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Abstract.     We introduce and suggest to research a special class of optimiz- 

ation problems,  wherein an objective function is a real-valued complex vari- 

ables  function under constraints,  comprising complex-valued complex vari- 

ables functions: "Complex Optimization" or "Complex Programming".  

    We demonstrate multiple examples to show a rich variety of problems, d- 

escribing complex optimization as an optimization subclass as well as a Mi- 

xed-Real-Integer Complex Optimization. 

    Next, we introduce more general concept "Quaternionic Optimization" for 

optimization over quaternion subsets. 
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1.  Introduction 

                    Its well-known that an optimization problem can be represented in the fo- 

llowing way:  

            given: a function f: G → R    from some set G to the real numbers, 

sought: an element x0∈ G such that f(x0)  ≤  f(x) for all  x∈ G 

("minimization") or such that f(x0)  ≥  f(x) for all x∈ G   ("maximizati-

on").   

    Typically, G is some subset of the Euclidean space R
n
, specified by  a set 

of constraints and the function f is called an objective function, target funct- 

on.  

    The case, when G is some subset of two-dimensional complex plane    and  

target function f: C → R is real-valued complex variable function is very poor  

investigated yet.  
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     In  [1], the mathematical formulation of the ptychographic phase retrieval 

problem is examined and the corresponding minimization of intensity Gaus-

sian error metric(for the corresponding discrete Fourier operator and probes: 

scanning positions) over potentially complex vector is investigated      (Least   

Squares Problem).     Phase retrieval is the process of algorithmically finding  

solutions to the phase problem.     In physics, the phase problem is a problem 

of loss of information concerning the phase that can occur when making a p- 

hysical measurement. 

     In [2],    methods to solve unconstrained nonlinear optimization problems 

of real-valued complex functions in several complex variables are   develop- 

ed in order to overcome the fact that due to Cauchy-Riemann conditions, the 

real-valued functions in complex variables are necessarily nonanalytic.    

   As we see, currently, optimization of real-valued complex variable  functi- 

ons over the complex plane is considered and investigated just for some spe-  

cific cases, no general models, comprising wide variety of targets and const- 

raints are considered and investigated yet.  

    The purpose of this paper is to introduce and describe wide variety of op-    

timization problems of f:  C → R and f:  C
n 

 → R  target functions over subsets 

of C and C
n
, specified by the constraints, comprising complex functions    of 

one and several complex variables, and, further,   we introduce more general 

concept: "Quaternionic Optimization",  when G is some quaternion subset.  
     

2.  Complex Optimization 

 

    Basic definitions, methods and algorithms for modern complex analysis is 

considered, e.g., in [3] and [4].    

    Complex analysis proves a powerful tool for solving wide variety of prob-   

lems in fundamental science and engineering: the analysis of electrical circu- 

its, hydro- and aerodynamics, and so on. 

    In [5], [6], [7],     formulas in various engineering applications and science 

are considered: e.g,, for electrical impedance, electromechanical circuits,  el- 

ectromagnetic fields, hydro- and aerodynamics.  Imposing the corresponding 

constraints on complex input parameters we could obtain various     complex  

optimization problems. 

    Let | z | be the absolute value of a complex number z =  Re(z) + Im(z)i = a   

+ ib, a ∈ R, b ∈ R, i
2
 = -1 and arg(z) the argument of z: the principal value. 

(See, e.g.,  [3], [4]). 

     Let us introduce and demonstrate various optimization problems,  defined 

in terms of complex numbers and functions, contained in various targets  and 

constraints. 
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Example 2.1.   

 

cop1 = { minimize | z |  subject to   | z |  ≥ 1 }, argmin(cp1) = {z: | z | = 1}. 

 

Example 2. 2. 

 

cop2 = { minimize  – Im(z)   subject to   | z |  ≤  1 }, argmin(cp2) = i. 

 

Example 2.3.   

 

cop3 =  { minimize  Re(z)   subject to   | z |  ≤  1 }, argmin(cp3) =  -1. 

 

Example 2.4.   

 

cop4 =  { maximize  | z |  subject to  0 ≤ Re(z)  ≤  1, 0 ≤ Im(z)  ≤  1 },       

              argmax(cp4) =  1 + i. 

 

Example 2.5.   

 

cop5 = { maximize Re(z) + Im(z)  subject to 0 ≤ Re(z)  ≤ 1, 0 ≤  Im(z)  ≤ 1 }, 

             argmax(cp5) =  1 + i. 

 

Example 2.6.   

 

cop6 = { maximize Re(z) + Im(z)  subject to 0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤  1, 

             arg(z) = 0 }, argmax(cp6) = 1. 

 

Example 2.7.   

 

cop7 = { maximize Im(z)  subject to  0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤  1,  

             Im(z) ≤ Re(z) }, argmax(cp7) = 1 + i. 

 

Example 2.8.   

 

cop8 = { maximize | z |  subject to  Im(z) ≥ Re
2
(z), Re(z) ≥ Im

2
(z) }, 

             argmax(cp8) = 1 + i. 

 

Example 2.9.  Polynomial Complex Optimization. 
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cop9 = { maximize  | cn z
n
+ ...  + c1z  |  subject to 

 

             | a1nz
n
 + ...  + a11z |  ≤  b1, 

               ...             ...              ... 

             | amnz
n 
+ ... + am1z |  ≤  bm,  

 

             z ∈ C,  aij ∈ C,  bi ∈ R, cj ∈ C,  

 

             1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

(More sophisticated examples would contain rational meromorphic complex 

functions).  

 

Example 2.10.  Several complex variables. 

 

cop10 =  { maximize | z1 + z2 |  subject to  | z1 | ≤ 1, | z2 | ≤ 1 }. 

 

Example 2.11.   

 

cop11 = { maximize | z1 + z2 |  subject to | z1 | ≤ 1, | z2 | ≤ 1, arg(z1z2)  ≤ π/4 }. 

 

Example 2.12.  Linear Complex Optimization. 

 

cop12a = { maximize | c1z1 + ...  + cnzn |  subject to 

 

                 | a11z1  + ... + a1nzn |  ≤ b1, 

                   ...             ...              ... 

                 | am1z1  + ... + amnzn |  ≤ bm,  

 

                 zj∈ C,  aij∈ C,  bi ∈ R, cj ∈ C,  

 

                 1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

cop12b = { maximize | c1z1 + ...  + cnzn |  subject to 

 

                 a11z1  + ... + a1nzn   =  b1, 

                 ...             ...              ... 

                 am1z1  + ... + amnzn  =  bm,  
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                 zj∈ C,  aij∈ C,  bi ∈ C, cj ∈ C,  

 

                 (Az = b), 

 

                 1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

Example 2.13.   

 

cop13 = { maximize  | z1 + ...  + zn |  subject to 

 

               Re( a11z1  + ... + a1nzn )  ≤ b1, 

               ...             ...              ... 

               Re( am1z1  + ... + amnzn )  ≤ bm,  

 

               Im( a11z1  + ... + a1nzn )  ≤  c1, 

               ...             ...              ... 

               Im( am1z1  + ... + amnzn )  ≤ cm, 

 

               zj∈ C,  aij ∈ C,  bi ∈ R, ci ∈ R,  

 

               1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 

 

Example 2.14.   
 

cop14 = { maximize  | z1 + ...  + zn |  subject to 

 

               arg( a11z1  + ... + a1nzn )  ≤ b1, 

               ...             ...              ... 

               arg( am1z1  + ... + amnzn )  ≤ bm,  

 

               Im( a11z1  + ... + a1nzn )  ≤ c1, 

               ...             ...              ... 

               Im( am1z1  + ... + amnzn )  ≤ cm, 

 

               zj∈ C,  aij ∈ C, bi ∈ R, ci ∈ R,  

 

               1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 
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Example 2.15.   
 

cop15 = { maximize  arg(z1 ... zn)  subject to 

 

               Re( a11z1  + ... + a1nzn )  ≤ b1, 

               ...             ...              ... 

               Re( am1z1  + ... + amnzn )  ≤ bm,  

 

               Im( a11z1  + ... + a1nzn )  ≤ c1, 

               ...             ...              ... 

               Im( am1z1  + ... + amnzn )  ≤ cm, 

 

               arg(zj)  ≤ dj,  

 

               zj∈ C,  aij ∈ C, bi ∈ R, ci ∈ R, dj ∈ R,  

 

               1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 

 

Example 2.16. Quadratic Complex Optimization.  

 

cop16 = { maximize | z1
2
 + ...  + zn

2
 - iz1z2 |  subject to 

 

               | a11z1  + ... + a1nzn |  ≤ b1, 

               ...             ...                ... 

               | am1z1  + ... + amnzn |  ≤ bm,  

 

               zj∈ C,  aij ∈ C,  bi ∈ R,  

 

               1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N,  m ∈ N }. 

 

Example 2.17.  Non-Linear Complex Optimization. 

 

cop17 = { maximize | e
z
  + sin(πz) |  subject to 

 

               | cos(πz) |  ≤ a, 0 ≤  Re(z)  ≤ 1, 0 ≤  Im(z)  ≤ 1,  

 

               z ∈ C, a ∈ R }. 
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Example 2.18.   Similar to the very well known in Mathematical Optimizati- 

on Integer Optimization(see, e.g., [8]):   optimization over integer points, we  

introduce here Complex Optimization over subsets of  the  Gaussian Integers  

(C ∩ Z
2
), 

 
- Integer Complex Optimization(ICOP). 

 

cop18 = { maximize | z1
4
 + ...  + zn

4
 |  subject to 

 

               b1 ≤  | a11z1  + ... +   a1nzn |  ≤ c1, 

               ...             ...              ... 

               bm ≤ | am1z1  + ... + amnzn |  ≤  cm,   

 

                zj∈ C ∩ Z
2
,  aij ∈ C, bi ∈ R, ci ∈ R, 

 

                1  ≤  i  ≤  m,  1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 

 

Example 2.19.  Mixed-Real Complex Optimization (MRCOP). 

 

cop19 =  { maximize  | iz
3
 | - x

2
  + y

3
 subject to 

 

               | z | ≤ a,   b ≤  x  ≤  c, d ≤  y ≤  e, 

 

               z ∈ C, x ∈ R, y ∈ R, a ∈ R, b ∈ R, c ∈ R, d ∈ R, e ∈ R. 

 

Example 2.20.  Mixed-Real-Integer Complex Optimization (MRICOP). 

 

cop20 =    { minimize  | iz1
4
 + z2

2 
| - x

2
 + y

3
t
2
   subject to 

 

                  xy ≥ N,  

 

                  a1  ≤  | z1 |  ≤  b1, 

 

                  a2  ≤  | z2 |  ≤  b2, 

 

                  a3  ≤    x   ≤    b3, 

 

                  a4  ≤    y   ≤    b4, 

 

                  a5  ≤    t   ≤    b5, 
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                            z1 ∈ C, z2 ∈ C ∩ Z
2

,   

 

                            x ∈ Z, ,  y ∈ Z, t ∈ R, 

   

                  ai ∈ R, bi ∈ R, N ∈ N,  ai > 0, 

 

                  1  ≤  i  ≤  5.                  

 

     Note that in addition, each such example may comprise  complex conjug- 

ations as well. 

 

3.  Quaternionic Optimization 

       

      Quaternions are generally represented in the form:   q =  a + bi + cj + dk, 

where, a ∈ R, b ∈ R, c ∈ R, d ∈ R, and i, j and k are the fundamental quate- 

rnion units and are  a number system that extends the  complex numbers(see, 

e.g., [9], [10]).  Quaternions find uses in both pure and applied mathematics: 

in three-dimensional computer graphics, computer vision, robotics, control t- 

heory, signal processing, attitude control, physics, bioinformatics,  molecular 

dynamics, computer simulations, orbital mechanics,  crystallographic texture 

analysis.  In quantum mechanics, the spin of an electron and other matter pa- 

rticles can be described using quaternions.  In 1999 is was shown that  Einst- 

ein equations of general relativity could be formulated using quaternions. 

      The set of all quaternions H is a normed algebra, where the norm is mul- 

tiplicative:   || pq || = || p || || q ||, p ∈ H, q ∈ H, || q ||
2
  =  a

2
 + b

2 
+ c

2
 + d

2
.  

      This norm makes it possible to define the distance d(p, q) = ||p - q||,  whi- 

ch makes H into a metric space. 

      Let us introduce Quaternionic Optimization - optimization of real-valued 

quaternionic functions over quaternionic subsets. 

       

Example 3.1.  Linear Quaternionic Optimization. 

 

qop1a =    { maximize || c1q1 + ...  + cnqn || subject to 

 

                  || a11q1  + ... + a1nqn  || ≤ b1, 

                     ...             ...              ... 

                  || am1q1  + ... + amnqn || ≤ bm,  

 

                  qj∈ H,  aij∈ H,  bi ∈ R, cj ∈ H,  
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                  1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 

 

qop1b =    { maximize || c1q1 + ...  + cnqn || subject to 

 

                  a11q1  + ... + a1nqn   =  b1, 

                  ...             ...              ... 

                   am1q1  + ... + amnqn  =  bm,  

 

                   qj∈ H,  aij∈ H,  bi ∈ H, cj ∈ H,  

 

                   (Aq = b), 

 

                   1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 

      

Example 3.2.  Polynomial Quaternionic Optimization. 

 

qop2 =    { maximize  || cnq
n 
 + ...  + c1q || subject to 

 

                || a1nq
n
 + ...  + a11q ||  ≤  b1, 

                   ...             ...              ... 

                || amnq
n 
+ ... + am1q ||  ≤  bm,  

 

                q ∈ H,  aij ∈ H,  bi ∈ R, cj ∈ H,  

 

                1  ≤  i  ≤  m, 1  ≤  j  ≤  n, n ∈ N, m ∈ N }. 

 

Example 3.3.         Mixed-Complex-Real-Integer Quaternionic Optimization 

(MCRIQOP). Similar to Gaussian Integers in Complex Analysis, let us intr- 

oduce a set of integer points for quaternions: H ∩ Z
4
. 

 

qop3 =      { minimize  || p - q ||  +  | iz1
4
 + z2

2 
|  -  x

2
  +  y

3
t
2
   subject to 

 

                  xy ≥ N,  

 

                  a1  ≤  || p ||  ≤  b1, 

 

                  a2  ≤  || q ||  ≤  b2, 
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                  a3  ≤  | z1 |  ≤  b3, 

 

                  a4  ≤  | z2 |  ≤  b4, 

 

                  a5  ≤    x   ≤    b5, 

 

                  a6  ≤    y   ≤    b6, 

 

                  a7  ≤    t    ≤    b7, 

 

                            p ∈ H, q ∈ H ∩ Z
4

,   

 

                            z1 ∈ C, z2 ∈ C ∩ Z
2

,   

 

                            x ∈ Z, ,  y ∈ Z, t ∈ R, 

   

                  ai ∈ R, bi ∈ R, N ∈ N,  ai > 0, 

 

                  1  ≤  i  ≤  7.                  

 

4.  Open Problems 
 

     Despite such optimization problems actually could be translated and con- 

sidered in terms of optimization problems over the Euclidean space,    it may  

be not always so "easy" task(complexity problems, etc.). 

    That is why, it would be preferable to develop specific,    "direct" methods 

for Complex and Quaternionic Optimization problems using   Complex   and 

Quaternionic Analysis. 

    The corresponding complexity evaluations for the  Complex and Quatern- 

ionic Optimization problems would be developed as well: for example in bi- 

nary encoded length of the coefficients(see, e.g.,  [8], [11]) and, in particular, 

finding conditions for the polynomial-time optimization. 

     Complex and Quaternionic Optimization ideas may be useful for   similar 

approaches in other subfields of the Optimization Theory, e.g.,   in   Optimal 

Control Theory. 

 

5.  Conclusions 
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     We described a rich variety of optimization problems as classes of   opti-   

mization problems,   comprising complex numbers and complex functions in 

their targets and constraints: "Complex Optimization" and quaternion  varia-  

bles and functions: "Quaternionic Optimization". 
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