^m
$$

$$
= \sum_{n,m} \overline{a_{n,m}(x+iy)^n (x-iy)^m} = \overline{\psi(f)(x,y)}.
$$

Therefore, $\psi(f) = \overline{\psi(f)}$, $\psi(f) \in \mathbb{R}[x, y]$. It is easy to see that ψ is actually isomorphism, $S \cong \mathbb{R}[x, y]$, and $K^G \cong \mathbb{R}(x, y)$.

Another perspective to view this change of variables is identifying the field with rational function field of algebraic $k - tori$. (see **Example 2.5** and **Ex**ample 2.6)

2 Algebraic $k - tori$

Let k be a field. Then \mathbb{A}_k^n is *n-dimension affine space* over the field k, simply k^n with usual vector space structure on it. A subset X of \mathbb{A}_k^n is an *algebraic* $k\text{-}variety$ ($k\text{-}variety$ in short) if it is a set of zeros of a system of equations with n variables x_1, \ldots, x_n over k. The ideal of polynomials that vanish on every points of X will be denoted by $I(X)$. The *coordinate ring* of a variety X is defined to be the quotient

$$
A(X) := k[x_1, \ldots, x_n]/I(X)
$$

Projective varieties can be similarly defined as the set of zeros of a system of homogeneous equations. *Projective n* $-space \mathbb{P}_{k}^{n}$ is defined as set of lines passing the origin in \mathbb{A}_k^{n+1} .

If X, Y are varieties, a map $f: X \to Y$ is called *regular* if it can be presented as fraction of polynomials p/q , where q does not vanishes in X. A map $f: X \rightarrow$ Y is called *rational* if it is regular on Zariski open dense set. (Formally, a regular map is defined as an equivalence class of pairs $\langle U, f_U \rangle$ where U is Zariski open subset of U. See [1]) Let X be a variety, $K(X)$ is the rational function field, or function field in short, the set of rational maps $f: X \to \mathbb{A}_k$. For example, if X is an affine variety over algebraically closed field $k, K(X)$ is quotient field of $A(X)$.

Example 2.1 Let $X = \{(x, y) \in \mathbb{A}_{\mathbb{C}}^2 | xy = 1\}$ be a variety over \mathbb{C} . Then, $A(X) = \mathbb{C}[x, y]/(xy - 1) \cong \mathbb{C}[x, \frac{1}{x}]$ and $K(X) \cong \mathbb{C}(x)$.

Two varieties X, Y are *isomorphic* (resp. *birationally isomorphic*) if there is a bijective regular map (resp. rational map) $f : X \to Y$ and its inverse is also regular (resp. rational).

A variety X in \mathbb{A}_k^n is an *algebraic group* if it has a group structure on it, where the group operation and inversions are regular maps. (i.e. $* : X \times X \to X$ and $^{-1}: X \to X$ are regular)

Algebraic $k-tori$, or algebraic $k-torus$, is a special type of algebraic group over k. We call an algebraic group as $k - tori$ when it is isomorphic to some power of multiplicative group over \overline{k} , the algebraic closure of k.

Definition 2.1 (Multiplicative Group) Let k be a field, the multiplicative group $\mathbb{G}_m(k)$ is algebraic group in \mathbb{A}_k^2 , defined as $\{(x,y) \in \mathbb{A}_k^2 | xy = 1\}$, with operation $\cdot : \mathbb{G}_m(k) \times \mathbb{G}_m(k) \to \mathbb{G}_m(k)$ of $(x, \frac{1}{x}) \cdot (y, \frac{1}{y}) = (xy, \frac{1}{xy})$

Example 2.2 $\mathbb{G}_m(\mathbb{R})$ is the curve $xy = 1$ on the real affine plane. It is isomorphic to \mathbb{R}^\times as a group. $((x, y) \to x$ is group isomorphism.)

As field changes, same system of equations can define different varieties. For instance, the equation $xy = 1$ in previous example defines $\mathbb{G}_m(\mathbb{C})$ in $\mathbb{A}_{\mathbb{C}}^2$, which is different from $\mathbb{G}_m(\mathbb{R})$. If E is a field and F is its algebraic closure, an irreducible variety V over F entails the ring of equations, I . If I happens to be in $E[\mathbf{x}]$ (ring of polynomials over E), we can define $V(E)$, a variety over E defined by equations in I. This can be viewed as restriction of scalar. Extension of scalar can be defined similarly.

Definition 2.2 (Algebraic k-tori) Let k be a field with algebraic closure \overline{k} . If T is an algebraic group over k, it is $k -$ torus if and only if

$$
T(\overline{k}) \cong (\mathbb{G}_m(\overline{k}))^r
$$

for some r. The r is called dimension of T.

Example 2.3 $T = \mathbb{G}_m(\mathbb{R})$ is one dimensional \mathbb{R} – tori. This is because $T(\mathbb{C})$ = $\mathbb{G}_m(\mathbb{C})$.

From now, let $k^{\times} = \mathbb{G}_m(k)$ be the one dimensional torus over k. There are two one-dimensional \mathbb{R} -tori, one can be recognized as \mathbb{R}^{\times} , the other one can be recognized as $SO(2)$ as a group.

Example 2.4 The norm one torus N is a real algebraic group in $\mathbb{A}_{\mathbb{R}}^2$, defined by equation $x_1^2 + x_2^2 = 1$ (i.e. $N = \{(x_1, x_2) \in \mathbb{A}_{\mathbb{R}}^2 | x_1^2 + x_2^2 = 1 \}$), and operation $\cdot : N \times N \rightarrow N$ such that

$$
(x_1, x_2) \cdot (y_1, y_2) = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1)
$$

Indeed, N is isomorphic to $SO(2)$ as a group. Also, $N(\mathbb{C}) = \{(x_1, x_2) \in \mathbb{A}_{\mathbb{C}}^2 | x_1^2 + x_2^2 = 1\}$ is isomorphic to C^{\times} as algebraic group. The map $\psi : N(\mathbb{C}) \to \mathbb{C}^\times$

$$
\psi(x_1, x_2) = x_1 + ix_2
$$

is isomorphism. Therefore, N is one dimensional real torus.

If T is a $k - torus$, T is called *split over* K if it satisfies $T(K) \cong (K^{\times})^s$ for some extension K/k and some s. For instance, \mathbb{R}^{\times} is split over \mathbb{R}, N is not.

It is easy to find split torus such as $(\mathbb{R}^{\times})^2$ or $(\mathbb{R}^{\times})^3$, being another torus. Also, for any integer r, N^r is r-dimensional \mathbb{R} – tori. Meanwhile, there are also some non-trivial(not a product of low-dimensional torus) torus.

Example 2.5 Let P be a real algebraic group in $\mathbb{A}^4_{\mathbb{R}}$, defined as

$$
P = \{(x_1, x_2, x_3, x_4) \in \mathbb{A}_{\mathbb{R}}^4 | x_1 x_3 - x_2 x_4 = 1, x_1 x_4 + x_2 x_3 = 0\}
$$

Alternatively,

$$
P = \{ A \in M_{2 \times 2}(\mathbb{R}) \mid AA^t = \begin{pmatrix} s & 0 \\ 0 & s^{-1} \end{pmatrix} \quad s \in \mathbb{R} \setminus \{0\} \}
$$

and operation $\cdot : P \times P \rightarrow P$ such that

$$
(x_1, x_2, x_3, x_4) \cdot (y_1, y_2, y_3, y_4) = (x_1y_1 - x_2y_2, x_1y_2 + x_2y_1, x_3y_3 - x_4y_4, x_3y_4 + x_4y_3)
$$

Which is compatible with complex multiplication of

$$
(x_1+x_2i, x_3+x_4i) \cdot (y_1+y_2i, y_3+y_4i)
$$

Moreover, $P(\mathbb{C})$ is isomorphic to $(\mathbb{C}^{\times})^2$, by sending

$$
(x_1, x_2, x_3, x_4) \rightarrow ((x_1 + x_2i, x_3 + x_4i), (x_1 - x_2i, x_3 - x_4i)) = ((z, \frac{1}{z}), (w, \frac{1}{w}))
$$

Therefore, P is 2-dimensional \mathbb{R} – tori.

By tracking the function fields of $P(\mathbb{R})$ and $P(\mathbb{C})$, we have the same trick of change of variables as in Example 1.2.

Example 2.6 In the previous example, the coordinate ring of $P(\mathbb{C})$ is

$$
A(P(\mathbb{C})) = \mathbb{C}[x_1, x_2, x_3, x_4]/(x_1x_3 - x_2x_4 - 1, x_1x_4 + x_2x_3) \cong \mathbb{C}[z, \frac{1}{z}, w, \frac{1}{w}]
$$

where $z = x_1 + x_2i$ and $w = x_1 - x_2i$. The function field of $P(\mathbb{C})$ is

$$
K(P(\mathbb{C})) \cong \mathbb{C}(z, w)
$$

Let $G = Gal(\mathbb{C}/\mathbb{R})$ acts on $K(P(\mathbb{C}))$ as in **Example 1.2.** Observe that the coordinate ring of $P(\mathbb{R})$ is $A(P(\mathbb{R})) = A(P(\mathbb{C}))^G$ and the function field of $P(\mathbb{R})$ is $K(P(\mathbb{R})) = K(P(\mathbb{C}))^G \cong \mathbb{C}(z,w)^G$ (note that G actions on $K(P(\mathbb{C}))$ and $\mathbb{C}(z, w)$ are equivalent through the isomorphism). In short, we have that

$$
K(P(\mathbb{R})) \cong \mathbb{C}(z, w)^G
$$

Therefore, when $G = Gal(\mathbb{C}/\mathbb{R})$ action on $C(z, w)$ is given, we can convert the rationality problem to the rationality problem of $K(P(\mathbb{R}))$, the function field of $P(\mathbb{R})$. In this sense, the following definition and theorem are natural.

Definition 2.3 (Rationality of $k - variety$) We say that a variety X over k is rational if, equivalently,

- (1) X is birationally isomorphic to \mathbb{P}^n_k for some n.
- $(2) K(X) ≅ k(x_1, ..., x_n)$

If K/k is Galois extension, a $k - tori$ T is $K - rational$ if it is rational as a K-variety $T(K)$. If k is algebraically closed, there is unique n-dimension tori $T_n = (k^{\times})^n$. Since the function field of T_n is $k(x_1, ..., x_n)$, thus T_n is k-rational.

Theorem 2.1 The following two problems are equivalent.

- (1) The rationality problem of n dimensional $k tori$ T
- (2) The rationality problem of invariant field K^G

where $G = Gal(\overline{k}/k)$ and $K = k(x_1, ..., x_n)$.

There is a connection between the G action on K and k – tori T, connecting the two rationality problems given in the previous theorem. To be specific, the character group of T determines both the G action and T uniquely.

3 Character group of $k - tori$

Definition 3.1 (Character group of $k - tori$) Let T be k-tori. Then $\mathbb{X}(T)$, the character group of T is the set of algebraic group homomorphisms(a regular map preserving the group structure) from T to \overline{k}^{\times} , denoted by $Hom(T, \mathbb{G}_m)$ or $Hom(T, \overline{k}^{\times}).$

The character group $\mathbb{X}(T)$ of T has a group structure defined by componentwise multiplication. Also, if T is split over L for finite Galois extension of base field k, $G = Gal(L/k)$ acts on $\mathbb{X}(T)$. Moreover, it is known that $\mathbb{X}(T)$ is torsionfree Z-module(i.e. isomorphic to \mathbb{Z}^n for some n). Therefore, $\mathbb{X}(T)$ is a $G-lattice$ (a free $\mathbb{Z}-module$ with *G*-action).

Example 3.1 If $T = \mathbb{C}^\times$ is multiplicative group of \mathbb{C} , then $\mathbb{X}(T)$ is set of regular functions $f: \mathbb{C}^\times \to \mathbb{C}^\times$ such that $f(xy) = f(x)f(y)$ for $x, y \in \mathbb{C}^\times$. Since f is a rational function, it is a meromorphic function over \mathbb{C} . Also, we have $f(\mathbb{C}^\times) \subset \mathbb{C}^\times$, which implies 0 is the only point where f can have zeros or poles. Therefore, $f(t) = t^n$ for some $n \in \mathbb{Z}$. If we write a function $t \to t^n$ as t^n , we have

$$
\mathbb{X}(T) = \{ t^n | n \in \mathbb{Z} \} \cong \mathbb{Z}^1
$$

as a group. $G = Gal(\mathbb{C}/\mathbb{C}) = \{id\}$ acts trivially on $\mathbb{X}(T)$.

In general, if k is algebraically closed, the character group of $(k^{\times})^n = \mathbb{G}_m^n$ is $\mathbb{X}(\mathbb{G}_{m}^{n}) = \{f_{t_1,...t_n} : \mathbb{G}_{m}^{n} \to \mathbb{G}_{m} | f_{t_1,...t_n}(x_1,...x_n) = \prod_{i} x_i^{t_i}, t_i \in \mathbb{Z}\}\$ $=\prod_{i=1}^n \{f_t: \mathbb{G}_m \to \mathbb{G}_m | f_t(x_i)=x_i^t, t \in \mathbb{Z}\}\cong \mathbb{Z}^n$

Example 3.2 Let P be the 2-dimension \mathbb{R} – tori in Example 2.5. Then, the character group of P is

$$
\mathbb{X}(P) = \{ f_{t_1, t_2} : P \to \mathbb{C}^\times | f_{t_1, t_2}(x_1, x_2, x_3, x_4) = (x_1 + x_2 i)^{t_1} (x_1 - x_2 i)^{t_2} \}
$$

Let $z = x_1 + x_2i$, $w = x_1 - x_2i$, then we have the natural extension of $X(P)$ to $\mathbb{X}(P(\mathbb{C}))$

$$
\mathbb{X}(P(\mathbb{C})) = \{ f_{t_1, t_2} : P(\mathbb{C}) \to \mathbb{C}^\times | f_{t_1, t_2}((z, \frac{1}{z}), (w, \frac{1}{w})) = z^{t_1} w^{t_2} \} \cong \mathbb{Z}^2
$$

Observe that the complex conjugation $\sigma \in G$, exchanges z and w, thus acting on \mathbb{Z}^2 as 2×2 matrix \lceil $\overline{1}$ 0 1 1 0 1 $\vert \cdot$

It is known that when a $G = Gal(K/k)$ action (as Z-linear function) on \mathbb{Z}^n is given, there exists unique n-dimensional $k - tori$ which has the given G *lattice* as its character group. Furthermore, there are conditions of $G - lattice$ corresponding to the rationality conditions of $k - tori$ and of invariant fields.

4 Flabby resolution and numerical approach

This section contains many results in [2]. Let G be a group and M be a $G-lattice (M \cong \mathbb{Z}^n$ as group and has G-linear action on it). M is called a permutation G-lattice if $M \cong \bigoplus_{1 \leq i \leq m} \mathbb{Z}[G/H_i]$ for some subgroups $H_1, ..., H_m$ of G (equivalently, there exists a $\mathbb Z$ -basis of M such that G acts on M as permutation of the basis). M is called *stably permutation G-lattice* if $M \bigoplus P \cong Q$ for some permutation $G - lattices P$ and Q. M is called *invertible* if it is a direct summand of a permutation *G*-lattice, i.e. $P \cong M \bigoplus M'$ for some permutation G -lattice P and M' .

Definition 4.1 (1st Group Cohomology) Let G be a group and M be a G lattice. For $g \in G$ and $m \in M$, let $g.m = m^g$ be g acting on m. The first group cohomology $H^1(G,M)$ is a group defined as

$$
H^{1}(G, M) = Z^{1}(G, M)/B^{1}(G, M)
$$

where $Z^1(G,M) = \{f : G \to M | f(gh) = f(g)^h f(h)\}\$ and $B^1(G,M) = \{f : G \to M | f(gh) = f(g)^h f(h)\}\$ $G \to M | f(g) = m_f^g m_f^{-1}$ for some $m_f \in M$

 $H^1(G,M) = 0$ simply implies that if $f: G \to M$ satisfies $f(gh) = f(g)^h f(h)$, then there exists $m \in M$ such that $f(g) = m^g m^{-1}$. M is called *coflabby* if $H^1(G, M) = 0.$

Definition 4.2 (-1st Tate Cohomology) Let G be finite group of order n and M be a G-lattice. The -1st group cohomology $\hat{H}^{-1}(G,M)$ is a group defined as

$$
\hat{H}^{-1}(G,M) = Z^{-1}(G,M)/B^{-1}(G,M)
$$

where

,

$$
Z^{-1}(G, M) = \{m \in M | \sum_{g \in G} m^g = 0\}
$$

$$
B^{-1}(G, M) = \{\sum_{g \in G} m_g^{g-id} | m_g \in M\}
$$

Similarly, M is called flabby if $\hat{H}^{-1}(G,M) = 0$. It is clear that a $k - tori$ is rational if and only if $X(T)$ is permutation G-lattice. Thus, the rationality problems of $k - tori$ and invariant fields can be reduced into problem of finding permutation G-lattice(equivalent to find finite subgroup of $GL(n, \mathbb{Z})$. However, this problem is not solved yet, even though there are many results in weakened problems.

Let $C(G)$ be the category of all G-lattices and $S(G)$ be the category of all permutation G-lattices. Define equivalence relation on $C(G)$ by $M_1 M_2$ if and only if there exist $P_1, P_2 \in S(G)$ such that $M_1 \bigoplus P_1 \cong M_2 \bigoplus P_2$. Let $[M]$ be equivalence class containing M under this relation.

Theorem 4.1 (Endo and Miyata [3, Lemma 1.1], Colliot-Thélène and Sansuc [4, Lemma 3]) For any G-lattice M, there is a short exact sequence of G-lattices $0 \to M \to P \to F \to 0$ where P is permutation and F is flabby.

In the previous theorem, $[F]$ is called the *flabby class* of M, denoted by $[M]^{fl}$.

Theorem 4.2 (Akinari and Aiichi [2, 17pp]) If M is stably permutation, then $[M]^{fl}$. If M is invertible, $[M]^{fl}$ is invertible.

It is not difficult to see that

M is permutation \Rightarrow M is stably permutation

Furthermore, it is true that

M is stably permutation \Rightarrow M is invertible \Rightarrow M is flabby and coflabby

In [2], they gave the complete list of stably permutation lattices for dimension 4 and 5 by computing $[M]^{fl}$ for finite subgroup of $GL(n,\mathbb{Z})$, which is equivalent to classifying stably rational tori. Thus, the rationality problems for low dimensional $k - tori$ can be resolved by finding conditions which can determine a stably permutation M is permutation or not.

References

- [1] Robin Hartshorne Algebraic Geometry. Springer, New York, 24-25, 1977.
- [2] Akinari Hoshi, Aiichi Yamasaki Rationality Problem for Algebraic Tori (Memoirs of the American Mathematical Society) American Mathematical Society, 2017.
- [3] S.Endo, T.Miyata On a classification of the function fields of algebraic tori Nagoya Math, 85-104, 1975.
- [4] J.-L. Colliot-Thélène, J.-J. Sansuc La R-équivalence sur les tores 175-229, 1977.